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Abstract
We want assurances that sensitive information will not be disclosed
when aggregate data derived from a database is published.Differ-
ential privacyoffers a strong statistical guarantee that the effect
of the presence of any individual in a database will be negligi-
ble, even when an adversary has auxiliary knowledge. Much ofthe
prior work in this area consists of proving algorithms to be differ-
entially private one at a time; we propose to streamline thisprocess
with a functional language whose type system automaticallyguar-
antees differential privacy, allowing the programmer to write com-
plex privacy-safe query programs in a flexible and compositional
way.

The key novelty is the way our type system capturesfunction
sensitivity, a measure of how much a function can magnify the dis-
tance between similar inputs: well-typed programs not onlycan’t
go wrong, theycan’t go too faron nearby inputs. Moreover, by in-
troducing a monad for random computations, we can show that the
established definition of differential privacy falls out naturally as
a special case of this soundness principle. We develop examples
including known differentially private algorithms, privacy-aware
variants of standard functional programming idioms, and compo-
sitionality principles for differential privacy.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—specialized application lan-
guages

General Terms Languages

Keywords Differential Privacy, Type Systems

1. Introduction
It’s no secret that privacy is a problem. A wealth of information
about individuals is accumulating in various databases — patient
records, content and link graphs of social networking sites, book
and movie ratings, ... — and there are many potentially good uses
to which it could be put. But, as Netflix and others have learned
[26] to their detriment, even when data collectorstry to release only
anonymized or aggregated results, it is easy to publish information
that reveals much more than was intended, when cleverly combined
with other data sources. An exciting new body of work ondiffer-
ential privacy [6, 7, 12–15, 27] aims to address this problem by,
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first, replacing the informal goal of ‘not violating privacy’ with a
technically precise and strong statistical guarantee, andthen offer-
ing various mechanisms for achieving this guarantee. Essentially, a
mechanism for publishing data isdifferentially privateif any con-
clusion made from the published data is almost exactly as likely if
any one individual’s data is omitted from the database. Methods for
achieving this guarantee can be attractively simple, usually involv-
ing taking the true answer to a query and adding enough random
noise to blur the contributions of individuals.

For example, the query“How many patients at this hospital are
over the age of 40?”is intuitively “almost safe”—safe because it
aggregates many individuals’ contributions together, and“almost”
because, if an adversary happened to know the ages of every pa-
tient except John Doe, then answering this query would give them
certain knowledge of a fact about John. The differential privacy
methodology rests on the observation that, if we add a small amount
of random noise to its result, we can still get a useful idea ofthe
true answer to this query while obscuring the contribution of any
single individual. By contrast, the query“How many patients are
over the age of 40 and also happen to be named John Doe?”is
plainly problematic, since it is focused on an individual rather than
an aggregate. Such a query cannot usefully be privatized: ifwe add
enough noise to obscure any individual’s contribution to the result,
there won’t be any signal left.

So far, most of the work in differential privacy concerns specific
algorithms rather than general, compositional language features.
Although there is already an impressive set of differentially private
versions of particular algorithms [6, 18], each new one requires its
own separate proof. McSherry’s Privacy Integrated Queries(PINQ)
[25] are a good step toward more general principles: they allow for
some relational algebra operations on database tables, as well as
certain forms of composition of queries. But even these are rel-
atively limited. We offer here a higher-order functional program-
ming language whose type system directly embodies reasoning
about differential privacy. In this language, we canimplementMc-
Sherry’s principles of sequential and parallel composition of differ-
entially private computations, and many others besides, ashigher-
order functions. This provides a foundational explanationof why
compositions of differentially private mechanisms succeed in the
ways that they do.

The central idea in our type system also appears in PINQ and
in many of the algorithm-by-algorithm proofs in the differential
privacy literature: thesensitivityof query functions to quantitative
differences in their input. Sensitivity is a sort of continuity property;
a function of low sensitivity maps nearby inputs to nearby outputs.
To give precise meaning to ‘nearby,’ we equip every type witha
metric— a notion of distance — on its values.

Sensitivity matters for differential privacy because the amount
of noise required to make a deterministic query differentially pri-
vate is proportional to that query’s sensitivity. The sensitivity of



both queries discussed above is in fact 1: adding or removingone
patient’s records from the hospital database can only change the
true value of the query by at most 1. This means that we should add
the sameamount of noise to“How many patients at this hospital
are over the age of 40?”as to“How many patients are over the age
of 40, who also happen to be named John Doe?”This may appear
counter-intuitive, but actually it is just right: the privacy of single
individuals is protected to exactly the same degree in both cases.
Of course, the usefulness of the results differs: knowing the answer
to the first query with, say, a typical error margin of±100 could
still be valuable if there are thousands of patients in the hospital’s
records, whereas knowing the answer to the second query (which
can only be zero or one)±100 is useless. (We might try making the
second query more useful by scaling its answer up numerically: “Is
John Doe over 40? If yes, then 1,000, else 0.”But this query has a
sensitivity of 1,000, not 1, and so 1,000 times as much noise must
be added, blocking our sneaky attempt to violate privacy.)

To track function sensitivity, we give adistance-awaretype sys-
tem. This type system embodies two important connections be-
tween differential privacy and concepts from logic and typethe-
ory. First, reasoning about sensitivity itself strongly resembleslin-
ear logic [4, 16], which has been widely applied in programming
languages. The essential intuition about linear logic and linear type
theories is that they treat assumptions as consumable resources. We
will see that in our setting thecapability to sensitively depend on an
input’s valuebehaves like a resource. This intuition recurs through-
out the paper, and we sometimes refer to sensitivity to an input as
if it is counting the number of “uses” of that input.

The other connection comes from the use of amonadto inter-
nalize the operation of adding random noise to query results. We
include in the programming language a monad for random compu-
tations, similar to previously proposed stochastic calculi [29, 30].
Since every type has a metric in our setting, we are led to ask:what
should the metric be for the monad? We find that, with the right
choice of metric, the definition of differentially private functions
falls out as aspecial caseof the definition of function sensitivity
for functions, when the function output happens to be monadic.
This observation is very useful: while prior work treats differen-
tial privacymechanismsand privatequeriesas separate things, we
see here that they can be unified in a single language. Our type
system can express the privacy-safety of individual queries, as well
as more complex query protocols (see Section 5) that repeatedly in-
teract with a private database, adjusting which queries they perform
depending on the responses they receive.

To briefly foreshadow what a query in our language looks like,
suppose that we have the following functions available:

over 40 : row → bool

size: db ⊸ R

filter : (row → bool) → db ⊸ db

add noise: R ⊸ #R

The predicateover 40 simply determines whether or not an indi-
vidual database row indicates that patient is over the age of40.
The functionsizetakes an entire database, and outputs how many
rows it contains. Its type uses a special arrow⊸, related to the lin-
ear logic function type of the same name, which expresses that the
function has sensitivity of 1. The higher-order functionfilter takes
a predicate on database rows and a database; it returns the subset
of the rows in the database that satisfy the predicate. This filtering
operation also has a sensitivity of 1 in its database argument, and
again⊸ is used in its type. Finally, the functionadd noiseis the
differential privacy mechanism that takes a real number as input
and returns a random computation (indicated by the monad#) that
adds in a bit of random noise. This function also has a sensitivity

of 1, and this fact is intimately connected to privacy properties, as
explained in Section 4.

With these in place, the query can be written as the program

λd : db. add noise(filter over 40d) : db ⊸ #R.

As we explain in Section 4, its type indicates that it is a differ-
entially private computation taking a database and producing a real
number. Its runtime behavior is to yield a privacy-preserving noised
count of the number of patients in the hospital that are over 40.

We begin in Section 2 by describing a core type system that
tracks function sensitivity. We state an informal version of the key
metric preservation theorem, which says the execution of every
well-typed function reflects the sensitivity that the type system as-
signs it. Section 3 gives examples of programs that can be imple-
mented in our language. Section 4 shows how to add the probability
monad, and Section 5 develops further examples. In Section 6we
state the standard safety properties of the type system, give a formal
statement of the metric preservation theorem, and sketch its proof.
The remaining sections discuss related work and offer concluding
remarks.

