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Abstract. We present the Vida family of abstractions of anonymous
communication systems, model them probabilistically and apply Bayesian
inference to extract patterns of communications and user profiles. The
first is a very generic Vida Black-box model that can be used to analyse
information about all users in a system simultaneously, while the second
is a simpler Vida Red-Blue model, that is very efficient when used to gain
information about particular target senders and receivers. We evaluate
the Red-Blue model to find that it is competitive with other established
long-term traffic analysis attacks, while additionally providing reliable
error estimates, and being more flexible and expressive.

1 Introduction

Anonymous communications allow conversing parties on a network to exchange
messages without revealing their network identifiers to each other or to third
party observers. Anonymity is of special importance to ensure privacy, support
protocols such as on-line polls, or enable high-security government or military
communications over commodity network infrastructures.

The most practical proposal for engineering anonymous communications is
the mix, proposed by David Chaum [3] in 1981. A mix is a network router offering
a special security property: it hides the correspondences between its input and
output messages, thus providing some degree of anonymity. A large body of
research, surveyed in [6], is concerned with extending and refining mix based
protocols.

In parallel with advances in anonymity, techniques have been developed to
uncover persistent and repeated patterns of communication through mix net-
works. Such attacks were first named “intersection attacks” [17] since they were
based on the idea that when a target user systematically communicates with a
single friend it is possible to uncover the identity of the latter by intersecting
the anonymity sets of the sent messages. Kesdogan et al. [1, 12, 13] introduced
a family of disclosure and hitting set attacks that generalises this idea to users
with multiple friends. These attacks’ result is the set of friends of each sender
being uncovered, after a number of messages communicated. Statistical variants
of these attacks were also developed, known as statistical disclosure attacks [5],
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and applied to pool mixes [8], traffic containing replies [7], and evaluated against
complex models [15]. The state of the art in statistical disclosure is the Perfect
Matching Disclosure Attack introduced by Troncoso et al. [21]. The PMDA al-
lows to guess who are communication partners in a round of mixing with higher
accuracy than its predecessors. Further the authors show how this information
can be in turn used to improve the estimation of users’ sending profiles.

This work re-examines the problem of extracting profiles and, in parallel,
uncover who is talking with whom, from traffic traces of anonymous communi-
cations. We offer a generalisation of the disclosure attack model of an anonymity
system [1, 12, 13], and analyse it using modern Bayesian statistics. We note that
at the heart of long term traffic analysis lies an inference problem: from a set
of public observations the adversary tries to infer a “hidden state relating” to
who is talking to whom, as well as their long term contacts. Applying Bayesian
techniques provides a sound framework on which to build attacks, standard well
studied algorithms to co-estimate multiple quantities, as well as accurate esti-
mates of error.

Our key contributions are first the very generic Vida models to represent
long term attacks against any anonymity system, and second the application of
Bayesian inference techniques to traffic analysis. Throughout this work we show
that our models and techniques lead to effective de-anonymization algorithms,
and produce accurate error estimates. Furthermore they are far more flexible
and reliable than previous ad-hoc techniques.

This paper is organised as follows: Sect. 2 offers an overview of Bayesian
inference techniques, their relevance to traffic analysis, as well as an overview
of the Gibbs sampling algorithm; Sect. 3 presents the Vida generic model for
anonymous communications, that can be used to model any system. In Sect. 4
we present a simplification of the model, the Vida Red-Blue model, that allows an
adversary to perform inference on selected targets, as it would be operationally
the case, along with an evaluation of the effectiveness of the inference technique.
Finally we discuss the future directions of inference and traffic analysis in Sect. 5
and conclude in Sect. 6.

2 Bayesian inference and Monte Carlo methods

Bayesian inference is a branch of statistics with applications to machine learning
and estimation [14]. Its key methodology consists of constructing a full proba-
bilistic model of all variables in a system under study. Given observations of some
of the variables, the model can be used to extract the probability distributions
over the remaining, hidden, variables.

