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Abstract

The MIX technique forms the basis of many popular services
that offer anonymity of communication in open and shared
networks such as the Internet. In this paper, fundamental
limits on the anonymity provided by the MIX technique are
found by considering two different settings. First, we con-
sider an information theoretic setting to determine the extent
of information inherent in observations of the traffic passing
through the MIX. We show that if the size of sender anonymity
sets is less than the total user population, the information
contained in traffic observations is sufficient to deduce all
communication relationships between senders and receivers
using the MIX. More importantly, we show that even if ev-
ery user sends a message in each communication round, it is
possible to compromise the anonymity significantly. We pre-
cisely characterize the extent of compromised anonymity in
each case.

In the second setting, we assume that the attacker has un-
limited computational resources and is free to choose any
attack algorithm. We derive tight upper and lower bounds
on the minimum number of observations required to deduce
all recipient peer-partners of a targeted user. The analysis
done in these two settings reveals many discrete mathemat-
ical structures inherent in anonymity sets, and the intuition
gained from these structures can be used when designing or
using a MIX based anonymity technique.

1 Introduction

According to the Merriam-Webster’s online dictionary [22]
privacy is the quality or state of being in retirement from
observation of others. However, popular network proto-
cols (e.g. TCP/IP used in the Internet) allow all commu-
nications or used services to be observable—at least net-
work providers and intruders have access to traffic infor-
mation such as who has communicated to whom, for how
long, and from which location. Thus, the problem of traf-
fic observability is one of the most fundamental problems
in the privacy of digital communication. A number of

anonymity techniques have been proposed to solve this prob-
lem [5, 6, 28, 15, 16, 18, 3, 7, 13, 11].

Our goal in this paper is to investigate the fundamental lim-
its on the protection provided by the anonymity techniques.
We carry out our investigation by using the well known MIX
technique proposed by Chaum [5]. We use a simplified
model of the MIX technique that can be generalized to in-
clude other anonymity techniques. In this model, N users
want to provide anonymity to each other. The communica-
tion happens in rounds, and every user can provide its own
(private) message to a central node, the MIX, in each round.
The traffic in each round is organized by the participating
users and the MIX in such a manner that the traffic informa-
tion of a particular user is hidden from the attacker due to the
additional traffic generated by the other users.

In anonymity literature, the set of N participating users
(senders) of the MIX is called the anonymity set. In fact,
anonymity itself can be defined using the term “anonymity
set”: anonymity is the state of not being identifiable within
a set of subjects, anonymity set [27]. In this work, we do
not investigate a particular implementation of the MIX pro-
tocol. We assume a “perfect” MIX, and investigate the ef-
fect of typical user-behavior (e.g. communicating within a
circle of friends, visiting a set of websites frequently) on
the anonymity set. Specifically, we investigate how repeated
communication (to a number of fixed communication part-
ners) can reduce the anonymity.

In recent years, a number of attacks on the MIX technique
have been proposed and analyzed [30, 2, 4, 14, 17, 33, 1, 8,
32, 31, 34, 9, 10, 12, 19, 20, 24, 21, 35, 23]. These attacks can
be classified by the fact whether the attack exploits a weak-
ness of the MIX protocol or if the attack is independent of the
MIX protocol1. Since the focus of this paper is on the funda-
mental limits, we skip all protocol dependent attacks such as
attacks involving flooding the network, sending more mes-
sages than allowed, or replaying messages. Instead we focus
on traffic analysis attacks which are more related to our work
[2, 4, 17, 33, 1, 8, 32, 31, 34, 9, 10, 12, 19, 20, 21, 24, 35, 23].
Traffic analysis attacks are mostly passive attacks2, and can

1For a nice classification and overview of various attacks, see [30].
2An active timing attack is suggested in [20].



be as simple as counting packets on lone connections3 [31],
or as complicated as correlating data flows by any observ-
able patterns [35](e.g. time and frequency statistics). These
attacks are harder to thwart since they exploit the informa-
tion leakage (inference) inherent in the anonymity sets. They
model the information leakage and its accumulation over
time mostly in terms of probabilities (stochastic models) [8].
To make traffic analysis attacks harder the anonymity set
size can be increased4 or additional measures, such as us-
ing dummy messages, can be taken5. However, to quantify
the benefits of additional measures, there is a need to under-
stand and precisely describe the discrete mathematical struc-
ture behind the anonymity sets.

Our goal in this paper is to extend the previous work in this
direction [17, 1, 8, 12, 21, 9, 10, 19] by exploring fundamen-
tal limits in two settings: the first setting shows to which ex-
tent anonymity sets leak information (information theoretic
setting), and the second setting computes the minimal num-
ber of observations required by an attacker to compromise
the anonymity provided by anonymity sets (practical setting).

This paper is organized as follows. In the next section, we
will provide basic terminology and overview the MIX tech-
nique. In Section 3, we describe the contributions of this
paper. In Section 4, we consider an information-theoretic
setting in which the attacker has access to all possible ob-
servations that the MIX could produce as well as access to
unlimited computational resources. Under this setting, we
calculate the extent of communication relationships that such
an attacker can derive. In Section 5, we consider a practical
setting in which the attack does not have access to all pos-
sible observations of the MIX. Instead, the attacker watches
acts of communication one by one as they are performed by
the targeted user and stops when the anonymity of the tar-
geted user has been compromised. We calculate the lower
and upper bounds on the minimum number of observations
required by the attacker in this setting, and compare these
bounds to the results obtained by simulation. In Section 6,
we summarize our results.

2 Background

2.1 The basic MIX technique

We consider an omnipresent passive attacker who is capa-
ble of observing all communication links simultaneously.
Against an omnipresent passive attacker6 the anonymity of a

3So it is possible to follow anonymized streams.
4Increasing anonymity size has a cost: the operation time of the protocol

has to be increased to build the appropriate anonymity sets.
5Use of dummy messages is prohibitive on large scale networks like the

Internet.
6In the rest of this paper, the term attacker means omnipresent passive

attacker unless qualified otherwise.

single transmission by a single person can not be protected—
the attacker can observe the act of sending a message and
follow the message physically to the receiver, thereby de-
tecting the act of communication between the sender and the
receiver of a message. Hence, anonymity techniques require
additional cover traffic to confuse the attacker and conceal
communication relationships between senders and recipients
of messages.

A well known example from everyday life is the ballot box
used in electoral procedures. The caster of a specific vote
is hidden among a number of other voters (cover traffic) by
confidentially collecting a number of votes from N distinct
voters in a closed box, and by randomly shuffling (e.g. by
shaking) the votes in the ballot box.