2. A Type System for Function Sensitivity
2.1 Sensitivity

Our point of departure for designing a programming languagefor
differential privacy isfunction sensitivity. A function is said to bec-
sensitive(or have sensitivityc) if it can magnify distances between
inputs by a factor of at mostc. Since this definition depends on the
input and output types of the function having a metric (a notion of
distance) defined on them, we begin by discussing a special case
of the definition for functions fromR to R, where we can use the
familiar Euclidean metricdR(x, y) = |x − y| on the real line. We
can then formally definec-sensitivity for real-valued functions as
follows.

Definition A function f : R → R is said to bec-sensitiveiff
dR(f(x), f(y)) ≤ c · dR(x, y) for all x, y ∈ R.

A special case of this definition that comes up frequently is the
case wherec = 1. A 1-sensitive function is also called anonex-
pansivefunction, since it keeps distances between input points the
same or else makes them smaller. Some examples of 1-sensitive
functions are

f1(x) = x f2(x) = −x f3(x) = x/2

f4(x) = |x| f5(x) = (x + |x|)/2

and some non-examples include:f6(x) = 2x andf7(x) = x2. The
functionf6, while not1-sensitive,is 2-sensitive. On the other hand,
f7 is notc-sensitive for anyc.

PROPOSITION2.1. Every function that isc-sensitive is alsoc′-
sensitive for everyc′ ≥ c.

For example,f3 is both1/2-sensitive and1-sensitive.
So far we only have one type,R, with an associated metric.

We would like to introduce other base types, and type operators to
build new types from old ones. We require that for every typeτ
that we discuss, there is a metricdτ (x, y) for valuesx, y ∈ τ . This
requirement makes it possible to straightforwardly generalize the
definition ofc-sensitivity to arbitrary types.

Definition A function f : τ1 → τ2 is said to bec-sensitiveiff
dτ2

(f(x), f(y)) ≤ c · dτ1
(x, y) for all x, y ∈ τ1.

The remainder of this subsection introduces several type op-
erators, one after another, with examples ofc-sensitive functions



on the types that they express. We use suggestive programming-
language terminology and notation, but emphasize that the discus-
sion for now is essentially about pure mathematical functions —
we do not yet worry about computational issues such as the possi-
bility of nontermination. For example, we speak of values ofa type
in a way that should be understood as more or less synonymous
with mere elements of a set — in Section 2.2 below, we will show
how to actually speak formally about types and values.

First of all, whenτ is a type with associated metricdτ , let !rτ
be the type whose values are the same as those ofτ , but with the
metric ‘scaled up’ by a factor ofr. That is, we define

d!rτ (x, y) = r · dτ (x, y).

One role of this type operator is to allow us to reduce the concept
of c-sensitivity to1-sensitivity. For we have

PROPOSITION2.2. A functionf is a c-sensitive function inτ1 →
τ2 if and onlyf it is a 1-sensitive function in!cτ1 → τ2.

Proof Let x, y : τ1 be given. Supposedτ1
(x, y) = r. Then

d!cτ1(x,y) = cr. For f to be c-sensitive as a functionτ1 → τ2

we must havedτ2
(f(x), f(y)) ≤ cr, but this is exactly the same

condition that must be satisfied forf to be a1-sensitive function
!cτ1 → τ2.

We can see therefore thatf6 is a1-sensitive function!2R → R,
and also in fact a1-sensitive functionR → !1/2R. The symbol
! is borrowed from linear logic, where it indicates that a resource
can be used an unlimited number of times. In our setting an input of
type!rτ is analogous to a resource that can be used at mostr times.
We can also speak of!∞, which scales up all non-zero distances to
infinity, which is then like the original linear logic!, which allows
unrestricted use.

Another way we can consider building up new metric-carrying
types from existing ones is by forming products. Ifτ1 andτ2 are
types with associated metricsdτ1

anddτ2
, then letτ1 ⊗ τ2 be the

type whose values are pairs(v1, v2) wherev1 ∈ τ1 andv2 ∈ τ2.
In the metric on this product type, we define the distance between
two pairs to be the sum of the distances between each pair of
components:

dτ1⊗τ2
((v1, v2), (v

′
1, v2)) = dτ1

(v1, v
′
1) + dτ2

(v2, v
′
2)

With this type operator we can describe more arithmetic opera-
tions on real numbers. For instance,

f8(x, y) = x + y f9(x, y) = x − y

are1-sensitive functions inR ⊗ R → R, and

f10(x, y) = (x, y) f11(x, y) = (y, x)

f12(x, y) = (x + y, 0) cswp(x, y) =

(

(x, y) if x < y

(y, x) otherwise

are 1-sensitive functions inR ⊗ R → R ⊗ R. We will see the
usefulness ofcswpin particular below in Section 3.6. However,

f13(x, y) = (x · y, 0) f14(x, y) = (x, x)

are not1-sensitive functions inR⊗R → R⊗R. The functionf14 is
of particular interest, since at no point do we ever risk multiplying
x by a constant greater than1 (as we do in, say,f6 andf13) and
yet the fact thatx is used twicemeans that variation ofx in the
input is effectively doubled in measurable variation of theoutput.
This intuition about counting uses of variables is reflectedin the
connection between our type system and linear logic.

This metric is not the only one that we can assign to pairs.
Just as linear logic has more than one conjunction, our type theory
admits more than one product type. Another one that will prove
useful is taking distance between pairs to be themaximumof

the differences between their components instead the sum. Even
though the underlying set of values is essentially the same,we
regard choosing a different metric as creating a distinct type: the
type τ1 & τ2 consists of pairs〈v1, v2〉, (written differently from
pairs of typeτ1 ⊗ τ2 to further emphasize the difference) with the
metric

dτ1&τ2
(〈v1, v2〉, 〈v

′
1, v2〉) = max(dτ1

(v1, v
′
1), dτ2

(v2, v
′
2)).

Now we can say thatf15(x, y) = 〈x, x〉 is a1-sensitive function
R ⊗ R → R & R. More generally,& lets us combine outputs
of differentc-sensitive functions even if they share dependency on
common inputs.

PROPOSITION2.3. If f : τ → τ1 andg : τ → τ2 are c-sensitive,
thenλx.〈f x, g x〉 is a c-sensitive function inτ → τ1 & τ2.

Next we would like to capture the set of functions itself as a
type, so that we can, for instance, talk about higher-order functions.
Let us takeτ1 ⊸ τ2 to be the type whose values are1-sensitive
functions f : τ1 → τ2. We have already established that the
presence of!r means that having1-sensitive functions suffices to
expressc-sensitive functions for allc, so we need not specially
define an entire family ofc-sensitive function type constructors:
the type ofc-sensitive functions fromτ1 to τ2 is just !cτ1 ⊸ τ2.
We define the metric for⊸ as follows:

dτ1⊸τ2
(f, f ′) = max

x∈τ1

dτ2
(f(x), f ′(x))

This is chosen to ensure that⊸ and⊗ have the expected curry-
ing/uncurrying behavior with respect to each other. We find in fact
that

curry(f) = λx.λy.f (x, y)

uncurry(g) = λ(x, y).g x y

are1-sensitive functions in(R ⊗ R ⊸ R) → (R ⊸ R ⊸ R) and
(R ⊸ R ⊸ R) → (R ⊗ R ⊸ R), respectively.

We postulate several more type operators that are quite familiar
from programming languages. The unit type 1 which has only one
inhabitant(), has the metricd1((), ()) = 0. Given two typesτ1

andτ2, we can form their disjoint unionτ1 + τ2, whose values are
either of the forminj1 v wherev ∈ τ1, or inj2 v wherev ∈ τ2. Its
metric is

dτ1+τ2
(v, v′) =

8

>

<

>

:

dτ1
(v0, v

′
0) if v = inj1 v0 andv′ = inj1 v′

0;
dτ2

(v0, v
′
0) if v = inj2 v0 andv′ = inj2 v′

0;
∞ otherwise.

Note that this definition creates a type that is anextremelydisjoint
union of two components. Any distances between pairs of points
within the same component take the distance that that component
specifies, but distances from one component to the other are all
infinite.

Notice what this means for the typebool in particular, which
we define as usual as1 + 1. It is easy to writec-sensitive functions
frombool to other types, for the infinite distance between the values
true and false licenses us to map them to any two values we like,
no matter how far apart they are. However, it is conversely hard
for a nontrivial functionto bool to be c-sensitive. The function
gtzero : R → bool, which returns true when the input is greater
than zero, is notc-sensitive for any finitec. This can be blamed,
intuitively, on the discontinuity ofgtzeroat zero.

