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ABSTRACT
Recently, Edman et al. proposed the system’s anonymity
level [10], a combinatorial approach to measure the amount
of additional information needed to reveal the communica-
tion pattern in a mix-based anonymous communication sys-
tem as a whole. The metric is based on the number of possi-
ble bijective mappings between the inputs and the outputs of
the mix. In this work we show that Edman et al.’s approach
fails to capture the anonymity loss caused by subjects send-
ing or receiving more than one message. We generalize the
system’s anonymity level in scenarios where user relations
can be modeled as yes/no relations to cases where subjects
send and receive an arbitrary number of messages. Further,
we describe an algorithm to compute the redefined metric.

Categories and Subject Descriptors: D.2.8 [Software
Engineering]: Metrics: complexity measures, performance
measures

General Terms: Algorithms, Measurement, Theory

Keywords: Anonymity metric, Combinatorics, Graph the-
ory, Privacy

1. INTRODUCTION
The goal of anonymous communication systems is to hide

the correspondence between communication partners, such
that an adversary cannot determine who is sending messages
to whom. Anonymous communication systems are usually
built with mixes [2, 4, 19] or onion routers [9, 12, 14], black
boxes whose objective is to hide the correspondence between
input and output messages or streams.

The emergence of anonymous communication systems led
to the need for anonymity metrics to evaluate and com-
pare different designs. Based on the definition of anonym-
ity proposed by Pfitzmann and Hansen [13] “Anonymity
is the state of being not identifiable within a set of sub-
jects, the anonymity set” information-theoretic metrics were
independently proposed by Diaz et al. and Serjantov and
Danezis in [7, 16]. These metrics are based on Shannon en-
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tropy [17], and express the uncertainty of an adversary with
respect to the sender or recipient of a given message. Sev-
eral variations of information-theoretic metrics for anonym-
ity have followed: Tóth et al. [18] propose using min-entropy
and max-entropy for measuring local anonymity; Clauß and
Schiffner [3] propose to use Rényi entropy [15] as a general-
ization of Shannon, min- and max-entropy; Deng et al. [5]
suggest using relative entropy; and Zhu and Bettati [20] pro-
pose an anonymity metric based on mutual information.

A different approach was followed by Edman et al. [10].
Instead of computing the size of the (sender or recipient)
anonymity set for a given message, they consider simultane-
ously all incoming and outgoing messages in an anonymous
communication system. Combinatorial approaches have also
been used to model unlinkability [11] and in the context of
disclosure attacks [1].

We revisit Edman et al.’s system’s anonymity level and
show that it does not capture the anonymity loss caused by
subjects sending or receiving multiple messages. We pro-
pose a generalization of the metric in scenarios where user
relations can be modeled as yes/no relations taking multi-
ple messages per subject into account. We provide a divide
and conquer algorithm to compute the redefined system’s
anonymity level. The key difference between our approach
and Edman et al.’s is that we consider relationships between
senders and recipients, rather than between individual input
and output messages.

While our observation also applies to anonymity metrics
that measure the size of sender or recipient anonymity sets,
we note that it is trivial to adapt these metrics to account
for multiple messages per subject. This was not explicitly
addressed in some of the first works [6, 7, 16], but later
papers [8] do consider multiple messages per subject.

The next section introduces the system’s anonymity level
as defined in [10]. We show in Sect. 3 that this metric does
not reflect the reduction of anonymity due to multiple mes-
sages per sender and/or receiver. Sections 4 and 5 present
the generalization of the metric and an algorithm to com-
pute it. Finally, we offer our conclusions in Sect. 6.

2. A COMBINATORIAL APPROACH TO
MEASURING ANONYMITY

In [10] Edman et al. present an anonymity metric that
measures the amount of information needed to reveal the
full set of relationships between the inputs and the outputs
of a mix.



Figure 1: System modeled as a threshold mix

2.1 Notation
Edman et al. consider messages (or streams) as inputs

and outputs of an anonymous communication system and
model this system as a bipartite graph G = (I, O, E), where
I = {ij} is the set of t inputs, O = {ol} is the set of t
outputs, and E is the set of edges {eij ,ol

} between inputs and
outputs. The graph G can be represented by its adjacency
matrix A, where the elements aj,l of the matrix are 1 if the
edge linking ij and ol exists in G, and 0 if it does not exist.