To be more formal lets assume that an abstract system consists of a set of
hidden state variables HS and observations O. We assign to each possible set of
these variables a joint probability Pr[HS,O|C] given a particular model C. By
applying Bayes rule we can find the distribution of the hidden state given the
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observations as:

Pr[HS,O|C] = Pr[HS|O, C] · Pr[O|C]⇒ Pr[HS|O, C] =
Pr[HS,O|C]

Pr[O|C]
⇒

Pr[HS|O, C] =
Pr[HS,O|C]∑

∀HS Pr[HS,O|C] ≡ Z
=

Pr[O|HS, C] · Pr[HS|C]
Z

The joint probability Pr[HS,O|C] is decomposed into the equivalent Pr[O|HS, C]·
Pr[HS|C], describing the model and the a-prior distribution over the hidden
state. The quantity Z is simply a normalising factor.

There are key advantages in using a Bayesian approach to inference that
make it very suitable for traffic analysis applications:

– The problem of traffic analysis is reduced to building a generative model of
the system under analysis. Knowing how the system functions is sufficient
to encode and perform the attacks, and the inference steps are, in theory,
easily derived from this forward model. In practice computational limitations
require careful crafting of the models and the inference techniques to be able
to handle large systems.

– The Bayesian approach allows to infer as many characteristics of the system
as needed by introducing them in the probabilistic model. This permits to
infer several hidden variables jointly as we show for users’ sending profiles
and their recipient choices for each message.

– A Bayesian treatment results in probability distributions over all possible
hidden states, not only the most probable one as many current traffic analysis
methods do. The marginal distributions over different aspects of the hidden
state can be used to measure the certainty of the attacker, and provide good
estimates of her probability of error.

The last point is the most important one: the probability distribution over
hidden states given an observation, Pr[HS|O, C], contains a lot of information
about all possible states. When traffic analysis is used operationally the prob-
ability of error of particular aspects of the hidden state can be calculated to
inform decision making. It is very different to assert that, in both cases, the
most likely correspondent of Alice is Bob, with certainty 99% versus with cer-
tainty 5%. Extracting probability distributions over the hidden state allows us
to compute such error estimates directly, without the need for an ad-hoc anal-
ysis of false positives and false negatives. Furthermore, the analyst can use the
inferred probability distribution to calculate directly anonymity metrics [9, 19].

Despite their power Bayesian techniques come at a considerable computa-
tional cost. It is often not possible to compute or characterise directly the dis-
tribution Pr[HS|O, C] due to its complexities. In those cases sampling based
methods are available to extract some of its characteristics. The key idea is that
a set of samples HS0, . . . ,HSι ∼ Pr[HS|O, C] are drawn from the a-posterior
distribution, and used to estimate particular marginal probability distributions
of interest. For this purpose, Markov Chain Monte Carlo methods have been
proposed. These are stochastic techniques that perform a long random walk
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on a state space representing the hidden information, using specially crafted
transition probabilities that make the walk converge to the target stationary
distribution, namely Pr[HS|O, C]. Once the Markov Chain has been built, sam-
ples of the hidden states of the system can be obtained by taking the current
state of the simulation after a certain number of iterations.

2.1 Gibbs sampler

The Gibbs sampler [11] is a Markov Chain Monte Carlo method to sample from
joint distributions that have easy to sample marginal distributions. These joint
distributions are often the a-posterior distribution resulting from the applica-
tion of Bayes theorem, and thus Gibbs sampling has been extensively used to
solve Bayesian inference problems. The operation of the Gibbs sampler is often
referred to as simulation, but we must stress that it is unrelated to simulating
the operation of the system under attack.

For illustration purposes we assume an a-posterior distribution Pr[HS|O, C]
can be written as a joint probability distribution Pr[X,Y |O, C] that is difficult
to sample directly. If, on the other hand, there is an efficient way of sampling
from the marginal distributions Pr[X|Y,O, C] and Pr[Y |X,O, C], then Gibbs
sampling is an iterative technique to draw samples from the joint distribution
Pr[X,Y |O, C]. The algorithm starts at an arbitrary state (x0, y0). Then it iter-
atively updates each of the components through sampling from their respective
distributions, i.e. xi ∼ Pr[X|Y = yi−1,O, C], and yi ∼ Pr[Y |X = xi,O, C]. After
a sufficient number of iterations, the sample (xi, yi) is distributed according to
the target distribution, and the procedure can be repeated to draw more sam-
ples. We note that in this process the computation of the normalising factor Z
is not needed.