Finally, we include the ability to form (iso)recursive types
µα.τ whose values are of the formfold v, wherev is of the type
[µα.τ/α]τ , and whose metric we would like to give as

dµα.τ (fold v, fold v′) = d[µα.τ/α]τ (v, v′).

This definition, however, is not well-founded, since it depends on
a metric at possibly a more complex type, due to the substitution



[µα.τ/α]τ . It will suffice as an intuition for our present informal
discussion, since we only want to use it to talk about lists (rather
than, say, types such asµα.α), but a formally correct treatment of
the metric is given in Section 6.1.

With these pieces in place, we can introduce a type of lists of
real numbers,listreal = µα.1 + R ⊗ α. (The reader is invited to
consider also the alternative where⊗ is replaced by&; we return
to this choice below in Section 3.) The metric between lists that
arises from the preceding definitions is as follows. Two lists of
different lengths are at distance∞ from each other; this comes
from the definition of the metric on disjoint union types. Fortwo
lists [x1, . . . , xn] and[y1, . . . , yn] of the same length, we have

dlistreal([x1, . . . , xn], [y1, . . . , yn]) =
n

X

i=1

|xi − yi|.

We now claim that there is a1-sensitive functionsort :
listreal ⊸ listreal that takes in a list of reals and outputs the sorted
version of that same list. This fact may seem somewhat surprising,
since a small variation in the input list can lead to an abruptchange
in the permutation of the list that is produced. However, what we
output is not the permutation itself, but merely the values of the
sorted list; the apparent point of discontinuity where one value
overtakes another is exactly where those two values are equal, and
their exchange of positions in the output list is unobservable.

Of course, we would prefer not to rely on such informal ar-
guments. So let us turn next to designing a rigorous type system
to capture sensitivity ofprograms, so that we can see that the1-
sensitivity of sorting is a consequence of the fact that an implemen-
tation of a sorting program is well-typed.

2.2 Typing Judgment

Type safety for a programming language ordinarily guarantees that
a well-typed open expressione of type τ is well-behaved during
execution. ‘Well-behaved’ is usually taken to mean thate can
accept any (appropriately typed) value for its free variables, and
will evaluate to a value of typeτ without becoming stuck or causing
runtime errors:Well-typed programs can’t go wrong.We mean to
make a strictly stronger guarantee than this, namely a guarantee
of c-sensitivity. It should be the case that if an expression is given
similar input values for its free variables, the result of evaluation
will also be suitably close—i.e.,Well-typed programs can’t go too
far. To this end, we take, as usual, a typing judgmentΓ ⊢ e : τ
(expressing thate is a well-formed expression of typeτ in a context
Γ) but we add further structure the contexts. By doing so we are
essentially generalizingc-sensitivity to capture what it means for an
expression to be sensitive to many inputs simultaneously — that is,
to all of the variables in the context — rather than just one. Contexts
Γ have the syntax

Γ ::= · | Γ, x :r τ

for r ∈ R
>0∪{∞}. To have a hypothesisx :r τ while constructing

an expressione is to have permission to ber-sensitive to variation
in the inputx: the output ofe is allowed to vary byrs if the value
substituted forx varies bys. We include the special value∞ as an
allowed value ofr so that we can express ordinary (unconstrained
by sensitivity) functions as well asc-sensitive functions. Algebraic
operations involving∞ are defined by setting∞ · r = ∞ (except
for ∞·0 = 0) and∞+ r = ∞. This means that to be∞-sensitive
is no constraint at all: if we consider the definition of sensitivity,
then∞-sensitivity permits any variation at all in the input to be
blown up to arbitrary variation in the output.

A well-typed expressionx :c τ1 ⊢ e : τ2 is exactly a program
that represents ac-sensitive computation. However, we can also
consider more general programsx1 :r1

τ1, . . . , xn :rn
τn ⊢ e : τ

in which case the guarantee is that, if eachxi varies bysi, then the

result of evaluatinge only varies by
P

i risi. More carefully, we
state the following metric preservation theorem for the type sys-
tem, which is of central importance. The notation[v/x]e indicates
substitution of the valuev for the variablex in expressione as
usual.

THEOREM2.4 (Metric Preservation).SupposeΓ ⊢ e : τ . Let
sequences of values(vi)1≤i≤n and (v′

i)1≤i≤n be given. Suppose
for all i ∈ 1, . . . , n that we have

1. ⊢ vi, v
′
i : τi

2. dτi
(vi, v

′
i) = si

3. xi :ri
τi ∈ Γ.

If the program[v1/x1] · · · [vn/xn]e evaluates tov, then there exists
a v′ such that[v′

1/x1] · · · [v
′
n/xn]e evaluates tov′, and

dτ (v, v′) ≤
X

i

risi.

We give a more precise version of this result in Section 6.

2.3 Types

The complete syntax and formation rules for types are given in
Figure 1. Essentially all of these types have already been mentioned
in Section 2.1. There are type variablesα, (which appear in type
variable contextsΨ) base typesb (drawn from a signatureΣ), unit
and void and sum types, metric-scaled types!rτ , and recursive
typesµα.τ . There are the two pair types⊗ and&, which differ
in their metrics. There are two kinds of function space,⊸ and→,
whereτ1 ⊸ τ2 contains just 1-sensitive functions, whileτ1 → τ2

is the ordinary unrestricted function space, containing the functions
that can be programmed without any sensitivity requirements on
the argument. As in linear logic, there is an encoding ofτ1 → τ2,
in our case as!∞τ1 ⊸ τ2, but it is convenient to have the built-
in type constructor→ to avoid having to frequently introduce and
eliminate!-typed expressions.

2.4 Expressions

The syntax of expressions is straightforward; indeed, our language
can be seen as essentially just arefinementtype system layered
over the static and dynamic semantics of an ordinary typed func-
tional programming language. Almost all of the expression formers
should be entirely familiar. One feature worth noting (which is also
familiar from linear type systems) is that we distinguish two kinds
of pairs: the one that arises from⊗, which is eliminated by pattern-
matching and written with (parentheses), and the one that arises
from &, which is eliminated by projection and written with〈angle
brackets〉. The other is that for clarity we have explicit introduction
and elimination forms for the type constructor!r.

e ::= x | c | () | 〈e, e〉 | (e, e)
let(x, y) = e in e | πie | λx.e | e e |
inji e | (case e of x.e | x.e) |
!e | let !x = e in e |
unfoldτ e | foldτ e

Just as with base types, we allow for primitive constantsc to be
drawn from a signatureΣ.

2.5 Typing Relation

To present the typing relation, we need a few algebraic operations
on contexts. The notationsΓ indicates pointwise scalar multiplica-
tion of all the sensitivity annotations inΓ by s. We can also define
addition of two contexts (which may share some variables) by

· + · = ·
(Γ, x :s τ ) + (∆, x :r τ ) = (Γ + ∆), x :r+s τ

(Γ, x :r τ ) + ∆ = (Γ + ∆), x :r τ (x 6∈ ∆)
Γ + (∆, x :r τ ) = (Γ + ∆), x :r τ (x 6∈ Γ)



