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ABSTRACT
We examine the effectiveness of two traffic analysis tech-
niques for identifying encrypted HTTP streams. The tech-
niques are based upon classification algorithms, identifying
encrypted traffic on the basis of similarities to features in a
library of known profiles. We show that these profiles need
not be collected immediately before the encrypted stream;
these methods can be used to identify traffic observed both
well before and well after the library is created. We give
evidence that these techniques will exhibit the scalability
necessary to be effective on the Internet. We examine sev-
eral methods of actively countering the techniques, and we
find that such countermeasures are effective, but at a signif-
icant increase in the size of the traffic stream. Our claims
are substantiated by experiments and simulation on over
400,000 traffic streams we collected from 2,000 distinct web
sites during a two month period.
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work monitoring ; I.5.4 [Pattern Recognition]: Applica-
tions; K.4.1 [Computers and Society]: Public Policy Is-
sues—Privacy
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1. INTRODUCTION
Encrypted connections provide confidentiality at many

different network layers. In combination with a proxy, this
setup forms the basis of private communication over the
Internet. Many such systems prevent observers from deter-
mining the true destination of IP traffic: multi-proxy tunnels
using the Tor anonymous communication system [6]; simple
SSH tunnels to a single proxy; and IPSec ESP mode tunnels
to a remote VPN concentrator. WPA link layer connections
also hide the destination IP address and content of a con-
nection from an observer.

In this paper, we evaluate traffic analysis techniques that
infer the source of a web page retrieved under the cover of
an encrypted tunnel. These techniques identify sources by
comparing observed traffic to profiles of known sites created
from packet lengths, and are referred to as profiling attacks.
A previous study [1] has shown the attack is feasible, with
a method achieving about 25% accuracy.

This type of attack on web traffic is an area of concern
for advocates of privacy enhancing technologies. This in-
cludes the developers of Tor, who have recognized that this
type of web page fingerprinting is a significant problem [5].
Currently deployed low-latency anonymity systems do not
significantly adjust traffic to prevent comparison to profiles.
The advances we detail in this paper increase the impor-
tance of addressing the attack in implementations — our
study includes results with an accuracy of up to 90% for
realistic scenarios.

Privacy is the dual problem of digital forensics — accord-
ingly, the attack is also an important method of investigation
that advances the field of digital forensics. This is because
commonly used forensic techniques for gathering and analyz-
ing network data are limited to traffic with overt IP headers
and data [2, 3]. Encrypted tunnels thwart the legitimate
gathering of evidence by authorized law enforcement. Ad-
vances in the field of forensics require moving beyond this
limitation. This paper provides guidance for such advances.

Contributions. Our results are based on traces we gath-
ered of encrypted communications to 2,000 web sites, which
we collected four times a day for two months. We have
made these traces publicly available for validation, collab-
oration, and future work. To our knowledge, this is the
largest public collection of such traffic for the study of pro-
filing attacks. We built two systems that identify traffic, one
based on the naive Bayes classifier and one on Jaccard’s co-
efficient, a straightforward similarity metric. Both systems
rely on packet lengths but discard timing information.



Despite this simplification, we found that under reason-
able assumptions, traces were identifiable between 66–90%
of the time. On the basis of our experiments, we expect
performance to scale well, and we assume that more so-
phisticated methods could do better. We also examine in
simulation the effectiveness of per-packet padding (that is,
increasing the length of packets) in an attempt to defeat our
profiling system. We find that this approach is reasonably
effective, lowering predictive accuracy to less than 8% while
increasing traffic volume by 145%.

While profiling requires a set of candidate sites, we believe
that it would not be difficult for an observer to profile all
publicly accessible web sites on the Internet in time for the
attack to succed. In part, this is due to our finding that
classification accuracy degrades very slowly over time, giving
the observer at least four weeks to collect the profile after
the encrypted traffic is observed in many cases. Moreover,
using the technique we evaluated, an investigator could store
profiles of the front pages of all web sites on the Internet with
about 13GB of storage.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. In Sections 3 and 4, we de-
scribe our attack model and data collection methodology,
and in Section 5, we describe our experimental methodol-
ogy and results. We discuss the implication of these results
in Section 6, and conclude in Section 7.