The other parameters of the Gibbs algorithm, namely the number of itera-
tions necessary per sample, as well as the number of samples are also of some
importance. The number of iterations has to be high enough to ensure the out-
put samples are statistically independent. Calculating it exactly is difficult so
we use conservative estimates to ensure we get good samples. The number of
samples to be extracted, on the other hand, depends on the necessary accuracy
when estimating the marginal distributions, which can be increased by running
the sampler longer.

3 The Vida general Black-box model for anonymity
systems

Long term attacks traditionally abstract the internal functioning of any ano-
nymity system and represent it as an opaque router, effectively operating as
a very large threshold mix. This model has its limitations, and some studies
have attempted to extend it. In this section we first propose the Vida Black-box
model, the most flexible abstraction of an anonymity system so far, and base
our Bayesian analysis on this model.
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Fig. 1. The generative model used for Bayesian inference in anonymous communica-
tions.

We start by proposing a ‘forward’ generative model describing how messages
are generated and sent through the anonymity system. We then use Bayes rule
to ‘invert’ the problem and perform inference on the unknown quantities. The
broad outline of the generative model is depicted in Figure 1.

An anonymity system is abstracted as containing Nuser users that send Nmsg

messages to each other. Each user is associated with a sending profile Ψx describ-
ing how they select their correspondents when sending a message. We assume,
in this work, that those profiles are simple multinomial distributions, that are
sampled independently when a message is to be sent to determine the receiver.
We denote the collection of all sending profiles by Ψ = {Ψx|x = 1 . . . Nuser}.

A given sequence of Nmsg senders out of the Nuser users of the system, de-
noted by Sen1, . . . ,SenNmsg , send a message while we observe the system. Using
their sending profiles a corresponding sequence of receivers Rec1, . . . ,RecNmsg is
selected to receive their messages. The probability of any receiver sequence is
easy to compute. We denote this matching between senders and receivers asM:

Pr[M|Ψ ] =
∏

x∈[1,Nmsg]

Pr[Senx → Recx|Ψx].

In parallel with the matching process where users choose their communication
partners, an anonymity system A is used. This anonymity system is abstracted
as a bipartite graph linking input messages ix with potential output messages
oy, regardless of the identity of their senders and receivers. We note that com-
pleteness of the bipartite graph is not required by the model. The edges of the
bipartite graph are weighted with wxy that is simply the probability of the input
message ix being output as oy: wxy = Pr[ix → oy|A].

This anonymity system A is used to determine a particular assignment of
messages according to the weights wxy. A single perfect matching on the bipartite
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graph described by A is selected to be the correspondence between inputs and
outputs of the anonymity system for a particular run of the anonymity protocol.
We call it the assignment of inputs to outputs and denote it by Φ. Contrary to
previous work [20] on probabilistic modelling, and following the tendency started
by Troncoso et al. [21], we consider all inputs simultaneously. In this case the
probability of the assignment Φ is easy to calculate, given the set of all individual
assignments (ix → ox):

Pr[Φ|A] =
∏
x

Pr[ix → ox|A]∑
free iy

Pr[iy → ox|A]
.

This is simply the probability of the matching given the anonymity system
weights. By free iy we denote the set of sent messages i that has not yet been
assigned an output message o as part of the match.

The assignment Φ of the anonymity system and the matching M of senders
and receivers are composed to make up the observation of the adversary, that
we denote as O. An adversary observes messages from particular senders Senx
entering the anonymity as messages ix, and on the other side messages oy exiting
the network on their way to receivers Recy. No stochastic process takes place in
this deterministic composition and therefore Pr[O|M, Φ, Ψ,A] = 1.

Now that we have defined a full generative model for all the quantities of
interest in the system, we turn our attention to the inference problem: the ad-
versary observes O and knows about the anonymity system A, but is ignorant
about the profiles Ψ , the matching M and the assignment Φ. We use Bayes
theorem to calculate the probability Pr[M, Φ, Ψ |O,A]. We start with the joint
distribution and solve for it:

Pr[O,M, Φ, Ψ |A] = Pr[M, Φ, Ψ |O,A] · Pr[O|A]
Pr[O,M, Φ, Ψ |A] = Pr[O|M, Φ, Ψ,A] (≡ 1)

· Pr[M|Φ, Ψ,A] (≡ Pr[M|Ψ ])
· Pr[Φ|Ψ,A] (≡ Pr[Φ|A])
· Pr[Ψ |A]

⇒ Pr[M, Φ, Ψ |O,A] =
Pr[M|Ψ ] Pr[Φ|A]