τ ::= α | b | 1 | µα.τ | τ + τ | τ ⊗ τ | τ & τ | τ ⊸ τ | τ → τ | !rτ

Ψ, α : type ⊢ α : type

Ψ, α : type ⊢ τ : type

Ψ ⊢ µα.τ : type Ψ ⊢ 1 : type

b : type ∈ Σ

Ψ ⊢ b : type

Ψ ⊢ τ : type r ∈ R
>0 ∪ {∞}

Ψ ⊢ !rτ : type

Ψ ⊢ τ1 : type Ψ ⊢ τ2 : type ⋆ ∈ {+, &,⊗, ⊸,→}

Ψ ⊢ τ1 ⋆ τ2 : type

Figure 1. Type Formation

r ≥ 1
var

Γ, x :r τ ⊢ x : τ

∆ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
⊗I

∆ + Γ ⊢ (e1, e2) : τ1 ⊗ τ2

Γ ⊢ e : τ1 ⊗ τ2 ∆, x :r τ1, y :r τ2 ⊢ e′ : τ ′

⊗E
∆ + rΓ ⊢ let(x, y) = e in e′ : τ ′

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
&I

Γ ⊢ 〈e1, e2〉 : τ1 & τ2

Γ ⊢ e : τ1 & τ2
&E

Γ ⊢ πi e : τi

Γ ⊢ e : τ1 + τ2

∆, x :r τ1 ⊢ e1 : τ ′

∆, x :r τ2 ⊢ e2 : τ ′

+E
∆ + rΓ ⊢ case e of x.e1 | x.e2 : τ ′

Γ ⊢ e : τi
+I

Γ ⊢ inji e : τ1 + τ2

Γ, x :1 τ ⊢ e : τ ′

⊸ I
Γ ⊢ λx.e : τ ⊸ τ ′

∆ ⊢ e1 : τ ⊸ τ ′ Γ ⊢ e2 : τ
⊸ E

∆ + Γ ⊢ e1 e2 : τ ′

Γ, x :∞ τ ⊢ e : τ ′

→I
Γ ⊢ λx.e : τ → τ ′

∆ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ
→E

∆ + ∞Γ ⊢ e1 e2 : τ ′

Γ ⊢ e : τ
!I

sΓ ⊢ !e : !sτ

Γ ⊢ e : !sτ ∆, x :rs τ ⊢ e′ : τ ′

!E
∆ + rΓ ⊢ let !x = e in e′ : τ ′

Γ ⊢ e : [µα.τ/α]τ
µI

Γ ⊢ fold
µα.τ

e : τ

Γ ⊢ e : τ
µE

Γ ⊢ unfold
µα.τ

e : [µα.τ/α]τ

Figure 2. Typing Rules

The typing relation is defined by the inference rules in Figure 2.
Every occurrence ofr ands in the typing rules is assumed to be
drawn fromR

>0∪{∞}. Type-checking is decidable; see Section 6
and the appendix1 for more details. In short, the only novelty is that
lower bounds on the annotations in the context are inferred top-
down from the leaves to the root of the derivation tree.

The rulevar allows a variable from the context to be used as
long as its annotation is at least 1, since the identity function is c-
sensitive for anyc ≥ 1 (cf. Proposition 2.1). Any other contextΓ
is allowed to appear in a use ofvar, because permission to depend
on a variable is not an obligation to depend on it. (In this respect
our type system is closer to affine logic than linear logic.)

1 Available athttp://www.cis.upenn.edu/~bcpierce/papers/dp.pdf

λx.e →֒ λx.e

e1 →֒ λx.e e2 →֒ v [v/x]e →֒ v′

e1 e2 →֒ v′ () →֒ ()

e1 →֒ v1 e2 →֒ v2

〈e1, e2〉 →֒ 〈v1, v2〉

e1 →֒ v1 e2 →֒ v2

(e1, e2) →֒ (v1, v2)

e →֒ (v1, v2) [v1/x][v2/y]e′ →֒ v′

let(x, y) = e in e′ →֒ v′

e →֒ 〈v1, v2〉

πie →֒ vi

e →֒ v

inji e →֒ inji v

e →֒ inji v [v/x]ei →֒ v′

case eof x.e1 | x.e2 →֒ v′

e →֒ v

fold
τ

e →֒ fold
τ

v

e →֒ fold
τ

v

unfold
τ

e →֒ v

e →֒ v

!e →֒ !v

e →֒ !v [v/x]e′ →֒ e′

let !x = e in e′ →֒ v′

Figure 3. Evaluation Rules

In the rule⊗I , consider the role of the contexts.Γ represents
the variables thate1 depends on, and captures quantitatively how
sensitive it is to each one.∆ does the same fore2. In the conclusion
of the rule, we add together the sensitivities found inΓ and ∆,
precisely because the distances in the typeτ1 ⊗ τ2 are measured by
a sum of how muche1 ande2 vary. Compare this to&I , where we
merely require that the same context is provided in the conclusion
as is used to type the two components of the pair.

We can see the action of the type constructor!r in its introduc-
tion rule. If we scale up the metric on the expression being con-
structed, then we must scale up the sensitivity of every variable in
its context to compensate.

The closed-scope elimination rules for⊗, +, and ! share a
common pattern. The overall elimination has a choice as to how
much it depends on the expression of the type being eliminated: this
is written as the numberr in all three rules. The cost of this choice
is that contextΓ that was used to build that expression must then
be multiplied byr. The payoff is that the variable(s) that appear in
the scope of the elimination (in the case of⊗E, the two variablesx
andy, in +E thexs one in each branch) come with permission for
the body to ber-sensitive to them. In the case of!E, however, the
variable appears with an annotation ofrs rather thanr, reflecting
that the!s scaled the metric for that variable by a factor ofs.

We note that⊸I , since⊸ is meant to capture 1-sensitive
functions, appropriately creates a variable in the contextwith an
annotation of 1. Compare this to→I , which adds a hypothesis
with annotation∞, whose use is unrestricted. Conversely, in→E,
note that the contextΓ used to construct the argumente2 of the
function is multiplied by∞ in the conclusion. Because the function
e1 makes no guarantee how sensitive it is to its argument, we canin
turn make no guarantee how muche1 e2 depends on the variables in
Γ. This plays the same role as requirements familiar in linearlogic,
that the argument to an unrestricted implication cannot depend on
linear resources.

2.6 Evaluation

We give a big-step operational semantics for this language,which is
entirely routine. Values, the subset of expressions that are allowed
as results of evaluation, are defined as follows.

v ::= () | 〈v, v〉 | (v, v) | λx.e | inji v | foldτ v | !v

The judgmente →֒ v says thate evaluates tov. The complete
set of evaluation rules is given in Figure 3.



3. Examples
We now present some more sophisticated examples of programs
that can be written in this language. We continue to introduce
new base types and new constants as they become relevant. For
readability, we use syntactic sugar for case analysis and pattern
matchingá la ML.

3.1 Fixpoint Combinator

Because we have general recursive types, we can simulate a fix-
point combinator in pretty much the usual way: we just need tobe
a little careful about how sensitivity interacts with fixpoints.

Let τ0 = µα.α → (τ ⊸ σ). Then the expression

Y = λf.(λx.λa.f ((unfoldτ0
x) x) a)

(foldτ0
(λx.λa.f ((unfoldτ0

x) x) a))

has type((τ ⊸ σ) → (τ ⊸ σ)) → (τ ⊸ σ). This is the
standard call-by-value fixed point operator (differing from the more
familiar Y combinator by the twoλa · · · a eta-expansions). It is
easy to check that the unfolding rule

f (Y f) v →֒ v0

Y f v →֒ v0

is admissible wheneverf is a function valueλx.e.
We could alternatively add a fixpoint operatorfixf.e to the

language directly, with the following typing rule:

Γ, f :∞ τ ⊸ σ ⊢ e : τ ⊸ σ

∞Γ ⊢ fixf.e : τ ⊸ σ

This rule reflects the type we assigned toY above: uses offix can
soundly be compiled away by definingfixf.e = Y (λf.e). The
fact thatf is added to the context annotated∞ means that we
are allowed to call the recursive function an unrestricted number
of times withine. The contextΓ must be multiplied by∞ in the
conclusion because we can’t (because of the fixpoint), establish any
bound on how sensitive the overall function is from just one call to
it. In the rest of the examples, we write recursive functionsin the
usual high-level form, eliding the translation in terms ofY .

3.2 Lists

We can define the type of lists with elements inτ as follows:

τ list = µα.1 + τ ⊗ α

We write [ ] for the nil value foldτ list inj1() and h :: tl for
foldτ list inj2(h, tl), and we use common list notations such as
[a, b, c] for a :: b :: c :: [ ]. Given this, it is straightforward to
programmapin the usual way.

map: (τ ⊸ σ) → (τ list ⊸ σ list)
mapf [ ] = [ ]
mapf (h :: tl) = (f h) :: mapf tl

The type assigned tomap reflects that a nonexpansive function
mapped over a list yields a nonexpansive function on lists. Every
bound variable is used exactly once, with the exception off ; this is
permissible sincef appears in the context during the typechecking
of mapwith an∞ annotation.