2. RELATED WORK
Traffic analysis is a large field; in this section, we survey

work in that field that is related to the analysis of anonymity
systems. In particular, we discuss prior work on passive log-
ging, profiling (or fingerprinting) attacks, and analysis of
countermeasures to these attacks, as these are the most rel-
evant to our work. We focus on work that examines HTTP
and secure HTTP and the vulnerabilities and exposures in-
herent in those protocols. For a broader overview of the
field, consult Raymond [11] or the Free Haven anonymity
bibliography1.

Wright, et al. [15, 16] and others have shown that low-
latency anonymity systems are vulnerable to passive logging
and an intersection attack. These results are complementary
to our own: The attack allows identification of the endpoints
in an anonymous communication system with path changes,
whereas our technique allows an observer to infer the content
(and thus, the endpoint) from the traffic itself.

Hintz [9], Sun, et al. [12], and Bissias, et al. [1] present
profiling attacks of encrypted connections, though our study
differs from each of these in important ways. Hintz’s work
is a preliminary proof-of-concept, examining total data sent
over SSL connections. While the technique is reasonably ef-
fective, SSL and its successor, TLS, are not designed to hide
traffic patterns [4, 7]. One of our classification techniques
is drawn from the work presented by Sun, et al., though
the problem we study differs from theirs in a nontrivial way.
In their work, they compare the size of web objects, rather
than packets. This comparison is possible due to their strong
simplifying assumption that objects can be differentiated by
examining the timing of TCP connections. This assump-
tion is not valid for WEP/WPA links, VPN connections,
and SSH tunnels, and in the presence of widely-supported
pipelined HTTP connections. We make the weaker assump-

1http://freehaven.net/anonbib/topic.html

Figure 1: An illustration of the measurement setup.
This figure also shows the position an observer may
take to utilize profiling.

tion that packets, not objects, can be distinguished, and we
base our identification of pages on the individual packets
that compose these pages. Bissias, et al. present work simi-
lar in its assumptions to ours. They examine packet lengths
and timings as the basis of identification, though they use
only the crude metric of cross-correlation to determine sim-
ilarity. The study also is preliminary in nature, attempting
to distinguish among only 100 web sites. While appropriate
for an initial study, such a small sample is hard to generalize
from; in this study, we show results for a larger, more robust
data set.

There are few careful studies of countermeasures to pro-
filing attacks upon low-latency anonymity systems on the
Internet. Fu, et al. [8], examine the technique of introduc-
ing dummy packets on links to defeat some types of traf-
fic analysis. Their results are largely theoretical in nature,
and designed to thwart general traffic analysis rather than
specific profiling attacks. They find that variable intervals
between dummy packets are more effective that constant in-
tervals. Levine, et al. [10] examine dropping packets to foil
statistical correlation. A generalization of partial-path cover
traffic [13], this technique and their analysis is concerned
mainly with foiling timing attacks. We believe that there is
much work yet to be done in examining latency and band-
width tradeoffs in cover traffic and delays for low-latency
anonymity systems.

3. MODEL
In this section, we describe our model of an observer that

can execute traffic analysis attacks to profile web sites and
identify encrypted traffic on the basis of these profiles. We
first describe our assumptions about how data can be col-
lected by an observer. Then, we describe two specific meth-
ods to create these profiles, one based upon a similarity met-
ric (Jaccard’s coefficient) and one based upon a supervised
learning technique (the naive Bayes classifier).