A A′ B
B′
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b91
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es

Figure 1. Formal model

In 1981, David Chaum proposed the MIX technique that is
analogous to the ballot box example [5]. Figure 1 shows
the basic ingredients of this technique which consist of a set
of senders A, a set of recipients B, and a MIX node. All
senders in A are connected to the MIX and the MIX itself is
connected to all recipients in B by a communication network
with reliable secure channels. A reliable secure channel does
not result in loss or duplication of transmitted messages, and
guarantees authenticity, integrity, and confidentially of trans-
mitted messages. The users and the MIX transmit messages
by using the following protocols:

User Protocol: Users prepare their messages to be of con-
stant length either by splitting long messages or by
padding short messages to the specified length. Each
message is encrypted twice with one time pads: first
the message is encrypted using a shared secret between
the sender and the intended recipient, and then it is en-
crypted using a shared secret between the sender and
the MIX. The users send twice encrypted messages to
the MIX.

MIX Protocol: A MIX collects n messages (called a batch)
from distinct users, decrypts the messages, and outputs
the decrypted messages in a batch in a different order
than the order in which they were received (lexicograph-
ically sorted or randomly delayed). The output is broad-
casted to all recipients. Furthermore, any incoming
packet is compared with formerly received messages
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(i.e. by locally caching formerly received messages) in
order to reject any duplicate messages.

The basic MIX technique described above can perfectly hide
the communication relationships between senders and recip-
ients of messages from everybody but the MIX and message
senders. Even the act of sending or receiving can be perfectly
hidden if the above protocol is applied in fixed time slots, and
if every user supplies a fixed number of messages (perhaps
some or all of them being dummy messages) to each slot and
the whole output batch in a time slot is distributed to every
user [25, 5, 26]. Pfitzmann [26] states that the MIX technique
provides information-theoretic anonymity and unobservabil-
ity based on complexity-theoretic secure cryptography.

2.2 The pure MIX technique

The “perfect” anonymity solution discussed above uses
dummy messages. Even though this solution can provide
perfect anonymity, it is not followed widely in large networks
such as the Internet. The reasons are manifold and some of
them are listed below:

Feasibility Reason If the protocol is applied in rounds then
all senders have to participate with a message. This pro-
cedure requires not only that all participants are syn-
chronized, but also that all users are able and willing
to send at predetermined times, whether anyone really
wants to send or not. This is hard to realize in large net-
works such as the Internet with millions of users, some
of which may be off-line.

Cost Reason Implementation of the dummy messages in a
MIX for a large network is very expensive. For instance,
consider 10, 000 users sending one message to the MIX.
Assuming that the fixed message size is 4 KB, the data
sent by users is 40, 000 KB. Assuming that all the mes-
sages are broadcasted to all users, the volume of data
increases to 400, 000 MB.

As a consequence, most current implementations and solu-
tions use a variant of the perfect MIX solution by neither
using dummy messages nor the broadcasting function. In
other words, resources are occupied only if real information
is transmitted and the cover traffic consists only of the real
traffic. We refer to a MIX technique without dummy mes-
sages or the broadcasting function as a pure MIX technique.
Specifically, in the rest of this paper, we will use the follow-
ing formal model of a MIX and information leakage therein
for our analysis.

Formal Model of the Pure MIX Technique

• A communication system consists of a set of senders A,
and a set of recipients B, and a MIX node (see Figure
1). If a sender a ∈ A communicates with a recipient
b ∈ B, then we say that a and b are peer partners. If the
roles of sender and receiver need to be distinguished,
then we say that a is a peer sending partner of b and b is
a peer recipient partner of a.

• In each communication round7 a subset A′ ⊆ A of all
senders A send a message to their peer partners. Let
B′ ⊆ B be the set of intended recipients. The act of
sending or receiving a message is not hidden among
dummy messages.

• The size of the sender anonymity set is |A′| = n, where
1 < n � |A| = N .

• The size of the recipient anonymity set is |B′| � n
since each sender sends exactly one message and sev-
eral senders may communicate with the same recipient.

• The information leakage X available to an attacker in
a communication round consists of the pair (A′, B′) of
peer senders and receivers.

3 Our Contributions

It is evident from the prior research work that anonymity sets
provide a limited protection of anonymity in presence of re-
peated communication. Kesdogan, Agrawal, and Penz pro-
posed the disclosure attack to identify all peer recipient part-
ners of a targeted user [17]. They subsequently analyzed the
number of observations required by an attacker to mount the
disclosure attack, and showed that the disclosure attack is an
NP-complete problem [1]. Danezis significantly improved
the performance of the disclosure attack by exploiting sta-
tistical properties of the observations and proposed the sta-
tistical disclosure attack [8, 10]. Kesdogan and Pimenidis
have recently proposed a deterministic attack, the hitting set
attack, and a variation that exploits statistical properties of
observations, the statistical hitting set attack, on the MIXes
[19]. By using simulations, they showed that the statistical
hitting set attack requires the least number of observations
among all known attacks.

The goal of this paper is extend this line of work by identify-
ing the fundamental structure of anonymity sets and by deriv-
ing fundamental limits that are independent of attack meth-
ods. To that end, we use two different adversarial models

7A communication round consists of the following events: The MIX
node collects messages from a fixed number of distinct senders, and after
applying the “MIX” protocol, it forwards the collected messages to their
intended recipients.
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to derive the following two different limits on the anonymity
provided by a pure MIX technique:

Information Theoretical Limits: We derive information
theoretical limits on anonymity by assuming that the at-
tacker has observed all possible pairs of sender and re-
ceiver sets (A′, B′) and that the attacker has unbounded
computational resources. These assumptions allow us
to compute the absolute extent of information present in
the observations of the traffic passing through the MIX.

We show that for open sender groups, that is, for |A′| =
n < |A| = N , the attacker gains knowledge of all
peer recipient partners of a targeted sender. For closed
sender groups, A′ = A, the attacker cannot deduce all
peer partners of a targeted sender. However, the attacker
can still obtains valuable information such as how many
peer senders a particular recipient has, or if two recipi-
ents share a common sender.

Practical Limits: Here we assume that the information
leakage is theoretically sufficient (i.e. |A′| = n < |A| =
N ) to deduce all peer partners of a targeted user Alice.
In contrast to the previous case, we assume that the at-
tacker gathers observations one by one as they happen,
and stops when there are sufficient observations to com-
promise the anonymity of a targeted user.