Similarly, we can write the usual fold combinators over lists:

foldl : (τ ⊗ σ ⊸ σ) → (σ ⊗ τ list) ⊸ σ
foldl f (init, [ ]) = init
foldl f (init, (h :: tl)) = foldl f (f(h, init), tl)

foldr : (τ ⊗ σ ⊸ σ) → (σ ⊗ τ list) ⊸ σ
foldr f (init, [ ]) = init
foldr f (init, (h :: tl)) = f (h, foldr f (init, tl))

Again, every bound variable is used once, except forf , which
is provided as an unrestricted argument, making its repeated use
acceptable. The fact that the initializer to the fold (of type σ)
together with the list to be folded over (of typeτ list) occur to
the left of a⊸ is essential, capturing the fact that variation in the
initializer and in every list element can jointly affect theresult.

Binary and iterated concatenation are also straightforwardly
implemented:

@ : τ list ⊗ τ list ⊸ τ list

@ ([ ], x) = x
@ (h :: tl, x) = h :: @ (tl, x)

concat: τ list list ⊸ τ list

concat[ ] = [ ]
concat(h :: tl) = @ (h, concattl)

If we define the natural numbers as usual by

nat = µα.1 + α
z = foldnat inj1()
s x = foldnat inj2 x

then we can implement a function that finds the length of a listas
follows:

length: τ list ⊸ nat

length[ ] = z
length(h :: tl) = s (lengthtl)

However, this implementation is less than ideal, for it ‘con-
sumes’ the entire list in producing its answer, leaving further com-
putations unable to depend on it. We can instead write

length: τ list ⊸ τ list⊗nat

length[ ] = ([ ], z)
length(h :: tl) = let(tl′, ℓ) = lengthtl in(h :: tl′, s ℓ)

which deconstructs the list enough to determine its length,but
builds up and returns a fresh copy that can be used for furtherpro-
cessing. Consider why this function is well-typed: as it decomposes
the input list intoh andtl, thevalueof h is only used once, by in-
cluding it in the output. Also,tl is only used once, as it is passed
to the recursive call, which is able to return a reconstructed copy
tl′, which is then included in the output. At no point is any data
duplicated, but only consumed and reconstructed.

3.3 &-lists

Another definition of lists uses& instead of⊗: we can sayτ alist =
µα.1 + τ & α. (the ‘a’ in alist is for ‘ampersand’). To distinguish
these lists visually from the earlier definition, we writeNil for
foldτ alist inj1() andConsp for foldτ list inj2 p.

Recall that& is eliminated by projection rather than pattern-
matching. This forces certain programs over lists to be imple-
mented in different ways. We can still implementmapfor this kind
of list without much trouble.

amap: (τ ⊸ σ) → (τ alist ⊸ σ alist)
amapf Nil = Nil
amapf (Consp) = Cons〈f (π1p), mapf (π2p)〉

This function is well-typed (despite the apparent double use of
p in the last line!) because the&I rule allows the two components
of an &-pair to use the same context. This makes sense, because
the eventual fate of an&-pair is to have one or the other of its
components be projected out.

The fold operations are more interesting. Consider a naı̈ve im-
plementation offoldl for alist

afoldl : (τ & σ ⊸ σ) → (σ & τ alist) ⊸ σ alist

afoldl f p = caseπ2pof x. π1p
| x. afoldl f 〈f〈π1x, π1p〉, π2x〉



where we have replaced⊗ with & everywhere infoldl’s type to
get the type ofafoldl. This program isnot well-typed, becauseπ1p
is still used in each branch of the case despite the fact thatπ2p is
case-analyzed. The+E rule sums together these uses, so the result
has sensitivity 2, whileafoldl is supposed to be only 1-sensitive to
its argument of typeσ & τ alist.

We would like to case-analyze the structure of the second com-
ponent of that pair, theτ alist, without effectively consuming the
first component. The existing type system does not permit this, but
we can soundly add a primitive2

analyze: σ & (τ1 + τ2) ⊸ (σ & τ1) + (σ & τ2)

that gives us the extra bit that we need. The operational behavior
of analyzeis simple: given a pair value〈v, inji v′〉 with v : σ
andv′ : τi, it returnsinji 〈v, v′〉. With this primitive, a well-typed
implementation ofafoldl can be given as follows:

unf : (σ & τ alist) ⊸ (σ & (1 + τ & τ alist))
unfp = 〈π1p,unfoldτ alist π2p〉

afoldl : (τ & σ ⊸ σ) → (σ & τ alist) ⊸ σ alist

afoldl f p = caseanalyze(unfp)of
x : (σ & 1). π1x
| x : (σ & (τ & τ alist)). afoldl f 〈f〈π1π2x, π1x〉, π2π2x〉

3.4 Sets

Another useful collection type is finite sets. We posit thatτ set is a
type for any typeτ , with the metric on it being the Hamming metric

dτ set(S1, S2) = ||S1 △ S2||

where△ indicates symmetric difference of sets, and||S|| the car-
dinality of the setS; the distance between two sets is the number
of elements that are in one set but not the other.

Note that there is no obvious way to implement this type of sets
in terms of the list types just presented, for the metric is different:
two sets of different size are a finite distance from one another, but
two lists of different size are infinitely far apart.

Primitives that can be added for this type include

size: τ set ⊸ R

setfilter: (τ → bool) → τ set ⊸ τ set

setmap: (σ → τ ) → τ → σ set ⊸ τ set

∩,∪, \ : τ set ⊗ τ set ⊸ τ set

split : (τ → bool) → τ set ⊸ τ set ⊗ τ set

wheresizereturns the cardinality of a set,∩ returns the intersection
of two sets,∪ their union, and\ the difference. Notably, for these
last three primitives, we couldnothave given them the typeτ set &
τ set ⊸ τ set. To see why, consider{b} ∪ {c, d} = {b, c, d}
and {a} ∪ {c, d, e} = {a, c, d, e}. We haved({b}, {a}) = 2
and d({c, d}, {c, d, e}) = 1 on the two inputs to∪, but on the
output d({b, c, d}, {a, c, d, e}) = 3, and 3 is strictly larger than
max(2, 1). The functionssetfilterandsetmapwork mostly as ex-
pected, but with a proviso concerning termination below in Sec-
tion 3.5.

We note thatsizeis a special case of a more basic summation
primitive:

sum: (τ → R) → τ set ⊸ R

2 The reader may note that this primitive is exactly the well-known dis-
tributivity property that the BI, the logic of bunched implications [28], no-
tably satisfies in contrast with linear logic. We conjecturethat a type system
based on BI might also be suitable for distance-sensitive computations, but
we leave this to future work, because of uncertainties aboutthe decidabil-
ity of typechecking and BI’s lack of exponentials, that is, operators such
as !, which are important for interactions between distance-sensitive and
-insensitive parts of a program.

The expressionsumf S returns
P

s∈S clip(f(s)), whereclip(x)
returnsx clipped to the interval[−1, 1] if necessary. This clipping
is required forsumto be 1-sensitive in its set argument. Otherwise,
an individual set element could affect the sum by an unbounded
amount. We can then definesizeS = sum(λx.1) S.

The operationsplit takes a predicate onτ , and a set; it yields
two sets, one containing the elements of the original set that satisfy
the predicate and the other containing all the elements thatdon’t.
Notice thatsplit is 1-sensitive in its set argument; this is because if
an element is added to or removed from that set, it can only affect
one of the two output sets, not both.

By using split repeatedly, we can write programs that, given
a set of points inR, computes ahistogram, a list of counts in-
dicating how many points are in each of many intervals. For
a simple example, suppose our histogram bins are the intervals
(−∞, 0], (0, 10], . . . , (90, 100], (100,∞).

hist′ : R → R set ⊸ R set list

hist′ c s = if c ≥ 101 then [s] else
let(y, n) = split(λz.c ≥ z) in

y :: hist′ (c + 10) n

hist : R set ⊸ R list

hist s = map size(hist′ 0 s)

Here we are also assuming the use of ordinary distance-
insensitive arithmetic operations such as≥ : R → R → bool

and+ : R → R → R. We see in the next section that comparison
operators like≥ cannot be so straightforwardly generalized to be
distance sensitive.

3.5 Higher-Order Set Operations and Termination

A few comments are in order on the termination of the higher-order
functions setfilter, setmap, and setsplit. Consider the expression
setfilter f s for s of type τ set and an arbitrary functionf :
τ → bool. If f diverges on some particular inputv : τ , then
the presence or absence ofv in the sets can makesetfilter f s
diverge or terminate. This runs afoul of the claim of Theorem2.4
that two metrically similar computations should together evaluate
to metrically nearby values.