3.1 Observer Model
Figure 1 illustrates the network setup that we use through-

out this paper. In it, the client connects to a remote proxy
over an encrypted transport layer. The proxy makes re-
quests on the client’s behalf, and returns the results over
the encrypted connection. The observer is limited to ex-
amining the encrypted traffic and creates a log of packet
lengths (and interarrival times, if desired) corresponding to
each distinct page load. Our observer has unlimited storage
for these logs. We assume that the observer is not able to
discriminate among individual objects as in Sun, et al. We
assume the client uses a modern browser for retrieval, as
described in Section 4.2, which prevents the observer from
obtaining this information.

http://freehaven.net/anonbib/topic.html


Because our techniques focus on packet lengths, it is not
a requirement that the observer create profiles on the same
link that she observes traffic. However, for simplicity, we
assume this is the case.

We assume that the observer is able to determine where
discrete communications begin and end (such as the loading
of a web page and its associated objects). This is possi-
ble, for example, by observing sender think times that sep-
arate requests. In future, we will determine mechanisms for
separating multiple requests and requests that appear with
background traffic.

The proxy we evaluate in this paper is the OpenSSH im-
plementation of a one-hop SOCKS proxy. However, we ex-
pect our results hold for VPN proxies and WPA base sta-
tions. Neither of these systems significantly alter packet
lengths since they perform no buffering and packet aggre-
gation or fragmentation. The Tor and JAP2 low-latency
anonymity systems provide only very limited aggregation
and fragmentation. We believe that these systems will also
be vulnerable to a form of this attack.

To launch the class of traffic analysis attacks that we eval-
uate in this paper, the observer requires a library of traffic
traces between a client and a list of known web sites. We
show in Section 5 that this library can be collected before or
after the attack. Using the traces of connections to known
destinations, the observer attempts to decide, in some fash-
ion, which of the known traces most closely resembles the
encrypted, unknown trace, as we explain below.

3.2 Profiling Methods
To determine similarity to known traces, the observer de-

scribes each trace in terms of attributes and lets each at-
tribute range over many possible values. The problem then
becomes an instance of supervised learning, as the observer
has a set of labeled training instances (the traces gathered
by the observer) and one or more unlabeled test instances
(the observed, encrypted traces).

In the remainder of this paper, we denote each trace to-
gether with its attributes as an instance. Each instance has
an attribute denoting the URL, or site, to which it corre-
sponds. We also refer to this as the class of the instance.
Each instance also has attributes that describe every packet
in the trace. These attributes take the form of a tuple, (di-
rection, length). The direction denotes whether the packet
went from the client to the server referenced in the URL, or
vice versa; the length denotes the total length, in bytes, of
the packet. The value assigned to each attribute is the num-
ber of packets observed in that trace with the corresponding
direction and length.

Our first method for identifying unknown instances is to
use a similarity metric; we use Jaccard’s coefficient to mea-
sure similarity and thus determine the class of an instance.
For two sets X and Y , Jaccard’s coefficent S is defined as:

S(X, Y ) =
|X ∩ Y |
|X ∪ Y | (1)

We build a model for Jaccard’s coefficient based classifica-
tion as follows. Each site in the model represented by a
set. If there is only one training instance per site, then the
model is built as follows: For each packet length and di-
rection in a training instance, a (direction, length) tuple is

2http://anon.inf.tu-dresden.de/

inserted into the set corresponding to that site. If there is
more than one instance in the training set per site, then
such tuples are inserted into the set iff they are present in
the majority of the instances in the training set. To convert
the similarity metric S to an estimate of class membership
probability, we normalize S(X, Y ) for a given X by dividing
by

P
Y ∈U S(X, Y ), where U is the set of all training sets.

Our second method for identifying unknown instances is
the naive Bayes classifier. We do not give a full explanation
of the classifier here: a recent textbook such as Witten and
Frank [14] will provide details. In short, the naive Bayes
classifier assumes independence between all attributes, and
estimates the probability of a set of value A = A1, . . . , An

belonging to a particular class Ci as:

p(Ci|A) ∝ p(Ci)

nY
j=1

(p(Aj |Ci)) (2)

In our experiments, which are described below, we use Wit-
ten and Frank’s Weka toolkit implementation, weka.class-
ifiers.bayes.NaiveBayes, with normal kernel density es-
timation enabled.