Under these assumption, we derive tight lower and up-
per bounds on the minimum number of observations re-
quired on the average by an attacker to deduce all peer
partners of a targeted user Alice. We first show that
the hitting set attack requires the least number of ob-
servations among all possible deterministic attacks, and
therefore a bound on the number of observations re-
quired by the hitting set attack is a fundamental bound.
We compare derived bounds to the simulated results and
show that bounds computed in the paper provide a good
approximation of the simulated results. The process
of bound calculation also illuminates the fundamental
structure of anonymity sets.

4 Information Theoretic Limits

We model the communication relationships among senders
and receivers by a bipartite relationship graph G = (A ∪
B,E) (see Figure 2). The partite sets A and B represent
the sets of senders and receivers respectively, while the set
E consists of edges between senders and their peer recipient
partners. Thus if Alice communicates with Bob then there is
a corresponding edge in E between the vertex representing
Alice in A and the vertex representing Bob in B (see Figure
2). Note that even if the real users behind the senders and
recipients are the same persons, we distinguish them by their
attributes “sender” and “recipient” with respect to a message

a1

a2

a3

b1

b2

b3

b4

Figure 2. Bipartite relationship graph with
three senders and four receivers

and put them in disjoint sets A and B. Each sender has a sub-
set of all recipients as its peer partners. The sets of peer part-
ners of two different senders may be disjoint, be the same,
or overlap with each other. We now introduce three useful
terms: multiset, multiplicity, and neighbor function.

Definition 1 A multiset S with cardinality k is an unordered
list of k elements x1, x2, ..., xk such that xi = xj for
1 � i < j � k is possible. The multiset S is denoted by
〈x1, x2, . . . , xk〉. Since S is unordered, 〈xk, xk−1, . . . , x1〉
is also one of the possible notations for S.

Definition 2 The multiplicity of x in a multiset S =
〈x1, x2, ..., xk〉 is denoted by mult(x, S) and is given by the
number of times x occurs in S, that is, mult(x, S) = |{i |
1 � i � k, x = xi}|.

Definition 3 The neighbor function N(T ), T ⊆ A or T ⊆
B, gives the set of all peer partners of nodes in T ,

N(T ) = {v | v is adjacent to a node t ∈ T}.
If the set T is a singleton T = {t}, then for the conve-
nience of notation, we denote N({t}) by N(t). In Figure
2, N({a1, a2}) = {b1, b2, b3} and N(a3) = {b4}.

Given a bipartite relationship graph G and the batch size n,
we can derive a mapping M that maps each sender set A′ =
{a1, a2, ..., an} ⊆ A of size n to a set of all possible receiver
multisets of A′:

M(A′) = {B′ = 〈b1, b2, ..., bn〉|B′ ⊆ B and bi ∈ N(ai)
for 1 � i � n}

In Figure 2, M({a1, a2}) = {〈b1, b1〉, 〈b1, b2〉, 〈b2, b2〉,
〈b1, b3〉, 〈b2, b3〉}.

We assume that the attacker has access to all possible obser-
vations that may occur through the MIX. This is equivalent
to assuming that the attacker knows the full mapping M de-
fined by G and n. We are interested in asking the following
question: Given M and n, what does the attacker know about
G? In the next two subsections, we will show that for closed
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sender groups, n = N , the attacker cannot reconstruct G,
however, it can derive important functions that reveal struc-
ture of G. For open sender groups, n < N , the attacker can
reconstruct G and therefore, deduce all peer partners of all
senders. The attacker can derive more in the open sender
group since in this case, the information leakage is contained
in both the sender as well as the receiver sets while in the
closed sender group case, the information leakage is con-
tained only in the receiver sets.

4.1 Closed sender group

a1

a2

a3

b1

b2

b3

b4

a3

a1

a2

b1

b2

b3

b4

a2

a3

a1

b1

b2

b3

b4

Figure 3. Permutation of nodes in bipartite
graph.

This case is characterized by |A′| = |A|, and therefore in the
information leakage X = (A′, B′), only the receiver multi-
sets B′ provides some information about the underlying re-
lationship graph G.

Consider an anonymity system Ψ defined by (G,n). We can
obtain another anonymity system Ψ′ = (G′, n) by permuting
the labels of nodes in the sender partite-set A while leaving
the edge set E and recipient partite-set B unchanged (see
Figure 3). Since the permutation of the node labels in the
sender partite-set A does not change the ‘structure’ of the
graph G, the receiver multisets observed in Ψ′ would be ex-
actly the same as those observed in Ψ. Therefore, the best we
can hope in the case of the closed sender group is to learn the
‘structure’ of the graph G. In the rest of this section, we for-
mally show that indeed it is possible to deduce the ‘structure’
of graph G by observing receiver multisets.

4.1.1 Structure of a bipartite graph

To formally capture the notion of the ‘structure’ of a bipartite
graph G = (A∪B,E), consider an alternative representation
in which the edge set E is represented by a matrix Σ of size
2|B| × |A|. The rows of Σ are indexed by the subsets of
B and the columns are indexed by the vertices in A. The
value of Σ[B′][aj ], B′ ⊆ B and aj ∈ A, is 1 if B′ is the
set of all peer recipients partners of aj , and is 0 otherwise.
Thus, each column of Σ has only one non-zero entry. Since
N(a),∀a ∈ A, specify the graph G completely, (A ∪ B,Σ)
is a complete albeit highly redundant representation of the
graph G.

For a bipartite graph G = (A∪B,E) = (A∪B,Σ), permut-
ing the node labels in the partite set A by using a permutation
π (aj → aπ(j)) while leaving the edge set E and the recip-
ient set B unchanged to obtain the graph G′ has the effect
of permuting the columns of Σ to obtain a matrix Σ′ such
that Σ[·][aj ] = Σ′[·][aπ(j)] and G′ = (A ∪ B,Σ′). Since
the permutation π can be arbitrarily chosen, the only com-
mon structure among Σ and Σ′ is the weight of rows Σ[B′][·]
denoted by w(B′). Thus formally, the structure of G is cap-
tured by the function w(B′), B′ ⊆ B, the number of nodes
in A that have B′ as their neighbor.

4.1.2 Deducing the structure of a bipartite graph

In the following we will prove that the function w(B′) can
be computed by observing receiver multisets in the leaked
information X = (A,B′). We will compute the function
w(B′) in two steps. In the first step, we compute an ancillary
function u(B′) that gives the number of senders in A whose
peer partners are a subset of B′, that is,

u(B′) = |{a | a ∈ A and N(a) ⊆ B′}|
Let Sc denote the complement of the set S. Given B′ ⊆ B,
partition the set A in three disjoint subsets, AB′ , AB′c , and
AB′,B′c , where each sender in AB′ has all of its peer partners
in B′, each sender in AB′c , has all of its peer partners in B′c,
and each sender in AB′,B′c has peer partners in both B′ and
B′c. Clearly,

u(B′) = |AB′ | (1)

N = |AB′ | + |AB′c | + |AB,B′c | (2)

For the given set of receivers B′, chose a receiver multiset
such that the number of times the receivers in B′ occur in
the chosen receiver multiset is maximum among all possible
receiver multisets. Denote the chosen receiver multiset by
RB′ :

RB′ = argmax
R

∑
b∈B′

mult(b,R)
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where argmaxx f(x) equals to a value of x that maximizes
f(x).