One way of avoiding this problem is to adopt primitives for
which 2.4 can still be proved: we can ensuredynamically that
the function argument (setfilter, setmap, and setsplit) terminates
by imposing a time limit on the number of steps it can run over
each element of the set. Whenever a function exceeds its timelimit
while operating on a set elementx, it is left out of the filter or of
the current split as appropriate, and in the case ofsetmap, a default
element of typeτ is used.

An alternative is to weaken Theorem 2.4 to state that if two
computations over metrically related inputsdoboth terminate, then
their outputs are metrically related. This weakened resultis con-
siderably less desirable for our intended application to differential
privacy, however.

A final option is to statically ensure the termination of the
function argument. This seems to combine the best features of
both of the other choices, at the price of a more complex program
analysis.

3.6 Sorting

What about distance-sensitive sorting? Ordinarily, the basis of sort-
ing functions is a comparison operator such as≥τ : τ × τ → bool.
However, we cannot take≥R: R ⊗ R ⊸ bool as a primitive, be-
cause≥ is not 1-sensitive in either of its arguments: it has a glaring
discontinuity. (Compare the example ofgtzeroin Section 2.1) Al-
though(0, ǫ) and (ǫ, 0) are nearby values inR ⊗ R if ǫ is small
(they are just2ǫ apart), nonetheless≥R returns false for one and



true for the other, values ofbool that are by definition infinitely far
apart.

Because of this we instead take as a primitive the conditional
swap functioncswp: R⊗R ⊸ R⊗R defined in Section 2.1, which
takes in a pair, and outputs the same pair, swapped if necessary
so that the first component is no larger than the second. We are
therefore essentially concerned withsorting networks, [5] with
cswpbeing the comparator. With the comparator, we can easily
implement a version of insertion sort.

insert : R ⊸ R list ⊸ R list

insertx [ ] = [x]
insertx (h :: tl) = let(a, b) = cswp(x, h) in

a :: (insertb tl)

sort : R list ⊸ R list

sort [ ] = [ ]
sort (h :: tl) = inserth (sort tl)

Of course, the execution time of this sort isΘ(n2). It is an
open question whether any of the typicalΘ(n log n) sorting al-
gorithms (merge sort, quick sort, heap sort) can be implemented
in our language, but we can implement bitonic sort [5], whichis
Θ(n(log n)2), and we conjecture that one can implement the log-
depth (and thereforeΘ(n log n) time) sorting network due to Ajtai,
Komlós, and Szemerédi [2].

3.7 Finite Maps

Related to sets are finite maps fromσ to τ , which we write as the
type σ ⇀ τ . A finite mapf from σ to τ is an unordered set of
tuples(s, t) wheres : σ and t : τ , subject to the constraint that
each keys has at most one valuet associated with it: if(s, t) ∈ f
and(s, t′) ∈ f , thent = t′. One can think of finite maps as SQL
databases where one column is distinguished as the primary key.

This type has essentially the same metric as the metric for sets,
dσ⇀τ (S1, S2) = ||S1 △ S2||. By isolating the primary key, we
can support some familiar relational algebra operations:

fmsize: (σ ⇀ τ ) ⊸ R

fmfilter : (σ → τ → bool) → (σ ⇀ τ ) ⊸ (σ ⇀ τ )
mapval: (τ1 → τ2) → (σ ⇀ τ1) ⊸ (σ ⇀ τ2)
join : (σ ⇀ τ1) ⊗ (σ ⇀ τ2) ⊸ (σ ⇀ (τ1 ⊗ τ2))

The size and filter functions work similar to the corresponding
operations on sets, and there are now two different map operators,
one that operates on keys and one on values. The join operation
takes two maps(i, si)i∈I1 and (i, s′i)i∈I2 , and outputs the map
(i, (s1, s2))i∈I1∩I2 . This operation is 1-sensitive in the pair of
input maps, but only because we have identified a unique primary
key for both of them! For comparison, the cartesian product×
on sets — the operation that join is ordinarily derived from in
relational algebra — isnot c-sensitive for any finitec, for we can
see that({x}∪X)×Y has|Y | many more elements thanX ×Y .
McSherry also noted this issue with unrestricted joins, anddeals
with it in a similar way in PINQ [25].

Finally, we are also able to support a form of GroupBy aggre-
gation, in the form of a primitive

group : (τ → σ) → !2τ set ⊸ (σ ⇀ (τ set))

which takes akey extractionfunction f : τ → σ, and a setS of
values of typeτ , and returns a finite map which maps valuesy ∈ σ
to the set ofs ∈ S such thatf(s) = y. This function is 2-sensitive
(thus the!2) in the set argument, because the addition or removal
of a single set element maychangeone element in the output map:
it takes two steps to represent such a change as the removal ofthe
old mapping, and the insertion of the new one.

4. A Calculus for Differential Privacy
We now describe how to apply the above type system to expressing
differentially privatecomputations. There are two ways to do this.
One is to leverage the fact that our type system captures sensitiv-
ity, and use standard results about obtaining differentialprivacy by
adding noise toc-sensitive functions. Since Theorem 2.4 guaran-
tees that every well-typed expressionb :c db ⊢ e : R (for a type
db of databases) is ac-sensitive functiondb → R, we can apply
Proposition 4.1 below to obtain a differentially private function by
adding the appropriate amount of noise to the function’s result. But
we can do better. In this section, we show how adding a probability
monad to the type theory allows us to directly capture differential
privacywithin our language.

4.1 Background

First, we need a few technical preliminaries from the differential
privacy literature [14].

The definition of differential privacy is a property of random-
ized functions that take as input adatabase, and return a result,
typically a real number.

For the sake of the current discussion, we take a database to
be a set of ‘rows’, one for each user whose privacy we mean to
protect. The type of one user’s data—that is, of one row of the
database—is writtenrow. For example,row might be the type of
a single patient’s complete medical record. The type of databases
is thendb = row set; we use the letterb for elements of this type.
Differential privacy is parametrized by a numberǫ, which controls
how strong the privacy guarantee is: the smallerǫ is, the more
privacy is guaranteed. It is perhaps just as well to think about ǫ
as a measure rather ofhow much privacy can be lostby allowing a
query to take place. We assume from now on that we have fixedǫ
to some particular appropriate value.

Informally, a function is differentially private if it behaves statis-
tically similarly on similar databases, so that any individual’s pres-
ence in the database has a statistically negligible effect.Databases
b andb′ are consideredsimilar, written b ∼ b′ if they differ by at
most one row—in other words ifddb(b, b

′) ≤ 1. The standard def-
inition [15] of differential privacy for functions from databases to
real numbers is as follows:

Definition A random functionq : db → R is ǫ-differentially
private if for all S ⊆ R, and for all databasesb, b′ with b ∼ b′,
we havePr[q(b) ∈ S] ≤ eǫPr[q(b′) ∈ S].

We see that for a differentially private function, when its input
database has one row added or deleted, there can only be a very
small multiplicative difference (eǫ) in the probability ofany out-
comeS. For example, suppose an individual is concerned about
their data being included in a query to a hospital’s database; perhaps
that the result of that query might cause them to be denied health
insurance. If we require that query to be0.1-differentially private
(i.e., if ǫ is set to0.1), then they can be reassured that the chance
of them being denied health care can only increase by about 10%.
(Note that this is a 10% increaserelative to what the probability
would have been without the patient’s participation in the database.
If the probability without the patient’s data being included was5%,
then including the data raises it at most to5.5%, not to15%!)

It is straightforward to generalize this definition to othertypes,
by using the distance between two inputs instead of the database
similarity condition. We say:

Definition A random functionq : τ → σ is ǫ-differentially private
if for all S ⊆ σ, and for allv, v′ : τ , havePr[q(v) ∈ S] ≤

eǫdτ (v,v′)Pr[q(v′) ∈ S].

Although we will use this general definition below in Lemma 4.2,
for the time being we continue considering only functionsdb → R.



One way to achieve differential privacy is via theLaplace mech-
anism. We suppose we have a deterministic database query, a func-
tion f : db → R of known sensitivity, and we produce a differ-
entially private function by addingLaplace-distributed noiseto the
result of f . The Laplace distributionLk is parametrized byk—
intuitively, a measure of the spread, or ‘amount’, of noise to be
added. It has the probability density functionPr[x] = 1

2k
e−|x|/k.