4. DATA COLLECTION
To investigate the effectiveness of a profiling attack, we

required a data set consisting of logs of encrypted traffic
between a client and many servers.3 We imposed several
requirements on this data set. First, it had to be of suf-
ficiently large size to make the problem non-trivial, while
not so large to prevent multiple collections each day with
our limited resources. Second, it had to reflect a real-world
group of users. Finally, it had to be collected in a fashion
analogous to the manner in which an actual observer would
attempt. In this section, we present the details of these pro-
cesses so that others can validate or recreate our collection
process.

4.1 Initial Data Collection
We used our department’s Internet traffic as a basis for

choosing sites to profile. This network is used by an esti-
mated population of over three hundred faculty, staff, and
students. By monitoring DNS requests within the depart-
ment, we gathered a list of remote hosts to which users con-
nected. We heuristically refined this list into a set of HTTP
URLs which we believe are reasonably representative of the
web browsing habits of users in our department.

The initial step was to log all requests to the department’s
DNS server from 01 December 2005 through 04 January
2006. This month of logs yielded 44,305,203 requests from
828 hosts. We removed all requests that were not for ad-
dress (A) records, as HTTP traffic would not have generated
them. We removed all requests that were from outside the
department, as we were studying users within the depart-
ment. We removed all requests that were for names within
our domain, as these tend to correlate with intra-department
service accesses (such as secure shell access) and not HTTP
requests.

We then removed requests we judged to be the result of
automatic processes. Specifically, we removed all requests
for a given name that were made from the same host with

3The anonymized logs we collected and used are available
at http://traces.cs.umass.edu/

http://anon.inf.tu-dresden.de/
http://traces.cs.umass.edu/
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Figure 2: The relationship between site rank and
number of accesses. Sites are ranked according to
total number of accesses to each site observed.

an average frequency of greater than once per five minutes
in any eight hour period. We then heuristically removed
most requests for PlanetLab4 machines.

From these requests, we constructed a list of URLs of the
form http://ipaddress/, along with the associated count
for each. On 01 February 2006, we attempted to contact
each of these sites with an HTTP GET request on port 80.
We removed from the list all sites that were unreachable,
refused the connection, or returned an HTTP error that
was not a redirection. We also replaced the ipaddress with
the actual hostname the remote machine used, and we re-
solved all redirections. Finally, we summed the counts of
all sites that redirected to the same URL. This final list of
(count, URL) pairs was 109,479 pairs in length. For our ex-
periments, presented in the next section, we focused on the
2,000 most accessed sites, which accounted for 64% of all
web requests. The relationship between rank and number
of accesses is show in Figure 2.

4.2 Page Retrieval
To gather realistic traces, we set up a client host with a

recent GNU/Linux distribution. We used Mozilla Firefox
1.55 to retrieve each URL via a SOCKS proxy. OpenSSH
4.2p16 was set up to perform application level dynamic port
forwarding (the -D option) and act as a proxy. This created
an encrypted channel over which the HTTP requests and
responses were forwarded, and it made distinguishing indi-
vidual objects infeasible, as Firefox generally makes multiple
simultaneous connections to load a web page that are mul-
tiplexed over the secure channel.