Pr[O|A] ≡ Z
Pr[Ψ |A]

We have discussed how to calculate the probabilities Pr[M|Ψ ] and Pr[Φ|A].
The quantity Pr[Ψ |A] ≡ Pr[Ψ ] is the a-prior belief the attacker has about user
profiles and it is independent from the chosen anonymity system A. We consider
throughout our analysis that all profiles are a-priori equally probable and reduce
it to a constant Pr[Ψ ] = c. Taking into account those observations we conclude
that the posterior probability sought is,

Pr[M, Φ, Ψ |O,A] ∼
∏

x∈[1,Nmsg]

Pr[Senx → Recx|Ψx] ·
∏
x

Pr[ix → ox|A]∑
free iy

Pr[iy → ox|A]
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where we omit the constant normalising factor Pr[O|A] as it is very hard to
calculate, which restricts the methods we can use to manipulate the a-posterior
distribution.

It is computationally unfeasible to exhaustively enumerating the states of
this distribution. Hence to calculate the marginals of interest such as profiles of
users, or likely recipients of specific messages, we have to resort to sampling states
from that distribution. Sampling directly is very hard (due to the interrelation
between the profiles, the matches and the assignments) hence Markov Chain
Monte Carlo methods are used.

3.1 A Gibbs sampler for the Vida Black-box model

Sampling states (Mj , Φj , Ψj) ∼ Pr[M, Φ, Ψ |O,A] directly is hard, due to the
complex interactions between the random variables. A Gibbs sampler signifi-
cantly simplifies this process by only requiring us to sample from the marginal
distributions of the random variables sought. Given an arbitrary initial state
(Φ0, Ψ0) we can perform ι iterations of the Gibbs algorithm as follows:

for j := 1 . . . ι :
Φj ,Mj ∼Pr[Φ,M|Ψj−1,O,A]

Ψj ∼Pr[Ψ |Φj ,Mj ,O,A] .

Each of these marginal probabilities distributions is easy to sample:

– The distribution of assignments Pr[Φ,M|Ψj−1,O,A] is subtle to sample di-
rectly. Each message assignment ix → ox has to be sampled, taking into
account that some message assignments are already taken by the time input
message ix is considered. For each input message ix we sample an assignment
oy according to the distribution:

ix → oy ∼Pr[ix → oy|free oy,∀assigned ov
iv → ov,A, Ψ ]

=
Pr[ix → oy|A] · Pr[Senx → Recy|Ψx]∑

free oy
Pr[ix → oy|A] · Pr[Senx → Recy|Ψx]

.

For complex anonymity systems A, this algorithm might return only partial
matches, when at some point an input message ix has no unassigned candi-
date output message oy left. Since we are only interested in perfect match-
ings, where all input messages are matched with different output messages,
we reject such partial states and re-start the sampling of the assignment until
a valid perfect matching is returned. This is effectively a variant of rejection
sampling, to sample valid assignments.
The matchings between senders and receivers are uniquely determined by the
assignments and the observations, so we can update them directly without
any need for sampling, and regardless of the profiles (i.e. Mj = f(Ψj ,O)).
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– The distribution of profiles Pr[Ψ |Φj ,Mj ,O,A] is straightforward to sam-
ple given the matching Mj and assuming that individual profiles Ψx are
multinomial distributions.
We note that the Dirichlet distribution is a conjugate prior of the multinomial
distribution, and we use it to sample profiles for each user. We denote as
Ψx = (Pr[Senx → Rec1], . . . ,Pr[Senx → RecNuser ]) the multinomial profile of
user Senx. We also define a function that counts the number of times a user
Senx is observed sending a message to user Recy in the matchM, and denote
it as CtM(Senx → Recy). Sampling profiles (Ψ1, . . . , ΨNuser) ∼ Pr[Ψ |M]
involves sampling independently each sender’s profile Ψx separately from a
Dirichlet distribution with the following parameters:

Ψx ∼ Dirichlet(CtM(Senx → Rec1) + 1, . . . ,CtM(Senx → RecNuser) + 1) .