2.2 The metric
In this setting, Edman et al. exploit the fact that in an

anonymity system there exists a one-to-one relation between
inputs and outputs (i.e., a perfect matching on the associ-
ated bipartite graph G) to evaluate the amount of informa-
tion a global adversary can infer about the relations between
senders and receivers. If only one perfect matching is pos-
sible in G, the adversary can uniquely identify the relations
between inputs and outputs, thus the anonymity provided
by the system is zero. When the number of possible perfect
matchings grows, so does the uncertainty of the attacker.

In order to measure the anonymity provided by the sys-
tem, Edman et al. propose to count the number of possible
perfect matchings in G, which is equivalent to computing the
permanent per(A) of the adjacency matrix A. They define
the system’s anonymity level as:

d(A) =

{

0 if t = 1
log(per(A))

log(t!)
if t > 1 .

The permanent of a matrix A whose entries are all 1 (i.e.,
a fully connected graph) is per(A) = t!. They note that in
general computing the permanent of a matrix is NP-hard
and provide upper and lower bounds.

3. LIMITATIONS
In this section we illustrate with an example how the sys-

tem’s anonymity level correctly measures the amount of in-
formation required to reveal the whole communication pat-
tern if we consider messages or sets of subjects (i.e., all sub-
jects send or receive exactly one message). We also show,
however, that this metric over-estimates the anonymity if we
consider multisets of senders and/or receivers (i.e., subjects
send and/or receive multiple messages).

In the example we abstract the anonymity system as a
round of a threshold mix with threshold t as shown in Fig. 1.
We note that the same model can be applied to a router that
mixes t streams.

Figure 2: Two rounds of the mix

3.1 Notation
We define S∗ = (S, N) as the multiset of the senders of all

messages, where the underlying set S = {s1, s2, ..., sσ} con-
tains the identities of the σ distinct senders, and the vector
N = 〈n1, n2, ..., nσ〉 contains in its ith position the multi-
plicity (number of occurrences) of sender si in the multiset
S∗. Similarly, we define on the receiver side the multiset
R∗ = (R, K), the set R of ρ unique receivers and the vec-
tor K = 〈k1, k2, ..., kρ〉 containing their multiplicities. We
represent the fact that an input ij corresponds to an output
ol by ijol. A sender sj communicating with a receiver rl is
denoted as sjrl.

In Fig. 2, Round 1, S = {A, B, C}, N = 〈1, 1, 1〉, R =
{D, E, F} and K = 〈1, 1, 1〉; while in Round 2, S = {A, C},
N = 〈2, 1〉, R = {D, E, F} and K = 〈1, 1, 1〉.

3.2 Example and counterexample
In Fig. 2 we can see two different communication rounds of

a threshold mix with threshold t = 3. Given the properties
of a threshold mix, any of the inputs to the mix is equally
likely to correspond to any of the outputs. If no further re-
strictions exist, the underlying bipartite graph G = (I, O, E)
is complete and all elements of the adjacency matrix A are
equal to 1 (i.e., per(A) = t!).

In both cases there exist t! = 6 perfect matchings in the
underlying graph, and the system’s anonymity level com-
puted as in [10] is maximal:

d(A) =
log(per(A))

log(t!)
=

log(t!)

log(t!)
= 1 .

We express a perfect matching as a set of three correspon-
dences ijol. In Round 1, the perfect matchings are:
{i1o1, i2o2, i3o3}, {i1o1, i2o3, i3o2}, {i1o2, i2o3, i3o1},
{i1o2, i2o1, i3o3}, {i1o3, i2o1, i3o2}, {i1o3, i2o2, i3o1}.

We note however, that the goal of the adversary is to infer
the relationships between senders and recipients in the sys-
tem, not to link specific inputs ij to outputs ol. If we replace
inputs and outputs by senders and receivers, we obtain the
following six perfect matchings:
{AD, BE, CF}, {AD, BF, CE}, {AE, BF, CD},
{AE, BD, CF}, {AF, BD, CE}, {AF, BE, CD}.

Given that all perfect matchings are different and equally
likely, the adversary does not obtain any additional informa-
tion and the example shown in Round 1 achieves maximum
anonymity as indicated by d(A) = 1.