We configured Firefox to not cache data between retrievals,
which allowed us to focus on the specific question of identi-
fying encrypted streams by their profiles. We installed the
latest Macromedia Flash plugin7, as many of the URLs in
our list contained content rendered by this plugin. We also
configured Firefox to not attempt various extraneous con-
nections, due to live bookmarks, automatic update checks,

4http://www.planet-lab.org/
5http://www.mozilla.org/projects/firefox/
6http;//www.openssh.org/
7http://www.macromedia.com/

and the like. While disabling these features makes the re-
sulting traffic somewhat less realistic, we believe it to be
a reasonable trade-off to allow us to focus on the specific
problem under investigation. As Firefox loaded each URL
in our list, we used tcpdump 3.9.48, linked against libpcap
0.9.4, to log the first 68 bytes of each packet. This length is
sufficient to capture IP and TCP headers of the packet and
thus determine the total packet length. The information in
these logs form the basis of the profiles that we detail in the
next section.

5. EVALUATION
In this section, we describe the experimental methodol-

ogy we used to evaluate our proposed classification methods
as well as the results of that evaluation, based upon two
months of data we collected. We give evidence that the
two methods, one based upon Jaccard’s coefficient and the
other upon the naive Bayes classifier, have several properties
of interest: We show that the Jaccard-based classifier’s ac-
curacy, under reasonable assumptions, is over 60%. We give
evidence that it will scale reasonable well to large data sets.
We show that many profiles, once constructed, remain valid
for long periods of time. We show that training data can
be gathered before or after test data, with a negligible effect
upon accuracy. We show evidence that the identifiability of
traces using these methods is a result of the distinctiveness
in both the individual packet length as well as overall trace
length. Finally, we examine the robustness of our method
to several forms of static countermeasures, and find that
users using these countermeasures must be willing to incur
a bandwidth penalty of 145% in order to drive an observer’s
accuracy below 8%.

5.1 Experiment Setup
To evaluate the effectiveness of the profiling attack de-

scribed above, we collected traces of encrypted traffic as
described in Section 4. Specifically, each sample consists of
the log of a retrieval of each of the 2,000 most-visited web
sites. We created a new sample once every six hours for a
period of two months, for a total of 480,000 samples.

From these samples, we performed individual experiments
of several variables. Each experiment utilizes a set of train-
ing samples and a distinct set of testing samples. Each of
the following three variables are relative to some sample i,
the initial sample.

• t describes the number of sequential samples that form
the training set.

• s describes the number of sequential samples that form
the test set.

• ∆ describes the number of sequential samples between
the training and test sets. ∆ = 0 indicates the test set
starts with the sample immediately following the last
sample in the training set.

• N describes how many of the 2,000 sites we considered
in a particular experiment. If it is less than 2,000, then
we reduced the number of traces in each sample to this
number by removing the traces corresponding to the
same sites from all samples. We removed the least-
popular sites first.

8http://www.tcpdump.org/

http://ipaddress/
ipaddress
http://www.planet-lab.org/
http://www.mozilla.org/projects/firefox/
http;//www.openssh.org/
http://www.macromedia.com/
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Figure 3: Effect upon accuracy of varying training
set size.

The result of each experiment is a table of probabilities
of class membership for each of the instances in the test
set. From this, we determine the k-identifiability of each
instance. The k-identifiability for an instance is defined as
1 if the actual class of the instance is in the top k of the
predicted class list, as ordered by probability estimate (pre-
dicted classes with the same estimate are ordered in an ar-
bitrary but fixed manner) or 0 if the actual class is not in
the top k. The k-accuracy for an experiment is the average
of the k-identifiability value for each instance in the test set.

5.2 Classifier Performance
We evaluated the effect of changing each of the indepen-

dent variables listed above. Unless the variable was the iso-
lated and changing variable, each of the following graphs
assumes k = 1, a training set size of t = 4 (one day of data),
a test set size of s = 4, ∆ = 3 so that the training and
test sets are one day apart, and N = 1000 sites. We chose
random initial sample numbers such that 10 individual ex-
periments were run with all other variables equal — these
otherwise identical experiments are the source of the 95%
confidence intervals in the graphs. Often the intervals are
too small to be observed. Figures 3, 4, 5, and 7 show the
results of these experiments.