If the anonymity system A describes a simple bipartite graph, the rejection
sampling algorithm described can be applied to sample assignments ix → ox
for all messages. When this variant of rejection sampling becomes expensive,
due to a large number of rejections, a Metropolis-Hastings [4] based algorithm
can be used to sample perfect matchings on the bipartite graph according to
the distribution Pr[Φ,M|Ψj−1,O,A]. Our implementation was tested against
mix-based anonymity systems, with bipartite graphs representing the anonymity
system that do not lead to any rejections.

The Gibbs sampler can be run multiple times to extract multiple samples
from the a-posterior distribution Pr[M, Φ, Ψ |O,A]. Instead of restarting the al-
gorithm at an arbitrary state (M0, Φ0, Ψ0), it is best to set the starting state
to the last extracted sample, that is likely to be within the typical set of the
distribution. This speeds up convergence to the target distribution.

4 A computationally simple Vida Red-Blue model

After the PMDA [21] it has become dogma that sender profiles have to be co-
estimated simultaneously with the assignments, and our Bayesian analysis so
far reflects this approach. Senders are associated with multinomial profiles with
which they choose specific correspondents. We sample these profiles using the
Dirichlet distribution, and use them to directly sample weighted perfect assign-
ments in the anonymity system. The output of the algorithm is a set of samples
of the hidden state, that allows the adversary to estimate the marginal distribu-
tions of specific senders sending to specific receivers.

We note that this approach is very generic, and might go beyond the day to
day needs of a real-world adversary. An adversary is likely to be interested in
particular target senders or receivers, and might want to answer the question:
“who has sent this message to Bob?” or “who is friends with receiver Bob?”.
We present the Vida Red-Blue model to answer such questions, which is much
simpler, both mathematically and computationally, than the generic Vida model
presented so far.
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Consider that the adversary chooses a target receiver Bob (that we call
“Red”), while ignoring the exact identity of all other receivers and simply tag-
ging them as “Blue”. The profiles Ψx of each sender can be collapsed into a
simple binomial distribution describing the probability sender x sends to Red or
to Blue. It holds that:

Pr[Senx → Red|Ψx] + Pr[Senx → Blue|Ψx] = 1. (1)

Matchings M map each observed sender of a message to a receiver class,
either Red or Blue. Given the profiles Ψ the probability of a particular match
M is:

Pr[M|Ψ ] =
∏

Pr[Senx → Red / Blue|Ψx]

The real advantage of the Vida Red-Blue model is that different assignments
Φ now belong to equivalence classes, since all Red or Blue receivers are considered
indistinguishable from each other. In this model the assignment bipartite graph
can be divided into two sub-graphs: the sub-graph ΦR contains all edges ending
on the Red receiver (as she can receive more than one message in a mixing
round), while the sub-graph ΦB contains all edges ending on a Blue receiver. We
note that these sub-graphs are complementary and any of them uniquely defines
the other. The probability of each Φ can then be calculated as:

Pr[Φ|A] =
∑
∀ΦB

Pr[ΦB , ΦR|A] =

=
∑
∀ΦB

Pr[ΦB |ΦR,A] · Pr[ΦR|A] =

= Pr[ΦR|A] ·
∑
∀ΦB

Pr[ΦB |ΦR,A] =

= Pr[ΦR|A]

The probability of an assignment in an equivalence class defined by the assign-
ment to Red receivers, only depends on ΦR describing this assignment. The
probability of assignment ΦR can be calculated analytically as:

Pr[ΦR|A] =
∏
x∈ΦR

Pr[ix → ox]∑
free ij

Pr[ij → ox]
.

The assignment ΦR must be a sub-graph of at least one perfect matching on
the anonymity system A, otherwise the probability becomes Pr[Φ|A] = 0. As for
the full model the probability of all the hidden quantities given the observation
is:

Pr[M, Φ, Ψ |O,A] =
Pr[M|Ψ ] Pr[ΦR|A]

Pr[O|A] ≡ Z
Pr[Ψ |A] (2)

The a-prior probability over profiles Pr[Ψ |A] is simply a prior probability over pa-
rameters of a binomial distribution. Each profile can be distributed as Pr[Ψx|A] =
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Beta(1, 1) if nothing is to be assumed about the sender’s x relationship with the
Red receiver.

In practice a prior distribution Pr[Ψx|A] = Beta(1, 1) is too general, and best
results are achieved by using a prior supporting skewed distributions, such as
Beta(1/100, 1/100). This reflects the fact that social ties are a-prior either strong
or non existent. Given enough evidence the impact of this choice of prior fades
quickly away.