In the sender set corresponding to the receiver multiset RB′ ,
all senders who could send a message to a receiver in B′ did
so, and therefore,∑

b∈B′
mult(b,RB′) = |AB′ | + |AB′,B′c |. (3)

Similarly, pick a receiver multiset RB′c such that the sum of
multiplicity of nodes in B′c in RB′c is maximum among all
receiver multisets. By a similar reasoning,∑

b∈B′c
mult(b,RB′c) = |AB′c | + |AB′,B′c |. (4)

We have four independent linear equations (1)–(4) in four
variables, u(B′), AB′ , AB′c , and AB′,B′c , and we can solve
for u(B′).

In the second step, we derive w(B′) from u(B′) by applying
the Möbius inversion formula. Recall that according to the
Möbius inversion formula if

g(E) =
∑

F : F⊆E

h(F )

then
h(E) =

∑
F : F⊆E

(−1)|E|−|F |g(F )

Since
u(B′) =

∑
B′′ : B′′⊆B′

w(B′′) (5)

by using the Möbius inversion formula, we can calculate the
function w(B′) from the function u(B′).

Knowledge of the function w(B′) (and the ancillary function
u(B′)) enables an attacker to compromise anonymity: the
value of w({b}), b ∈ B, is equal to the number of senders
who only communicate with b; N − u({b}c) is equal to the
number of senders who communicate to b; N − u({b1}c) −
u({b2}c) + u({b1, b2}c), b1, b2 ∈ B, provides the number of
common sender partners of b1 and b2 etc.

4.2 Open sender group

In an open environment, the attacker can observe the rela-
tionship between proper subsets of A′ ⊂ A to the subsets of
B′ ⊂ B. We next show that in such environments, an at-
tacker can reconstruct the relationship graph G, and deduce
who communicates with whom.

Note that the sets N(b) = {a ∈ A | b ∈ N(a)}, b ∈ B,
are sufficient to construct G, and it suffices to show that the
attacker can determine N(b) for all b ∈ B. Let mb be the

maximum possible multiplicity of b in receiver multisets cor-
responding to the sender sets of size n, that is,

mb = max
Ã⊆A, |Ã|=n

(
max

B̃∈M(Ã)
mult(b, B̃)

)
.

There are three cases to be considered:

• If mb = 0, then |N(b)| = 0, and as a consequence N(b) =
∅.

• If mb = n, then |N(b)| � n. Let A′ be the set of all sender
sets Ã ⊆ A such that |Ã| = n and the maximum possible
multiplicity of b in receiver multisets corresponding to Ã is
n, that is,

A′ = {Ã|Ã ⊆ A and max
B̃∈M(Ã)

mult(b, B̃) = |Ã| = n}.

If Ã ∈ A′, then all members of Ã have b as its neighbor, that
is, Ã ⊂ N(b). If that was not the case, the maximum mul-
tiplicity of b in receiver multisets corresponding to Ã would
be less than n, producing a contradiction with the definition
of A′.

We claim that N(b) =
⋃

Ã∈A′ Ã. As Ã ∈ A′ implies that
Ã ⊂ N(b),

⋃
Ã∈Ã Ã ⊂ N(b). We will prove N(b) ⊂⋃

Ã∈A′ Ã by contradiction. Assume that there exist a′ ∈
N(b) such that a′ is not a member of any set Ã in A′. Now
take a set A′ in A′, and replace one of its element by a′ to
obtain the sender set A′′. This operation would preserve the
cardinality of A′′ to n since a′ is not a member of A′ ∈ A′.
However since all member of thus constructed A′′ have b as
its neighbor,

n = max
B′′∈M(A′′)

mult(b,B′′).

Therefore, A′′ ∈ Ã and a′ is a member of a set in A′, a
contradiction.

• If 1 � mb � n − 1, then |N(b)| = mb, that is, b ∈ N(a)
for exactly mb elements of A. Let A′ be a set for which

mb = max
B′∈M(A′)

mult(b,B′).

Clearly N(b) ⊂ A′. We can examine each element a′ of A′

in turn to see if it belongs to N(b) by using the following
procedure. Consider a′ ∈ A′ and construct a sender set A′′

by substituting a′ from A′ with an element of A \ A′, and
compute

m′′
b = max

B′′∈M(A′′)
mult(b,B′′).

Clearly, if m′′
b = mb, then a′ 
∈ N(b), and if m′′

b < mb, then
a′ ∈ N(b).

Hence in each case, we can determine N(b) from the infor-
mation leakage and the proof is complete. �
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4.3 Example

Consider the bipartite relationship graph with three senders
a1, a2, and a3, and four receivers b1, b2, b3, and b4, given
in Figure 2. We will illustrate the theoretical limits for the
closed and open sender-group cases by using this relationship
graph.

4.3.1 Closed sender group calculations

From Figure 2, for the closed sender group, the receiver mul-
tisets are given by:

M({a1, a2, a3}) = {〈b1, b1, b4〉, 〈b1, b2, b4〉, 〈b2, b2, b4〉,
〈b1, b3, b4〉, 〈b2, b3, b4〉}

Next we will produce the alternative representation of the re-
lationship graph in terms of the matrix Σ as described above.
We will assume that the first, second, and third columns of
Σ correspond to the senders a1, a2, and a3 respectively, and
that the first, second, and third rows correspond to the re-
ceiver set {b1, b2}, {b1, b2, b3}, and {b4}, respectively. The
matrix Σ has 24 rows, one row for each subset of B, how-
ever all of its rows except the first three are zero rows since
the peer recipients of a1, a2, and a3 are {b1, b2}, {b1, b2, b3},
and {b4}, respectively. The matrix Σ is given by

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

. . . . . . . . .
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

The weight function for this matrix is given by:

w(B′) =

{
1 for B′ = {b1, b2}, {b1, b2, b3}, {b4}
0 otherwise

The theoretical limit derived for the closed sender group in-
dicates that although we cannot derive the matrix Σ from
the receiver multisets, we can deduce the weight function
w(B′) of the matrix Σ. In order to deduce the weight func-
tion w(B′), we first need to calculate the ancillary function
u(B′). Set B′ = {b1, b2}. We will illustrate how to calculate
u({b1, b2}). We pick the receiver multiset 〈b1, b1, b4〉 as RB′

since the sum of multiplicity of recipients b1 and b2 is max-
imum in this receiver multiset. Other equally good choices
are 〈b1, b2, b4〉, 〈b2, b2, b4〉 since they also contain b1 and b2

twice.