In Figure 3, we show the effect of varying the training set
size. While accuracy increases as more samples are added
to the training sets, the rate of increase slows when t = 4.
Thus, even small training sets give good accuracy, and ad-
ditional training data give diminishing returns on accuracy.
In Figure 5, we show the effect of varying ∆. Larger delays
between the training and test sets result in lower accuracy,
but the decrease appears to be linear in the delay and toler-
ably small (a drop from 73% to 63%), even after four weeks
of delay. Thus, training data remains useful even after a
significant amount of time has passed. This implies that it
need not be collected too frequently, increasing the utility of
large sets of such data. In Figure 4, the effect of a larger k is
shown. Unsurprisingly, allowing the observer more chances
to identify a trace allows for higher accuracy. At k = 10,
the observer can expect to have correctly identified the trace
90% of the time.
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Figure 5: Effect upon accuracy of varying the delta
(time between training and testing).

Figure 7 shows the effect of varying the number of sites
in the training and test sets. The drop in accuracy appears
to follow a relationship of the form:

acc = A log2 N + B (3)

A linear regression analysis is presented in Table 1 which
shows that a reasonably close log-linear relationship exists.
This relationship implies that the profiling attack has good
scalability properties, even as N grows to the size of the
Internet.

5.3 Forensics Feasibility
This method of identifying encrypted traffic does not re-

quire gathering profile data prior to observing the traffic
being analyzed. Such a situation occurs when the profiler
is an investigator attempting to identify traces gathered in
the past. Figure 6 shows the results of the experiments
from Figure 5 with one important difference: the training
set occurs after, rather than before, the test set. For other-
wise identical parameters, the relative decrease in accuracy

(
original−reversed

original
) is less than 3% (p < 0.01) across all of

the experiments.



method A B R-squared squared error F(1,18) prob(F)
Jaccard -0.03420 1.0679 0.9374 0.03398 269.6 0.0000
Bayes -0.03901 1.0678 0.9358 0.03055 262.3 0.0000

Table 1: Regression analysis for acc = A log2 N + B
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Figure 6: Results after swapping the test and train-
ing sets.

5.4 Explaining Performance
As the Jaccard-based classifier only sees occurrences of

(length, direction) and not counts, some traces will be in-
distinguishable from others. If we assume no changes in the
traces between the training and test sets, the accuracy of the
Jaccard-based classifier is bounded by the number of unique
traces within each sample. Since sites changes over time,
and thus training and test sets can differ, this upper bound
is well above the accuracy we observed in practice. Figure 7
shows the fraction of unique samples in the training set and
the accuracy of the Jaccard-based classifier on these sets.

To model the source of this uniqueness, we examined
the underlying distribution of (packet size, direction) tu-
ples across all instances in the training sets for the 10 ex-
periments corresponding to 2,000 sites. This distribution
is shown in Figures 8 and 9. The distribution of per-trace
occurrences has an entropy, as defined by:

H(x) = −
nX

i=1

p(i) log2 p(i) (4)

of 7.53 bits. We observed that traces have an average of
36.87 unique tuples, drawn without replacement, from such
a distribution. If we assume that the appearance of each
tuple in each log is independent, then the expected infor-
mation yielded to the Jaccard-based classifier by a trace is
bounded by 7.53 · 36.87− log2 36! ≈ 137 bits. We estimated,
via a Monte Carlo procedure, the actual number of bits to
be slightly lower (≈ 130), as each tuple can appear only
once in a trace. This is far more information than is nec-
essary to distinguish among the number of sites observed,
yet as described above, not all sites are unique. We ascribe
this discrepancy to a faulty assumption of independence be-
tween tuples. Future work could develop a better model
to describe identifiability, but as we show below, privacy-
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conscious system designers will be likely to utilize padding
in their designs and render this analysis unnecessary.