In Round 2, the correspondences of inputs and outputs is
the same as in Round 1. However, user-wise the relation-
ships are different, namely:
{AD, AE, CF}, {AD, AF, CE}, {AE, AF, CD},
{AE, AD, CF}, {AF, AD, CE}, {AF, AE, CD}.

The two matchings on the left indicate that user A sends
two messages, one to user D and one to user E, and user C
sends one message to user F . As the adversary is interested
in learning which sender communicated with which receiver,
there exist only three distinct assignments: {AD, AE, CF},



{AD, AF, CE}, {AE, AF, CD}. Hence, the adversary’s un-
certainty is reduced to choosing amongst three options in-
stead of six, which does not result in perfect anonymity as
indicated by d(A) = 1.

4. INTRODUCING MULTIPLICITIES AT
SENDER OR RECIPIENT SIDE

We have illustrated in the previous section how the fact
that senders form multisets leads the system’s anonymity
level to over-estimate the anonymity provided by the system.
This is because several perfect matchings in the underlying
graph lead to equivalent sender-receiver relationships. In
this section we redefine the system’s anonymity level such
that it takes the multiplicities of either senders or receivers
into account.

Definition Let ∼ be the equivalence relation “leads to the
same relationship between elements of S and R”. Let M
be the set of all possible perfect matchings on the graph G.
The equivalence class [Mp] of an element Mp ∈ M is the
subset of all elements in M which are equivalent to Mp:

[Mp] = {Mj ∈M|Mj ∼Mp} .

Note that one may also see ∼ as inducing a partition of M
where the blocks are the equivalence classes.

Given a multiset of senders S∗, where each distinct sender
sj appears with multiplicity nj , and assuming that the re-
ceivers form a set and not a multiset (i.e., R∗ = R), the
size of each equivalence class is

∏σ

j=1 nj !. The number of
equivalence classes is:

Ξ =
per(A)

∏σ

j=1 nj !
.

A similar situation occurs if repetitions occur only on the
receiver side. Given a multiset of receivers R∗, where each
distinct receiver rl appears with multiplicity kl, and assum-
ing that the senders form a set and not a multiset (i.e.,
S∗ = S), the size of each equivalence class is

∏ρ

l=1 kl!. The
number of equivalence classes is:

Ψ =
per(A)
∏ρ

l=1 kl!
.

We therefore redefine the system’s anonymity level as:

d∗(A) =



















0 if t = 1
log(Ξ)
log(t!)

if R∗ = R and t > 1
log(Ψ)
log(t!)

if S∗ = S and t > 1
log(per(A))

log(t!)
if R∗ = R and S∗ = S and t > 1 .

For the example shown in Fig. 2 we obtain d∗ = 1 for
Round 1, and a lower d∗ = 0.61 for Round 2 where one of
the senders sends two messages.

5. GENERALIZING THE SYSTEM’S
ANONYMITY METRIC

So far we have considered that either the senders or the
receivers form a multiset. In this section we look at the case
when both senders and receivers form multisets.

Let Θ denote the number of equivalence classes and let
Cp denote the number of equivalent perfect matchings in
class [Mp] (i.e., its cardinality). In the new scenario the

Figure 3: A round with repetitions on both sides

equivalence classes may have different sizes Cp, as illustrated
in the following example.

Consider the case shown in Fig. 3, where we can see
repetitions on both sides. The number of possible perfect
matchings is per(A) = 3! = 6. These matchings belong
to one of Θ = 2 equivalence classes. Class [M1] with car-
dinality C1 = 2 is represented by M1 = {AD, AD, CF}
and class [M2] with cardinality C2 = 4 is represented by
M2 = {AD, AF, CD}.

The system’s anonymity level aims at determining the
amount of additional information needed to reveal all sender-
receiver relationships; i.e., to find the equivalence class con-
taining the correct perfect matching MC between senders
and receivers. In the previous section, we computed this
amount of information as the logarithm of the number of
equivalence classes. Note that this holds as long as MC be-
longs to any class with equal probability (or in other words,
as long as all equivalence classes have equal cardinality).