Similarly, we pick the receiver multiset 〈b1, b3, b4〉 as RB′c

since it maximizes the sum of multiplicity of b3 and b4 to 2.
We could have also chosen 〈b2, b3, b4〉 as RB′c .

Now as discussed above we obtain the following equations:

∑
b∈B′c

mult(b,RB′c) = 2 = |AB′c | + |AB′,B′c | (7)

∑
b∈B′

mult(b,RB′) = 2 = |AB′ | + |AB′,B′c | (8)

3 = |AB′ | + |AB′,B′c | + |AB′c | (9)

Solving above three equations, we obtain |AB′ | =
1, |AB′c | = 1, and |AB′,B′c | = 1. Using (1), u({b1, b2}) =
1, that is number of senders whose peer recipients are a sub-
set of {b1, b2} is 1. One quick look at the graph confirms this
calculation as a1 is the only sender not to have a recipient
outside {b1, b2}.

By using the same procedure for other subsets of B, we
can deduce the ancillary function u completely as follows:
u({b1}) = 0, u({b2}) = 0, u({b3}) = 0, u({b4}) = 1,
u({b1, b2}) = 1, u({b1, b3}) = 0, u({b1, b4}) = 1,
u({b2, b3}) = 0, u({b2, b4}) = 1, u({b3, b4}) = 1,
u({b1, b2, b3}) = 2, u({b1, b2, b4}) = 2,
u({b1, b3, b4}) = 1, u({b2, b3, b4}) = 1,
and u({b1, b2, b3, b4}) = 3.

By using Möbius’s inversion formula, we get
w({b1, b2, b3}) = u({b1, b2, b3})−u({b1, b2})−u({b1, b3})
−u({b2, b3}) + u({b1}) + u({b2}) + u({b3})
= 2 − 1 − 0 − 0 + 0 + 0 + 0 = 1

Similarly we can derive the value of w(·) for other subsets of
B.

4.3.2 Open sender group calculations

We will illustrate the open sender group case by using the
bipartite graph in Figure 2 with n = 2. In this environment
we have the following cases:

1. A′ = {a1, a2} and
M(A′) = {〈b1, b1〉, 〈b1, b2〉, 〈b2, b2〉, 〈b1, b3〉, 〈b2, b3〉}

2. A′ = {a1, a3} and M(A′) = {〈b1, b4〉, 〈b2, b4〉}
3. A′ = {a2, a3} and

M(A′) = {〈b1, b4〉, 〈b2, b4〉 〈b3, b4〉}

Now focus on b1. The maximum possible multiplicity of b1

in receiver multisets corresponding to the sender sets of size
two, represented by mb1 is two and it occurs for the sender
set {a1, a2}. As discussed above, since for b1, mb1 = n,
N(b1) = {a1, a2}.
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Now consider b2. The maximum possible multiplicity of b2

in receiver multisets corresponding to the sender sets of size
two is again two and it occurs for the sender set {a1, a2}.
Therefore, for b2 also N(b2) = {a1, a2}.

The case for b3 differs from b1 and b2 in that mb3 is only 1
and it occurs for sender groups {a1, a2} and {a2, a3}. As
discussed above, we need to check whether a1, a2, and a3

belong to the set N(b3). To do so, replace a1 in {a1, a2}
by a3 to obtain {a2, a3}. Since among the receiver multisets
corresponding to {a2, a3} has the maximum multiplicity of
b3 is 1, a1 
∈ N(b3). To check whether a2 is in N(b3), re-
place a2 in {a1, a2} by a3 to obtain {a1, a3}. The maximum
multiplicity of b3 in the receiver multisets corresponding to
{a1, a3} is 0, and therefore a2 ∈ N(b3). Finally by the same
reasoning as the one given for a1, a3 
∈ N(b3). Therefore
N(b3) = {a2}.

The case for b4 is similar to the one for b3, and we can deduce
that N(b4) = {a2}.

Thus we can deduce N(b) for b = b1, b2, b3, and b4, and re-
construct the communication relationship graph completely.

5 Practical Limits

Information theoretic limits answer the general question of
whether the anonymity sets leak sufficient information to de-
duce peer partners of a targeted user. These results show that
information leaked in all possible observations of the system
is sufficient to deduce peer partners if and only if A′ ⊂ A.
In practice, an attacker does not have access to all possible
observations. Instead, the attacker starts at a given time, ob-
serves communication rounds in which the targeted user Al-
ice participates, and stops when all peer partners of Alice
have been deduced. Important questions from the view point
of a practical attacker are the following. What is the min-
imum number of observations required to deduce all peer
partners of a targeted user? Is there a feasible attack that
can deduce all peer partners using only the minimum num-
ber of observations? In this section, we will answer these
questions.

Our first observation is that the hitting set attack proposed by
Kesdogan and Pimenidis [19] requires the least number of
observations among all possible attacks, known or unknown,
that deterministically find all peer partners of Alice. This
observation can be easily made by considering the following
description of the hitting set attack8.

Hitting Set Attack To mount the hitting set attack, the at-
tacker starts with the set S0 that contains all

(
N
m

)
possible

8The description of the hitting set attack given here is for deriving our
observation. In practice, the attacker would use efficient implementations to
circumvent computational complexity of the hitting set attack [29].

subsets of cardinality m of N recipients9. Since Alice has m
peer partners, exactly one subset in S0 is the set of all peer
partners of Alice. Let {B1, B2, B3, . . . , } be the recipient
sets in the successive communication rounds in which Alice
participates. Since Alice has a peer partner in B1, a set in S0

that has an empty intersection with B1 cannot be the set of all
peer partners of Alice. Thus upon observing B1, the attacker
obtains a new solution set S1 by discarding all recipients sets
in S0 that have an empty intersection with B1. The attacker
repeats this process to generate solution sets S2,S3, . . . af-
ter observing recipient sets B2, B3, . . . respectively, until the
solution set ST has only one subset in it. The last remaining
subset in the solution set ST has to be the set of all peer part-
ners of Alice. Note that the hitting set attack finds the unique
minimal hitting set of all observations. Also note that un-
der our assumptions, the above procedure will stop in finite
number of observations.

Corollary 5.1 The hitting set attack requires the minimum
number of observations to deterministically find all peer
partners of Alice.