The Laplace distribution is symmetric and centered around zero,
and its probabilities fall off exponentially as one moves away from
zero. It is a reasonable noise distribution, which is unlikely to
yield values extremely far from zero. The intended behaviorof the
Laplace mechanism is captured by the following result:

PROPOSITION4.1 ([15]). Supposef : db → R is c-sensitive.
Define the random functionq : db → R by q = λb.f(b) + N ,
whereN is a random variable distributed according toLc/ǫ. Then
q is ǫ-differentially private.

That is, the amount of noise required to make ac-sensitive function
ǫ-private isc/ǫ. Stronger privacy requirements (smallerǫ) and more
sensitive functions (largerc) both require more noise.

Note that we must impose a global limit on how many queries
can be asked of the same database: if we could ask the same query
over and over again, we could eventually learn the true valueof f
with high probability despite the noise. If we exhaust the “privacy
budget” for a given database, the database must be destroyed. This
data-consuming aspect of differentially private queries was the
initial intuition that guided us to the linear-logic-inspired design
of the type system.

4.2 The Probability Monad

We now show how to extend our language with a monad of random
computations. Formally, the required extensions to the syntax are:

Typesτ ::= · · · | #τ
Expressionse ::= · · · | return x | let#x = e in e′

Valuesv ::= · · · | δ

We add#τ , the type of random computations overτ . Expres-
sions now include a monadic return, which deterministically al-
ways yieldsx, as well as monadic sequencing: the expression
let#x = e in e′ can be interpreted as drawing a samplex from
the random computatione, and then continuing with the compu-
tation e′. We postpone discussing the typing rules until after we
have established what the metric on#τ is, and for that we need to
understand what its values are.

For simplicity, we follow Ramsey and Pfeiffer [30] in taking
a ratherdenotationalapproach, and think of values of type#τ
as literally being mathematical probability distributions. A more
strictly syntactic presentation (in terms of, say, pseudo-random
number generators) certainly is also possible, but is needlessly
technical for our present discussion. In what follows, a probability
distribution δ is written as(pi, vi)i∈I , a multiset of probability-
value pairs. We writeδ(v) for the probability((pi, vi)i∈I)(v) =
P

{i | vi=v} pi of observingv in the distributionδ.
The metric on probability distributions is carefully chosen to

allow our type system to speak about differential privacy. Recall
that we have assumedǫ to be fixed, and define:

d#τ (δ1, δ2) =
1

ǫ

„

max
x∈τ

˛

˛

˛

˛

ln

„

δ1(x)

δ2(x)

«˛

˛

˛

˛

«

The definition measures howmultiplicatively far apart two distri-
butions are in the worst case, as is required by differentialprivacy.
We can then easily see by unrolling definitions that

LEMMA 4.2. A 1-sensitive functionτ → #σ is the same thing as
an ǫ-differentially private random functionτ → σ.

The typing rules for the monad are as follows:
Γ ⊢ e : τ

#I
∞Γ ⊢ return e : #τ

∆ ⊢ e : #τ Γ, x :∞ τ ⊢ e′ : #τ ′

#E
∆ + Γ ⊢ let #x = e in e′ : #τ ′

The introduction rule multiplies the context by infinity, because
nearby inputs (perhaps surprisingly!) do not lead to nearbydeter-
ministic probability distributions. Even ift and t′ are close, say
dτ (t, t′) = ǫ, still return t has a 100% chance — andreturn t′

has a 0% chance — of yieldingt. The elimination rule adds to-
gether the influence∆ that e may have over the final output dis-
tribution to the influenceΓ thate′ has, and provides the variablex
unrestrictedly(with annotation∞) to e′, because once a differen-
tially private query is made, the published result can be used in any
way at all.

We add the following cases to the operational semantics:
e →֒ v

return e →֒ (1, v)

e1 →֒ (pi, vi)i∈I ∀i ∈ I. [vi/x]e2 →֒ (qij , wij)j∈Ji

let#x = e1 in e2 →֒ (piqij , wij)i∈I,j∈Ji

We see thatreturn creates the trivial distribution that always
yieldsv. Monadic sequencing considers all possible valuesvi that
e could evaluate to, and then subsequently all the values thate′

could evaluate to, assuming that it received the samplevi. The
probabilities of these two steps are multiplied, and appropriately
aggregated together.

Combining the type system’s metric preservation property with
Lemma 4.2, we find that typing guarantees differential privacy:

COROLLARY 4.3. The execution of any closed programe such that
⊢ e : !nτ ⊸ #σ is an (nǫ)-differentially private function fromτ
to σ.

5. Differential Privacy Examples
Easy examples ofǫ-differentially private computations come from
applying the Laplace mechanism at the end of a deterministic
computation. We can add a primitive function

add noise: R ⊸ #R

which adds Laplace noiseL1/ǫ to its input. According to Propo-
sition 4.1, this is exactly the right amount of noise to add toa 1-
sensitive function to make itǫ-differentially private.

For a concrete example, suppose that we have a functionage :
row → int. We can then straightforwardly implement the over-40
count query from the introduction.

over 40 : row → bool.
over 40r = ager > 40.

count query: row set ⊸ #R

count queryb = add noise(setfilter over40 b)

Notice that we are able to use convenient higher-order functional
programming idioms without any difficulty. The functionover 40
is also an example of how ‘ordinary programming’ can safely
be mixed in with distance-sensitive programs. Since the type of
over 40 uses→ rather than⊸, it makes no promise about sensi-
tivity, and it is able to use ‘discontinuous’ operations like numeric
comparison>.

Other deterministic queries can be turned into differentially pri-
vate functions in a similar way. For example, consider the his-
togram functionhist : R set ⊸ R list from Section 3.4. We can
first of all write the following program.

hist query′ : row set ⊸ (#R) list

hist query′ b = map addnoise(hist (setmap ageb))



This takes a database, finds the age of every individual, and com-
putes a histogram of the ages. Then we prescribe that each item in
the output list — every bucket in the histogram — should be inde-
pendently noised. This yields a list of random computations, while
what we ultimately want is a random computation returning a list.
But we can use monadic sequencing to get exactly this:

seq: (#R) list ⊸ #(R list)
seq[] = return []
seq(h :: tl) = let#h′ = h in

let#tl′ = seqtl in
return(h′ :: tl′)

hist query: row set ⊸ #(R list)
hist queryb = seq(hist query′ b)

In the differential privacy literature, there are explicitdefinitions of
both the meaning of sensitivity and the process of safely adding
enough noise to lists of real numbers [15]. By contrast, we have
shown how toderivethese concepts from the primitive metric type
R and the type operatorsµ, 1, +, ⊗, and#.

We can also derive more complex combinators on differentially
private computations, merely by programming with the monad.
We consider first a simple version3 of McSherry’s principle of
sequential composition [25].

LEMMA 5.1 (Sequential Composition).Let f1 and f2 be twoǫ-
differentially private queries, wheref2 is allowed to depend on
the output off1. Then the result of performing both queries is2ǫ-
differentially private.

In short, the privacy losses of consecutive queries are added to-
gether. This principle can be embodied as the following higher-
order function:

sc : (τ1 ⊸ #τ2) → (τ1 ⊸ τ2 → #τ3) → (!2τ1 ⊸ #τ3)
scf1 f2 t1 = let !t′1 = t1 in let#t2 = f1 t′1 in f2 t′1 t2

It takes two arguments are the functionsf1 and f2, which are
both ǫ-differentially private in a data source of typeτ1 (and f2

additionally has unrestricted access to theτ2 result of f1), and
returns a2ǫ-differentially private computation.

McSherry also identifies a principle of parallel composition:

LEMMA 5.2 (Parallel Composition).Let f1 and f2 be two ǫ-
differentially private queries, which depend on disjoint data. Then
the result of performing both queries isǫ-differentially private.

This can be coded up by interpreting “disjoint” with⊗.

pc : (τ1 ⊸ #τ2) → (σ1 ⊸ #σ2) → (τ1 ⊗ σ1) ⊸ #(τ2 ⊗ σ2)
pcf g (t, s) = let #t′ = f t in let#s′ = g s in return(t′, s′)

In McSherry’s work, what is literally meant by “disjoint” isdisjoint
subsets of a database construed as a set of records. This is also
possible to treat in our setting, since we have already seen thatsplit
returns a⊗-pair of two sets.