4.1 A Gibbs sampler for the Vida Red-Blue model

Implementing a Gibbs sampler for the Vida Red-Blue model is very simple. The
objective of the algorithms is, as for the general model, to produce samples of
profiles (Ψj), assignments and matches (Φj ,Mj) distributed according to the
Bayesian a-posterior distribution Pr[M, Φ, Ψ |O,A] described by eq. 2.

The Gibbs algorithm starts from an arbitrary state (Ψ0, Φ0) and iteratively
samples new marginal values for the profiles (Φj ,Mj ∼ Pr[Φ,M|Ψj−1,O,A])
and the valid assignments (Ψj ∼ Pr[Ψ |Mj , Φj ,O,A]). The full matchings are a
deterministic function of the assignments and the observations, so we can update
them directly without any need for sampling (i.e. Mj = f(Ψj ,O)).

As for the general Gibbs sampler, sampling from the desired marginal distri-
butions can be done directly. Furthermore the Vida Red-Blue model introduces
some simplifications that speed up inference:

– Sampling assignments. Sampling assignments of senders to Red nodes
(i.e. ΦRj ,Mj ∼ Pr[Φ,M|Ψj−1,O,A]) can be performed by adapting the
rejection sampling algorithm presented for the general model. The key mod-
ification is that only assignments to Red receivers are of interest, and only
an arbitrary assignment to blue receivers is required (to ensure such an as-
signment exists). This time for each Red output messages ox we sample an
input message ix according to the distribution:

ix → oy ∼Pr[ix → oy|free ix,∀assigned iv iv → ov,A, Ψ ]

=
Pr[ix → oy|A] · Pr[Senx → Red|Ψx]∑

free ij
Pr[ij → oy|A] · Pr[Senj → Red|Ψx]

– Sampling profiles. Sampling a profile Ψj ∼ Pr[Ψ |Mj , Φj ,O,A] for every
user x simply involves drawing a sample from a Beta distribution with pa-
rameters related to the number of links to Blue and Red receivers. To be
formal we define a function CtM(Senx → Red, Blue) that counts the number
of messages in a match that a user x sends to a Red or Blue receiver. The
profile of user x is then sampled as:

Ψx ∼ Beta(CtM(Senx → Blue) + 1,CtM(Senx → Red) + 1)

This yields a binomial parameter that is the profile of user x, describing the
probability they send a message to a Red target user.
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The cost of each iteration is proportional to sampling Nuser Beta distribu-
tions, and sample from the distribution of senders of each of the Red messages.
Both the sampling of profiles, and the sampling of assignments can be performed
in parallel, depending on the topology. In case a large number of samples are
needed multiple Gibbs samplers can be run on different cores or different com-
puters to produce them.

4.2 Evaluation

The Vida Red-Blue model for inferring user profiles and assignments was eval-
uated against synthetic anonymized communication traces, to test its effective-
ness. The communication traces include messages sent by up to 1000 senders to
up to 1000 receivers. Each sender is assigned 5 contacts at random, to whom
they send messages with equal probability. Messages are anonymized in discrete
rounds using a threshold mix that gathers 100 messages before sending them to
their receivers as a batch.

The generation of communication patterns was peculiar to ensure a balance
between inferring the communications of a target user (as in the traditional
disclosure, hitting set and statistical disclosure attacks) to a designated Red
receiver, as well as to gain enough information about other users to build helpful
profiles for them. A target sender was included in 20% of the rounds, and the
Red node was chosen to be one of their friends. A sequence of experiments were
performed to assess the accuracy of the attack after observing an increasing
number of rounds of communication.

The aim of each experiment is to use the samples returned by a Gibbs sampler
implementing the Vida Red-Blue model to guess the sender of each message
that arrives at a designated Red receiver. The optimal Bayes criterion [2] is
used to select the candidate sender of each Red message: the sender with the
highest a-posterior probability is chosen as the best candidate. This probability is
estimated by counting the number of times each user were the sender of a target
Red message in the samples returned by the Gibbs algorithm. The Bayesian
probability of error, i.e. the probability another sender is responsible for the
Red message, is also extracted, as a measure of the certainty of each of these
“best guesses”. For each experiment the Gibbs sampler was used to extract 200
samples, using 100 iterations of the Gibbs algorithm each. The first 5 samples
were discarded, to ensure stability is reached before drawing any inferences.