Proof In the above construction, all subsets in Si are con-
sistent with the observations B1, B2, . . . , Bi. Thus as long
as there are more than one subset in Si, all peer partners of
Alice cannot be deduced deterministically. As a corollary,
the hitting set attack requires the minimum number of ob-
servations to deterministically find all peer partners of Alice.
�

5.1 Lower bound on the number of obser-
vations required for the hitting set at-
tack

Claim 1 Let Bob be one of the peer partners of Alice. We
claim that before finishing the hitting set attack, either Bob
occurs as the only recipient in a recipient set or Bob occur as
the only peer partner of Alice in at least two recipient sets.

Proof We will prove this claim by contradiction. Assume
that the attacker has finished the hitting set attack, that is,
it has found N(Alice) which equals to the unique minimal
hitting set of cardinality m of all observed recipient sets.
Also assume that neither Bob occurs as the only recipient
in a recipient set nor does he occur as the only peer part-
ner of Alice in at least two recipient sets. There are two
cases in which this can happen. In the first case, all recipient
sets observed by the attacker that include Bob also include
at least one another peer partner of Alice10. In this case,

9Here we assume that the attacker knows the value of m. See [17] for a
justification of this assumption.

10This includes the case when Bob has not been observed by the attacker
in any of the recipient sets.
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H ′ = N(Alice)/{Bob} is a hitting set of cardinality m − 1
contradicting our assumption that the attacker has found a
unique hitting set of cardinality m.

In the second case, Bob occurs as the only peer partner
of Alice in exactly one observed recipient set B′, and all
other observed recipient sets that include Bob also include
at least one other peer partner of Alice. Since according
to our assumptions, Bob does not occur as the only recip-
ient in B′, there is another recipient, say Carolyn, in B′

who is not a peer partner of Alice. In this case, H ′ =
N(Alice)/{Bob} ∪ {Carolyn} will also be a hitting set of
cardinality m, contradicting our assumption that the attacker
has found a unique hitting set of cardinality m. �

If a recipient set contains only one peer partner of Alice, we
will say that the peer partner of Alice occurs exclusively. We
can obtain a lower bound on the number of observations re-
quired by the hitting-set attack by counting the number of
observations required to see each peer partner of Alice ei-
ther occur as the only recipient in an observed recipient set
or occur exclusively at least twice in observed recipient sets.
We loosely call it “two-exclusivity” observation of Alice’s
peer partners 11. We compute this number by constructing a
Markov process Xt, where t denotes the index of Bt. The
state-space of Xt is a triplet {m0,m1,m2}, where m0 is the
number of peer partners of Alice that have not been observed,
m1 is the number of peer partners of Alice that have been
observed exclusively exactly once, and m2 is the number of
peer partners of Alice that have been observed either at least
twice exclusively in recipient sets or at least once as the only
recipient in a recipient set.

Clearly m0 + m1 + m2 = m. Label the state {m0,m1,m2}
by index i = m0(m + 1) − m0(m0 − 1)/2 + m1 + 1. This
assign each state a unique label i, 1 � i � (m + 1)(m +
2)/212.

In the beginning of the hitting set attack, the state is given
by {m, 0, 0} and is indexed by (m + 1)(m + 2)/2. The
state {0, 0,m}, indexed by 1, corresponds to the point be-
fore which hitting set attack cannot be concluded. Let M
be the transition matrix13 of Xt with the Mij denoting the
probability of going from the i-th state to the j-th state after
making an observation. Let e(j) be the column matrix of size
(m+1)(m+2)/2×1 with j-th entry equal to 1 and other en-
tries zero. The probability of ending in state {0, 0,m} after
T observations is given by

P (T ) = e′((m + 1)(m + 2)/2)MT e(1) (10)

where x′ denotes the transpose of the matrix x.

11The term “two-exclusivity” is loose since if a peer partner occurs as the
only recipient in a recipient set, then it is not necessary to observe that peer
partner twice.

12The state-space is of size
∑m

m0=0

∑m−m0
m1=0 1 = (m + 1)(m + 2)/2

since for each value of m0, m0 = 0, 1, . . . , m, m1 = 0, 1, . . . , m − m0.
13Appendix A contains explicit formulas for the transition matrix M .

It follows that with probability P (T ) − P (T − 1) the at-
tacker will take at least T observations to finish the hitting
set attack, and a lower bound on the expected number of ob-
servations is given by:

L =
k=∞∑
k=1

k(P (k) − P (k − 1)) (11)

=
k=∞∑
k=1

ke′((m + 1)(m + 2)/2)[Mk − Mk−1]e(1)

(12)

The time and space complexity of computing the lower
bound L is mainly determined by the size of the matrix M
which only depends on m and is given by O(m4). With
an appropriate mathematical representation, we avoided ex-
plicit computation of the whole matrix M , and managed to
determine L in the time and space complexity of O(m2).
On a Pentium 4 PC with 2.4GHz processor and 512MB
RAM, the highest runtime and space consuming computa-
tion (N = 200000, n = 100,m = 65) in our plots required
less than 1 second and 1MB of memory. For more imple-
mentation details, the reader is referred to [29].

5.2 Upper bound on the number of obser-
vations required for the hitting set at-
tack

Let p(l) be the probability that l independent recipient sets
have at least one non-peer partner of Alice in common.
Clearly, p(l) decreases monotonically with l. For our pa-
rameters of interests, we found that p(l) ≈ 0 for l � 4. Thus
if a peer partner of Alice occurs exclusively in three recipient
sets, then with high probability, the attacker can find identify
it as a peer partner. In Appendix C, we formally show that
the effect of p(l), for l � 4 is negligible for typical values
of MIX parameters, and the number of observations required
to see each peer partner exclusively in at least three recipient
sets provides a good upper bound on the number of observa-
tions required for the hitting set attack.

We can compute the average number of observations re-
quired to see each peer partner occur exclusively in at least
three recipient sets or as the only recipient in a recipient
set by using similar arguments as used for the lower bound.
We refer to this as “three-exclusivity” observation 14. In
this case, the state of the Markov process Xt, is a quartet
{m0,m1,m2,m3}, where m0 is the number of peer partners
of Alice that have not been observed, m1 is the number of
peer partners of Alice that have been observed exactly once

14The term “three-exclusivity” is loose since if a peer partner occurs as
the only recipient in a recipient set, then it is not necessary to observe that
peer partner thrice.
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exclusively, and m2 is the number of peer partners of Alice
that have been observed exactly twice exclusively, and m3 is
the number of peer partners of Alice that have been observed
either at least thrice exclusively in recipient sets or at least
once as the only recipient in a recipient set.