In the example of Fig. 3, however, the correct perfect
matching MC belongs to the equivalence class [M1] with
probability Pr(MC ∈ [M1]) = C1

per(A)
= 2

6
and to the class

[M2] with probability Pr(MC ∈ [M2]) = C2

per(A)
= 4

6
. The

amount of additional information required to identify the
equivalence class that contains MC is thus given by the
Shannon entropy of the random variable with probability

distribution Pr(MC ∈ [Mp]) =
Cp

per(A)
. We generalize the

previous definition of the system’s anonymity level as:

d∗(A) =

{

0 if t = 1
−

∑

Θ
p=1

Pr(MC∈[Mp])·log(Pr(MC∈[Mp]))

log(t!)
if t > 1 .

In order to calculate d∗(A) we need to obtain Θ and Cp. A
näıve way of computing these values is to enumerate all pos-
sible perfect matchings, and to classify them into equivalence
classes. We note that this process requires O(t!) operations
and quickly becomes infeasible.

5.1 Computing the metric
We present a divide and conquer algorithm that obtains Θ

and Cp more efficiently than exhaustive search. The idea is
to divide the complex problem into smaller ones, and to use
their solutions to solve the original problem. In the divide
step (see Algorithm 1), the algorithm recursively constructs
a tree T removing elements from S∗ and R∗ in each recur-
sion. A node in the tree represents a certain intermediate
situation and an edge between two nodes reflects a possible
scenario. Each edge is assigned with a weight that describes
the likelihood of that scenario. At a given node (recursion)
the algorithm stops when the problem can either: (1) be
solved with the approach explained in the previous section
(i.e., the updated S∗ and/or R∗ become a set); or (2) we
arrive to a situation where the updated S and/or R have
only one element. When the divide step terminates, it has
constructed the tree T and returns Θ.

Let P be a path in T from the root to a leaf. We note
that there exist Θ paths Pp (p = 1, . . . , Θ) and that each



path Pp represents an equivalence class [Mp].
The conquer step operates on the previously generated

tree T to compute the cardinalities Cp of the equivalence
classes. The cardinality Cp of an equivalence class is given
by the product of the weights of the edges along the path
Pp representing [Mp]: Cp =

∏

w∈Pp
w.

Algorithm 1 Divide step

Input: S, R, N, K, A (where (S, N) are sorted in decreasing
order of ni)

Output: Θ (the number of equivalence classes)
1: function exploreNode(S,R,N,K,A)
2: Θ = 0
3: generate new node
4: if (|S| == 1) respectively (|R| == 1) then

5: w = n1! resp. w = k1!
6: generate a new edge, associate the weight w to it, and

generate a leaf node at the other end of that edge
7: return(1)
8: else if (all nj ∈ N == 1) resp. (all kl ∈ K == 1) then

9: w =
∏

kl! resp. w =
∏

nj !
10: generate per(A)/w new edges, associate the weight w

to each of them, and generate a leaf node at the other
end of each edge

11: return(per(A)/w)
12: else

13: activeSender ← s1

14: activeSenderMult ← n1

15: W := {Wi| |Wi| = activeSenderMult ∧Wi ⊆ R∗ ∧
rx ∈Wi ⇔ a1,x = 1} //a1,x is an element of A

16: for all Wi ∈W do

17: S′ ← S \ activeSender
18: N ′ ← update N //remove n1 from the vector
19: R′ ← R
20: K′ ← update K //decrease kl by the multiplicity

of rl in Wi; if a multiplicity kl becomes 0, kl is
removed from K′ and rl is removed from R′

21: A′ ← update A //A′ is the adjacency matrix of
the graph formed by the remaining nodes sj ∈ S′,
rl ∈ R′ with their respective multiplicities N ′ and
K′, and edges between them

22: w = activeSenderMult! ·
∏

rl∈Wi

(

kl

kl − k′
l

)

23: generate a new edge, associate the weight w to it
24: Θ = Θ + exploreNode(S′, R′, N ′, K′, A′) //this re-

cursive call generates a node that is connected to
the edge we just generated

25: end for

26: end if

5.2 Bounds
Although this algorithm has much lower complexity than
O(t!), we note that for large values of t it may become rather
expensive. Nevertheless, we can easily compute bounds for
the system’s anonymity level if the graph associated to the
anonymous communication system is complete (e.g., the sys-
tem is a threshold mix).