A summary of the results for each experiment is presented in Figure 2. The
top graph illustrates the fraction of correct guesses per experiment (on the x axis
– we selected 20 random experiments to display per round number) grouped by
the number of rounds of communication observed (16, 32, 64, 128, 256, 512 and
1024). For each experiment the fraction of correctly identified senders is marked
by a circle, along with its 90% confidence interval. The dashed line of the same
graph represents the prediction of success we get from the Bayesian probability
of error. The bottom graph on Figure 2 illustrates on a logarithmic scale the
inferred probability assigned to the Red node for the target sender, for each
of the experiments. The experiments for which a high value of this probability
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Fig. 2. Performance of the Vida Red-Blue model in assigning senders to the target red
receiver, as a function of the number of rounds observed. Twenty sample experiments
are used per round number.

are inferred (median greater than 1%) are marked by a solid red circle on both
graphs. The 50% confidence interval over the profile parameter is also plotted.

Some key conclusions emerge from the experiments illustrated on Figure 2:

– The key trend we observe is, as expected, that the longer the observation
in terms of rounds, the better the attack. Within 1024 rounds we expect
the target sender to have sent about 40 messages to the designated red
target. Yet, the communication is traced to them on average 80% of the cases
with high certainty. Even when only 256 rounds are observed the correct
assignment is guessed in about 50% of the time.

– The quality of the inference when it comes to the correspondence between
messages, senders and receivers, is intimately linked to the quality of the pro-
file inference. The solid red circles mark experiments that concluded that the
median value for the probability the target sender is friends with the target
Red receiver is high (greater than 1%). We observe that these experiments
are linked to high success rates when it comes to linking individual messages
to the target sender. We also observe the converse: insufficient data leads
to poor profiles, that in turn lead to poor predictions about communication
relationships.

– The probability of success estimates (represented on the top graph by a
dotted line) predict well the success rate of the experiments. Our prediction
systematically falls within the 90% confidence interval of the estimated error
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Fig. 3. Performance of the Vida Red-Blue inference model (RB) compared to the SDA
(S), NSDA (N) and PMDA (P.)

rate. This shows that the Vida Red-Blue model is a good representation of
the process that generated the traces and thus the estimates coincide with
the actual observed error rate, on average. This is due to the very generic
model for Vida Red-Blue profiles that represent reality accurately after a
few rounds. Yet, when few rounds are observed the a-prior distribution of
profiles dominates the inference, and affects the error estimates.

A key question is how the results from the Vida Red-Blue model compare
with traditional traffic analysis attacks, like the SDA [15], the NSDA [21] or
the PMDA [21]. The SDA attack simply uses first order frequencies to guess
the profiles of senders. It is fast but inaccurate. The normalised SDA (NSDA)
constructs a traffic matrix from senders to receivers, that is normalised to be
doubly stochastic. The operation is as fast as matrix multiplication, and yields
very good results. The PMDA finds perfect matchings between senders and
receivers based on a rough profile extraction step – it is quite accurate but
slow.

Figure 3 illustrates the relative performances of the different attacks com-
pared with the Vida Red-Blue model proposed. We observe that the inference
based technique is quite competitive, against the SDA, but performs worse than
the NSDA and PMDA in most settings. This is due to our strategy for extracting
best estimates for the senders: we use the output samples to chose the sender
with highest marginal probability instead of extracting a full match with the
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maximal marginal probability. In that sense applying an algorithm to find the
maximal perfect matching based on the marginal probabilities output by the RB
attacks should produce much better results.

Despite the lower success rate inference based techniques can be advanta-
geous. Their key strength is the certainty that no systematic bias has been
introduced by reusing data twice, as reported in [10, 21], and the tangible and
reliable error estimate they output. A traffic analyst is thus able to judge the
quality of the inference to guide them operationally.

A second important advantage is the ability to infer who is the “second most
likely” receiver, compute anonymity metrics, or other arbitrary statements on
the a-posterior probability distribution of profiles and assignments. This can be
done efficiently simply using the samples output by the Gibbs algorithm. Further-
more the correct probabilities of error can be associated with those probabilistic
statements.

5 Discussion & future directions

The Bayesian treatment of long term attacks against anonymity systems is
promising, but still at its infancy. We foresee some key theoretical as well as
implementation steps to move the state of the art forward.