Clearly m0 + m1 + m2 + m3 = m. Label the state
{m0,m1,m2,m3} by index

i =
(m − m3)2(m − m3 + 1) + 2(m − m3)(m − m3 + 1)

6

+ m0(m − m3 + 1) − m0(m0 − 1)
2

+ m1 + 1.

This assign each state a unique label i, 1 � i �
(m+1)2(m+2)+(m+1)(m+2)

6 . Let M be the transition matrix
of this Markov process15, and let e(j) be the column matrix

of size (m+1)2(m+2)+(m+1)(m+2)
6 × 1 with j-th entry equal

to 1 and other entries zero. It follows that the upper bound is
given by:

U =
k=∞∑
k=1

k · e′
(

(m + 1)2(m + 2) + (m + 1)(m + 2)
6

)
·

[Mk − Mk−1] · e(1) (13)

Similar to the lower bound, the time and space complexity
of computing the upper bound U is mainly determined by
the size of the matrix M which only depends on m, and in
this case, is given by O(m6). Using the same strategy as
used in the computation of the lower bound, we avoided ex-
plicit computation of the whole matrix M , and managed to
determine U in the time and space complexity of O(m3).
On a Pentium 4 PC with 2.4GHz processor and 512MB
RAM, the highest runtime and space consuming computa-
tion (N = 200000, n = 100,m = 65) in our plots required
less than 50 second and 2.1MB of memory. For more imple-
mentation details, the reader is referred to [29].

15Details of transition matrix are given in Appendix B.

5.3 Comparison of lower and upper bounds
with simulated results

In this section, we will compare the lower and upper bounds
derived in this paper to the number of observations required
by a simulation of the hitting set attack. Note that the upper
bound shown here is strict, that is, it includes the additional
term ε calculated in the Appendix C in equation 21.

We will consider three cases with the nominal parameters
given by: (a) N = 20000, n = 50, m=20, (b) N = 400, n
= 10, m = 10, (c) N = 200,000, n = 100, m = 40. Case
(a) represents a typical case, while cases (b) and (c) repre-
sent two extremes of an anonymity providing system work-
ing in an open environment. Note that the runtime com-
plexity of the hitting set attack simulation is O(nmt log2 n),
where t is the number of observations before the termina-
tion of the attack. Its space complexity is linearly bounded
by O(tnm). Nevertheless the simulation is much faster in
practice than the worst case, e.g. a 2.4GHz Pentium 4 PC
with 512 MB of RAM needs 1 to 3 hours for each simulation
for hard instances like (N = 200000, n = 100,m = 65) or
(N = 400, n = 10,m = 23) and requires about 80MB of
RAM. Thus upper and lower bounds computed in the paper
provide a significant advantage over simulating the results.
The simulation algorithm as well as a complete derivation of
its complexities can be found in [29].

For case (a), Figure 4 shows the number of observations re-
quired for the hitting set attack as a function of m, n, and
N as the two other parameters are kept fixed. For all three
parameters, the lower bound is a fairly good approximation
(within 20 observations) of the simulation results, however,
the upper bound deviates from the simulation results by as
much as 40 observations. The figure also shows the number
of observations required for “three-exclusivity”. The differ-
ence between three exclusivity and the strict upper bound is
less than 5. This supports our assumption, made in Section
5.2, of ignoring p(l) for l � 4. Also note that since the
simulation results are closer to the lower bound, the attacker
would need two exclusive observations to finish the attack in
most cases and would need three or more exclusive observa-
tions only in a few cases.

For case (b), with N = 400, both the upper bound and the
lower bound provide a fairly good approximation of the sim-
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ulation results except in the case where the batch size n is
variable and is large. The loose upper bound in this case is
due to the additional term to make the upper bound strict.
The three exclusivity calculation in this case provides a good
approximation to the simulation results, though it is not a
strict upper bound.

For case (c), the lower bound provides a fairly good approx-
imation (within 20 observations), however, the upper bound
deviates from the simulation results by as much as 75 obser-
vations. In this case, the additional term to make the upper
bound strict does not contribute significantly. Therefore, in
this case too, the attacker would need two exclusive observa-
tions to finish the attack in most cases, and would rarely need
three or more exclusive observations.

6 Conclusions

In our work we investigated fundamental protection limits
provided by the anonymity sets under certain assumptions
(uniform distribution on the recipient sets, static behavior
of senders, etc.) on the user behavior. These assumptions
are made in such a way that the analysis provides a con-
servative estimate of the anonymity (i.e. lower bound on
the anonymity) provided by the MIXes in the real world.
We used an information theoretic setting in which all pos-
sible observations of the MIX communication are available
to an attacker. Using this setting, we precisely characterized
the extent of information inherently contained in anonymity
sets. In particular, we showed that if the size of the sender
anonymity set is less than the total user population then all
communication relationships can be deduced by making a
sufficiently large number of observations. We showed that
even if the size of the sender anonymity set is equal to the to-
tal user population, it is possible to compromise anonymity
and deduce important information such as the number of

senders that two recipients share by making a sufficiently
large number of observations.

In the second setting, we assumed that the attacker makes
one observation at a time, and stops when anonymity of a tar-
geted user is compromised. We calculated upper and lower
bounds on the number of observations required by the at-
tacker. These bounds are in good agreement with the simu-
lation results for a variety of MIX parameters. In the process
of deriving the bounds, we illuminated various structures of
anonymity sets. For example, we showed that to compromise
anonymity the attacker needs to observe each recipient of a
targeted user at least twice, but rarely more than three times
for the typical range of MIX parameters.

The knowledge of inherent structures in the anonymity sets
can be used for designing MIXes or while using MIXes. Al-
ice can use our analysis (and her software), so that she will
never communicate too frequently to a set of peer partners.
Either she stops sending messages to the mentioned set or
she sends dummy messages to other users outside the set and
increases m. The MIX designer or operator can choose ap-
propriate values of anonymity set sizes n according to N and
the observed usual user patterns. Our analysis also shows
that the (in)security is directly related to the occurrence of the
“two time exclusivity” as proven in the lower bound analysis
in Claim 1. Thus, the protection of Alice’s anonymity highly
depends on other users traffic. If the system is able to hin-
der the occurrence of two time exclusivity, then the system is
secure against the hitting set attack, which requires the least
number of observations to disclose all peer partners of Alice.