5.5 Countermeasure Effectiveness
If an initiator suspects the presence of an observer, he

may attempt to obscure his traffic patterns through the
use of padding. Here, we examine the effects of static per-
packet padding (that is, the padding of each packet with
dummy bytes to some predetermined size) on the identifi-
cation method we propose. We examined four methods of
padding in simulation:

• linear: Pad each packet to the nearest multiple of 50.
This naive method adds a minimal number of bytes to
each packet, and reduces the number of distinct sizes
by up to a factor of 50.

• exponential: Pad each packet to the next largest
power of two or the MTU, whichever is smaller. This
method significantly reduces the number of distinct
sites, to dlog2 MTUe, while doubling the size of each
packet, in the worst case. In practice, we found that
this increased packet length by less than 9%, likely be-
cause most large packets are already of length equal to
the MTU.

• mice and elephants: Pad each packet to either 100
or 1500. This method reduces the information avail-
able to the classifier even further than exponential
padding. All small packets (mostly ACKs) are padded
to one size, and all other packets to another. Use of
this method comes at a cost of nearly 50% growth in
data transmitted.

• MTU: Pad each packet to the MTU. This method dra-
matically increases overall data transmitted (by nearly
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distribution is based on every observed packet.
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Figure 9: Per-trace occurrence distribution. Packet
lengths are included in this distribution at most once
per occurrence in each trace. This distribution more
accurately reflects the Jaccard-based classifier’s in-
put than that of Figure 8.

150%) but renders all packets indistinguishable on the
basis of packet length.

We assume the observer is able to determine the padding
method being utilized, and can adjust his training sets by
padding them in the same fashion. Thus, we evaluate ac-
curacy on the basis of training and test sets that have been
padded in identical fashions.

In Figure 10, we show each method’s effect upon accuracy.
(Recall that k-accuracy is defined in Section 5.1.) Table 2
lists each method’s effect upon accuracy as well as the rel-
ative number of bytes transmitted. The Bayes-based clas-
sifier utilizes packet counts as well as packet size, and thus
is better able to discriminate among instances with identi-
cal (direction, length) attributes but differing counts. The
Bayes-based classifier retains enough accuracy, even under
the MTU padding method, to be of concern to a privacy-
conscious user. Based upon this result, we believe that de-
signers of anonymous communications systems must utilize
strong per-packet padding to preserve user privacy.
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Figure 10: The effects of per-packet padding upon
accuracy.

6. DISCUSSION
The main implication of this study is clear: encryption

is not enough to protect user privacy. In most low-latency
anonymity system designs, an encrypted connection to a
proxy (or proxy network) is the basis for the privacy prop-
erties of the system. As our study shows, when an observer
can utilize external knowledge, such as a library of trace pro-
files and knowledge of probable user behavior, the content
of the data on the connection can be inferred.

Thus we offer the following advice to designers of low-
latency systems: Pad packets entering the system to one of
a small number of sizes. A system with this property will
greatly reduce the amount of available information to an ob-
server, and correspondingly reduce their ability to identify
encrypted streams. For example, the current version of the
Tor utilizes fixed size packets within its network of prox-
ies. We conjecture this approach is insufficient to counter a
traffic analysis attack. A preliminary examination of traces
sent through the Tor system leads us to believe that we can
discern underlying packet sizes at a finer level of granular-
ity than this fixed size. We believe this discernment can
be achieved by grouping packets based an interarrival time
threshold, as Tor does not introduce deliberate delays to
hide this information.

Building a library of profiles of encrypted HTTP traffic
is a reasonable activity for both research and law enforce-
ment purposes. Many forensic investigators will lack the
time and tools to gather such data. We have shown the
collecting such data is straightforward. Further, we have
shown the such data can be used to build an identification
system based solely upon packet size — such profiles can be
collected from anywhere on the Internet and will not differ
for most sites. It is certainly feasible to build software that
will enable researchers or investigators to collaborate and
create a profile of the entire Internet in a distributed fash-
ion. This library would be similar to a distributed version
of the National Software Reference Library9 which main-
tains forensic hashes of many commercial applications and
operating systems. Given the log-linear scaling of our clas-