– Bipartite weighted anonymity set. The Vida Black-box model as well
as the Vida Red-Blue model proposed represent an observation from an
anonymity system as a generic weighted bipartite graph, linking senders with
receivers. Our experiments, on the other hand, only considered anonymity
systems working in discrete rounds, forming full bipartite sub-graphs with a
number of senders equal to the batch size. This is a limitation of our sampler
implementation, that could be extended to deal with the general case of any
bipartite weighted network.
While in theory this modification is straightforward, in practice it is harder
to sample directly matchings from arbitrary bipartite graphs. The rejection
sampling algorithm suggested can be inefficient, since it might use links that
are not part of a perfect matching, forcing multiple aborts. It might be wise
to first prune the assignment graph from such edges using techniques from
the constrain satisfaction literature such as Regin’s algorithm [18].

– Profile models. The a-prior model for user profiles is very generic, mean-
ing that it can represent, and thus learn, any multinomial distribution of
receivers per sender. While being generic more information could be incor-
porated if it is established that the profile belongs to a social network (with
some standard characteristics like degree, clustering etc). Traditional hitting
set as well as disclosure attacks make extensive use of the number of friends
of a target sender to be applicable at all, whereas the presented approaches
do not require such information. Yet, adding related constraints would yield
better results.

– Learning social networks. It has been an open problem in the litera-
ture how to incorporate known information about communication patterns
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to help the inference of unknown communication patterns, and some ad-
hoc techniques were presented to combine social network information to
de-anonymize traces, along with a discussion of systematic errors intro-
duced [10]. The sampling techniques presented in this work can be straight-
forwardly modified to incorporate known correspondences between senders
and receivers: the Gibbs sampler is modified to only sample valid assignments
that contain the known matches. These known assignments, far from being
useless, drive the sampling of profiles (as part of the Gibbs sampling) leading
to higher quality profiles, which in turn become higher quality assignments
for the unknown messages.

– Beyond communications. Both models presented are very generic and ap-
ply to attempts to anonymize traces that are not communications. As long
as a system has users with multinomial preferences, that are expressed and
anonymized in an arbitrary manner (as long as there is one expressed pref-
erence per observed action), our algorithms are applicable to de-anonymize
the preferences and extract user profiles. This problem has recently received
considerable attention though de-anonymization algorithms applied to the
NetFlix database [16].

6 Conclusions

The contribution of this work is two-fold: First it presents Vida, the first truly
general model for abstracting any anonymity system, in the long term, to perform
de-anonymization attacks. Users and their preferences are modelled in the most
generic way, using multinomial profile, eliminating the need to know the number
of contacts each sender has. Instead of abstracting an anonymity system as a
single threshold mix, or even pool mix, an arbitrary weighted mapping of input
to output messages can be used. We show that the model performs well when
it comes to guessing who is talking to whom, as well as guessing the profiles
of senders. The Vida Red-Blue model focuses on the need the working traffic
analyst has to infer patterns of communications to specific targets – it has the
potential to be implemented efficiently and parallelized aggressively.

The second contribution is methodological, and might be even more signifi-
cant than the specific Vida models. We demonstrate that probabilistic modelling,
Bayesian inference, and the associated conceptual toolkit relating to Monte Carlo
Markov chain sampling is an appropriate framework upon which to build traffic
analysis attacks. It ensures that information is used properly avoiding over fit-
ting or systematic biases; it provides a clear framework to perform the analysis
starting with the definition of a probabilistic model, that is inverted and sampled
to estimate quantities of interest; it provides good and clear estimates of error,
as well as the ability to answer arbitrary questions about the hidden state with a
clear probability statement. These qualities are in sharp contrast with the state
of the art in traffic analysis, that provides ad-hoc best guesses of very specific
quantities, with a separate analysis to establish their accuracy based on labeled
data – something that the traffic analyst does not have on the ground.
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We hope this work is the start of an exploration of the applicability of infer-
ence techniques to problems in traffic analysis – that will eventually outperform
established techniques. Some clear future directions include the definition of bet-
ter user models, the analysis of the internals of anonymity systems, as well as
a better integration of prior information and learning. The inference approach
leans itself well to be extended to encompass these problems, that have in the
past been a thorn on the side of traffic analysis techniques.
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