In the future, we plan to repeat the cycle from theory to ap-
plication and back to theory to refine our models to include
our experience with the real traffic and to apply our theoretic
models in other environments, e.g. companies, districts of a
city, different applications (email).
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A Transition Matrix for the Calculation of
Lower Bound

Let p = (1/N)n−1 be the probability that the peer partner of Alice
is the only recipient in a recipient set. Let q = (1−(m−1)/N)n−1

be the probability that a recipient set contains only one peer partner
of Alice. Thus q − p is the probability that a recipient set contains
exactly one peer partner of Alice along with a non-peer partner and
1 − q is the probability that a recipient set contains more than one
peer partner of Alice. The state-transition probability of X(t) are
given by

P
(
Xt = {m′

0, m
′
1, m

′
2}|X(t−1) = {m0, m1, m2}

)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m0
m

(q − p) m′
0 = m0 − 1, m′

1 = m1 + 1, m′
2 = m2

m0
m

p m′
0 = m0 − 1, m′

1 = m1, m
′
2 = m2 + 1

m1
m

q m′
0 = m0, m

′
1 = m1 − 1, m′

2 = m2 + 1
(m0+m1)(1−q)+m2

m
m′

0 = m0, m
′
1 = m1, m

′
2 = m2

0 otherwise
(14)

B Transition Matrix for the Calculation of
Upper Bound

For upper bound, let p and q be the same probabilities as calculated
to derive the lower bound. The state transition probability of X(t)

is given by:

P
(
Xt = {m′

0, m
′
1, m

′
2, m

′
3}|X(t−1) = {m0, m1, m2, m3}

)
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0
m

(q − p)
m′

0 = m0 − 1, m′
1 = m1 + 1,

m′
2 = m2, m′

3 = m3

m0
m

p
m′

0 = m0 − 1, m′
1 = m1,

m′
2 = m2, m′

3 = m3 + 1

m1
m

(q − p)
m′

0 = m0, m′
1 = m1 − 1,

m′
2 = m2 + 1, m′

3 = m3

m1
m

p
m′

0 = m0, m′
1 = m1 − 1,

m′
2 = m2, m′

3 = m3 + 1

m2
m

q
m′

0 = m0, m′
1 = m1,

m′
2 = m2 − 1, m′

3 = m3 + 1

m0+m1+m2
m

(1 − q) + m3
m

m′
0 = m0, m′

1 = m1,

m′
2 = m2, m′

3 = m3

0 otherwise
(15)

C Justification of the Upper Bound

There is a small probability that even after each peer partner has
occurred exclusively at least three times, the hitting set attack could
not be completed. In this appendix, we will justify our observation
that the expected number of additional observations needed to cover
such cases is negligible for most values of parameters N, n, and m.

Let E(i) be the event that the hitting set attack cannot be concluded
after observing each peer partner exclusively at least i times. Let
Ω(i) be the expected number of observations required to observe
each peer partner at least i times exclusively. Let ∆(i) = Ω(i) −
Ω(i−1) be the expected number of additional observations required
to observe each peer partners exclusively at least i times after each
peer partner has been observed exclusively at least i − 1 times. It
follows that if E(i) occurs, then the attacker needs to observe on
the average ∆(i + 1) additional observations, and an upper bound
on the hitting set attack is given by:

U = Ω(3) + ∆(4)Prob(E(3)) + ∆(5)Prob(E(4))+

∆(6)Prob(E(5)) + . . . (16)

Thus, the additional term ε omitted in the previous calculations is
given by:

ε =
∞∑

i=3

∆(i + 1)Prob(E(i)) (17)

We note that ∆(i) is less than the number of observations required
to see each peer-partner exclusively at least once, that is ∆(i) �
∆(1) = m

q

∑m
j=1

1
j

, where q is the probability that a recipient set
contains only one peer partner of Alice.

Let I(i) be the event that i recipient sets, each with only one peer
partner, do not have a common non-peer partner. The event E(i) is
likely16 to occur only if there exists a bottleneck peer partner, say

16There are pathological cases where k peer partners, k > 1 occur in
synchronization with k non-peer partners in such a manner that the assertion
made here is not true. However, the probability of such pathological cases
is extremely small [29].
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Bob, such that i or more recipient sets in which Bob occurs exclu-
sively have at least one common non-peer partner. Without loss of
generality, assume that the bottleneck peer-partner Bob occurs ex-
clusively in the recipient sets B1, B2, . . . , Bi+j , j � 0. Since the
probability of not having an intersection increases as the number
of sets increases, Prob(I(i)) is smaller than the probability that the
sets B1, B2, . . . , Bi+j do not have a common non-peer partner. In
other words, Prob(I(i)) is smaller than the probability of Bob not
being a bottleneck. A similar reasoning can be done for each of
the peer partners of Alice to conclude that (Prob(I(i)))m is smaller
than the probability that none of the peer partners of Alice is a bot-
tleneck. As a result,

Prob(E(i)) � 1 −
(

Prob(I(i))

)m

(18)

By using union bound and independence of sets B1, . . . , Bi, we
have,

Prob(I(i)) � 1 −
∑

r∈B1:r �=Bob

Prob(r ∈ B2, . . . , r ∈ Bi|r ∈ B1)

= 1 − (n − 1)

(
Prob(r ∈ B2|r ∈ B1)

)i−1

(19)

Probability of a particular recipient occurring in a recipient set is
given by:

Prob(r ∈ B2|r ∈ B1) = 1 −
(

1 − 1

N

)n−1

(20)

Putting (17)-(20) together, we get

ε � ∆(1)
∞∑

i=3

Prob(E(i))

� ∆(1)
∞∑

i=3

1 −
(

1 − (n − 1)
(
1 − (1 − 1

N
)n−1)i−1

)m

≈ ∆(1)
∞∑

i=3

1 − 1 + m(n − 1)
(
1 − (1 − 1

N
)n−1)i−1

= ∆(1)m(n − 1)
∞∑

i=3

(
1 − (1 − 1

N
)n−1)i−1

= ∆(1)m(n − 1)

(
1 − (1 − 1

N
)n−1

)2
1 − 1 + (1 − 1

N
)n−1

= ∆(1)m(n − 1)

(
1 − (1 − 1

N
)n−1

)2
(1 − 1

N
)n−1

≈ ∆(1)m(n − 1)

(
n−1
N

)2

(1 − n−1
N

)

≈ ∆(1)
m(n − 1)3

N(N − n + 1)
(21)

For the value of N relatively larger than the values of n and m,
the value of ε is small. For typical parameters N, m, and n, the
value of ε is less than 1 and it can be ignored. However, for low
values of N (e.g. N = 400), and high values of m and n (e.g.
n = 30, and m = 10), the value of ε is not negligible and needs
to be added to get a provable upper bound. In Figure 5, the extra

term ε contributes to the looseness of upper bound. It is possible to
calculate tighter, more precise estimates of ε [29], however, details
of such calculations are outside the scope of this paper.
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