9http://www.nsrl.nist.gov/

http://www.nsrl.nist.gov/


Padding
Jaccard
1-accuracy

Jaccard
10-accuracy

Bayes
1-accuracy

Bayes
10-accuracy Data transmitted

none 0.721 0.889 0.680 0.862 1.000
linear 0.477 0.750 0.588 0.808 1.034
exponential 0.056 0.228 0.485 0.748 1.089
mice /
elephants

0.003 0.020 0.279 0.614 1.478

MTU 0.001 0.010 0.077 0.359 2.453

Table 2: Per-packet padding and its effects upon accuracy and amount of data transmitted. The rightmost
column shows the amount of data transmitted when using the specified padding method, relative to no
padding.

sification method, we expect that such a library would have
signification forensic value.

On average, our unoptimized measurement infrastructure
retrieved one site every six seconds. Thus, we can collect
traces of at least 600 sites an hour from just one computer,
or over 100,000 sites in a week. Having more computers
doing collection will increase the rate linearly, subject to
bandwidth constraints.

The Netcraft survey10 shows that are approximately 38
million active web sites on the Internet as of February 2006.
If 400 volunteers profiled 600 sites an hour, then the en-
tire Internet could be updated in a distributed library once
a week. A greater number of volunteers would reduce the
amount of work each has to do, or increase the accuracy of
the profiles by updating the profiles more frequently. The
mean size of an naive Bayes profile in our existing exper-
iment is about 350 bytes; an archive of Internet top-level
pages can thus be stored with less than 13GB. Of course,
each Internet site consists of many pages. We conjecture
that this problem can be addressed because many pages are
based on common templates. For example, all Google web
searches result in the same layout. The web site of the NY
Times looks the same for our observer even though the con-
tent changes quite frequently. In general, we expect that
sites with many, dynamically generate pages will follow tem-
plates out of a necessity for manageable administration; sites
that with static content that is different on every page are
likely to be updated only infrequently, and therefore require
infrequent profiling.

7. CONCLUSION AND FUTURE WORK
We have shown that an observer can infer the contents of

encrypted HTTP streams using a library of profiles collected
before or after the encrypted stream. These profiles do not
require much training data to construct, degrade slowly over
time, and are compact. These properties make them use-
ful to the forensic investigator and worrisome to privacy-
conscious users. We believe that this study provides some
guidance for protocol designers to prevent this attack in fu-
ture systems, as well as a method for forensic investigators
to gather evidence based upon current systems.

In the future, we plan to extend this work in several ways.
First, we will examine the effect of introducing timing infor-
mation into the profile. While this addition has the potential
to significantly improve accuracy, it comes at a potentially
high cost: the loss of location-neutrality in gathering the
profiles. Second, we will examine the efficacy of more com-
plex classification methods. Both of the methods we utilized

10http://www.netcraft.com

in this study assume independence among the attributes in
the traces. We have given evidence that this independence
assumption is flawed, and we expect that classifiers which
model inter-attribute dependence will have improved accu-
racy. Third, we will evaluate this identification method on
larger data sets and with a more realistic network substrate.
While we expect performance to remain consistent, it is pos-
sible that real-world systems may have unanticipated effects
upon our method’s effectiveness. Fourth, we will examine
other padding schemes. We suspect that non-deterministic
padding of packets will have a lower packet size overhead
than an equivalently strong deterministic scheme. Finally,
we will examine more carefully the effects of padding, frag-
mentation, and packet delays upon our classifier. We sus-
pect these techniques will interact with TCP/IP implemen-
tations is non-obvious ways. The designers of low-latency
anonymity systems are reluctant to unnecessarily manipu-
late the traffic stream, for fear of introducing excess latency
into their systems. We would like to verify that reason-
able security properties can still be attained in the face of
more advanced attacks, and we will model the performance
penalty that must be incurred to mitigate such attacks.
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