The upper bound is given by

d∗(A) ≤ min(
log(Ψ)

log(t!)
,
log(Ξ)

log(t!)
) .

The intuition is the following: repetitions on both the sender

Figure 4: Example for the proposed algorithm

and receiver sides can only reduce d∗(A) with respect to the
case where repetitions occur only on one side. Therefore, the
system’s anonymity level in this scenario cannot be larger
than d∗(A) considering that either S = S∗ or R = R∗.

To compute the lower bound, we take the minimum of σ
and ρ, the cardinalities of the sets of senders S and receivers
R, respectively, and we obtain

d∗(A) ≥ min(
log(σ!)

log(t!)
,
log(ρ!)

log(t!)
) .

Let us assume σ ≤ ρ. In this case there are at least σ!
distinct perfect matchings between the σ unique senders and
any σ unique receivers. If σ ≥ ρ the reasoning is analogous.

5.3 Example
We use an example to illustrate how our algorithm works.

Consider a scenario where S = {A, B, C}, N = 〈2, 2, 1〉,
R = {D, E}, K = 〈2, 3〉, and all elements of the adjacency
matrix are equal to 1. Figure 4 shows the tree as it will be
generated by the divide step. The first call of the algorithm
generates the root node (the leftmost) which reflects the ini-
tial situation. Since none of the stop conditions is fulfilled,
the algorithm selects the first sender in the set and analyzes
her possible choices W = {{D, D}, {D, E}, {E, E}}. Let us
look at the scenario “A sends two messages to {D, E}”. To
prepare the input to the next recursive call, A is removed
from the set of senders (line 17) and the according multi-
plicity is removed from the vector N (line 18). We update
the receiver side similarly: for each receiver, we decrease her
multiplicity in the vector K according to how often she ap-
pears in the current scenario Wi. As k2 becomes zero, the
element is removed from the vector K′ and the receiver D
is removed from the set of receivers R′ (lines 19 and 20).
Next, we update the adjacency matrix such that it reflects
the reduced multisets of senders and receivers. The last step
before the recursive call is to insert a new edge, starting from
the current node, into the tree and to associate the correct
weight to it. For the scenario “A sends two messages to

{D, E}” the weight is w = 2! ·

(

2
1

)

·

(

3
1

)

= 2 ·2 ·3 = 12.

The recursive call of the algorithm inserts a new node on
the other end of that edge. It reflects the resulting situ-
ation S = {B, C}, N = 〈2, 1〉 , R = {D, E}, K = 〈1, 2〉.
This situation does still not fulfill any of the stop conditions.
The first sender in the set is B and her possible choices are
W = {{D, E}, {E, E}}. The possible scenarios are analyzed
in the same way as explained above.

Once the last leaf has been generated, the initially called
instance of the algorithm terminates and returns the com-
puted number of equivalence classes Θ = 5.



A path P from the root to a leaf represents an equiva-
lence class. The conquer step determines the cardinality of
an equivalence class by multiplying all edge weights along its
corresponding path. The five classes contain 12, 48, 24, 12
and 24 perfect matchings respectively. Our proposed metric
evaluates to d∗(A) = 0.31. The original d(A) = 1 indi-
cates perfect anonymity which is much higher than our up-
per bound d∗(A) ≤ 0.48. Our lower bound is d∗(A) ≥ 0.14.

6. CONCLUSIONS
In this paper we revisit the combinatorial approach for

quantifying the system’s anonymity level proposed by Ed-
man et al. in [10]. We argue that anonymity metrics should
focus on the relations between senders and receivers rather
than on the links between inputs and outputs. We show
how the system’s anonymity level as defined in [10] focuses
only on individual messages and thus cannot reflect the re-
duction of anonymity in scenarios where senders and/or re-
ceivers form multisets. We generalize the metric in scenar-
ios where user relations can be modeled as yes/no relations
to capture the additional information provided by multiple
messages from/to the same sender/recipient. We propose
an algorithm to compute the redefined system’s anonymity
level. The algorithm may become rather expensive for large
values of t and specifying a more efficient algorithm remains
as an open problem. Nevertheless, we provide a simple and
efficient way to obtain upper and lower bounds if the graph
associated to the system is complete.
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