For a final, slightly more complex example, let us consider the
privacy-preserving implementation ofk-means by Blum et al. [6].
Recall thatk-means is a simple clustering algorithm, which works
as follows. We assume we have a large set of data points in some
space (sayRn), and we want to findk ‘centers’ around which they
cluster. We initializek provisional ‘centers’ to random points in the
space, and iteratively try to improve these guesses. One iteration
consists of grouping each data point with the center it is closest to,
then taking the next round’s set ofk centers to be the mean of each
group.

3 McSherry actually states a stronger principle, where therearek different
queries, all of different privacy levels. This can also be implemented in our
language.

We sketch how this program can be implemented, taking data
points to be of the typept = R⊗R. The following helper functions
are used:

assign: pt list → pt set ⊸ (pt ⊗ int) set

partition : (pt ⊗ int) set ⊸ pt set list

totx, toty : pt set ⊸ R

zip : τ list → σ list → (τ ⊗ σ) list

These can be written with the
means

Figure 4. k-Means Output

primitives we have described;
assigntakes a list of centers and
the dataset, and returns a version
of the dataset where each point is
labelled by the index of the center
it’s closest to. Thenpartition di-
vides this up into a list of sets, us-
ing split. The functionstotx and
toty compute the sum of the first
and second coordinates, respec-
tively, of each point in a set. This
can be accomplished withsum.

Finally, zip is the usual zipping operation that combines two lists
into a list of pairs. With these, we can write a function that performs
one iteration of privatek-means:

iterate : !3pt set ⊸ R list → #(R list)
iterateb ms = let !b′ = b in

let
b′′ = partition (assignms b′)
tx = map(add noise◦ totx) b′′

ty = map(add noise◦ toty) b′′

t = map(add noise◦ size) b′′

stats= zip (zip (tx, ty), t)
in

seq(map avg stats)

It works by asking for noisy sums of thex-coordinate total,y-
coordinate total, and total population of each cluster. These data
are then combined via the functionavg:

avg : ((#R ⊗ #R) ⊗ #R) ⊸ #(R ⊗ R)
avg((x, y), t) = let#x′ = x in let#y′ = y in

let#t′ = t in return (x′/t′, y′/t′)

We can read off from the type that one iteration ofk-means is3ǫ-
differentially private. This type arises from the 3-way replication of
the variableb′′. We can use monadic sequencing to do more than
one iteration:

two iters : !6pt set ⊸ R list → #(R list)
two iters b ms = let !b′ = b in iterate!b′ (iterate!b′ ms)

This function is6ǫ-differentially private. Figure 4 shows the result
of three independent runs of this code, withk = 2, 6ǫ = 0.05,
and 12,500 points of synthetic data. We see that it usually manages
to come reasonably close to the true center of the two clusters. We
have also developed appropriate additional primitives andprogram-
ming techniques to make it possible (as one would certainly hope!)
to choose the number of iterations not statically but at runtime, but
space reasons prevent us from discussing them here.

6. Metatheory
In this section we address the formal correctness of the program-
ming language described above. First of all, we can prove appro-
priate versions of the usual basic properties that we expectto hold
of a well-formed typed programming language.

LEMMA 6.1 (Weakening).If Γ ⊢ e : τ , thenΓ + ∆ ⊢ e : τ .



∀v : τ1.[v/x]e1 ∼r [v/x]e2 : τ2

λx.e1 ∼r λx.e2 : τ1 → τ2

∀v : τ1.[v/x]e1 ∼r [v/x]e2 : τ2

λx.e1 ∼r λx.e2 : τ1 ⊸ τ2

v1 ∼r1
v′1 : τ1 v2 ∼r2

v′2 : τ2

(v1, v2) ∼r1+r2
(v′1, v′2) : τ1 ⊗ τ2

v ∼r v′ : τ

!v ∼rs !v′ : !sτ

v1 ∼r v′1 : τ1 v2 ∼r v′2 : τ2

〈v1, v2〉 ∼r 〈v′1, v′2〉 : τ1 & τ2
() ∼r () : 1

v ∼r v′ : [µα.τ/α]τ

fold v ∼r fold v′ : µα.τ

v ∼r v′ : τi

inji v ∼r inji v′ : τ1 + τ2

∀v1 : τ.e1 →֒ v1 ⇒ ∃v2.e2 →֒ v2 ∧ v1 ∼r v2 : τ

e1 ∼r e2 : τ

∀v ∈ τ.δ1(v) ≤ erǫδ2(v)

δ1 ∼r δ2 : #τ

Figure 5. Metric Relation

THEOREM 6.2 (Substitution).If Γ ⊢ e : τ and∆, x :r τ ⊢ e′ :
τ ′, then∆ + rΓ ⊢ [e/x]e′ : τ ′.

THEOREM 6.3 (Preservation).If ⊢ e : τ ande →֒ v, then⊢ v : τ .

Note that the weakening lemma allows both making the context
larger, and making the annotations numerically greater. The sub-
stitution property says that if we substitutee into a variable that is
usedr times, thenΓ, the dependencies ofe, must be multiplied by
r in the result. The preservation lemma is routine; if we had pre-
sented the operational semantics in a small-step style, a progress
theorem would also be easy to show.

6.1 Defining the Metric

Up to now, the metrics on types have been dealt with somewhat
informally; in particular, our ’definition’ of distance forrecursive
types was not well founded. We now describe a formal definition.
It is convenient to treat the metric not as a function, but rather as a
relation on values and expressions. The relationv ∼r v′ : τ (resp.
e ∼r e′ : τ ) means that valuesv andv′ (expressionse ande′) of
typeτ are at a distance of no more thanr apart from each other. The
metric on expressions is defined by evaluation: if the valuesthat
result from evaluation of the two expressions are no fartherthan
r apart, then the two expressions are considered to be no farther
thanr apart. This relation is defined coinductively on the rules in
Figure 5. By this we mean that we definev ∼r v′ : τ to be the
greatest relation consistent with the given rules. A relation is said
to be consistent with a set of inference rules if for any relational
fact that holds, there exists an inference rule whose conclusion
is that fact, and all premises of that rule belong to the relation.
Intuitively, this means that we allow infinitely deep inference trees.
Note that∼r never appears negatively (i.e., negated or to the left
of an implication) in the premise of any rule, so we can see that
closure under the rules is a property preserved by arbitraryunion
of relations, and therefore the definition is well-formed.

6.2 Metric Preservation Theorem

Now we can state the central novel property that our type system
guarantees. We introduce some notation to make the statement
more compact. SupposeΓ = x :s1

τ1, . . . x :sn
τn. A substitution

σ for Γ is a list of individual substitutions of values for variables

in Γ, written [v1/x1] · · · [vn/xn]. A distance vectorγ is a list
r1, . . . , rn such that everyri is in R

≥0 ∪∞. We sayσ ∼γ σ′ : Γ
when, for every[vi/xi] ∈ σ and [v′

i/xi] ∈ σ′, we havevi ∼ri

v′
i : τi. In this case we think ofσ andσ′ as being ‘γ apart’: the

distance vectorγ tracks the distance between each corresponding
pair of values. We define thedot productof a distance vector and
a context as follows: ifγ is r1, . . . , rn, andΓ is as above, then
γ · Γ =

Pn
i=1 risi.

THEOREM6.4 (Metric Preservation).SupposeΓ ⊢ e : τ . Sup-
poseσ, σ′ are two substitutions forΓ such thatσ ∼γ σ′ : Γ. Then
we haveσe ∼γ·Γ σ′e : τ .

A straightforward proof attempt of this theorem fails. If wetry
to split cases by the typing derivation ofe, a problem arises at the
case wheree = e1 e2. The induction hypothesis will tell us that
σe1 is close toσ′e1, and thatσe2 is close toσ′e2. But the definition
of the metric at function types (whether→ or ⊸ — the problem
arises for both of them) only quantifies over one value — how then
can we reason about bothσe2 andσ′e2? This problem is solved by
using astep-indexed metric logical relation[1, 3] which represents
a stronger induction hypothesis, but which agrees with the metric.
We defer further details of this argument to the appendix.

7. Related Work
The seminal paper on differential privacy is [15]; it introduces the
fundamental definition and the Laplace mechanism. More general
mechanisms for directly noising types other thanR also exist,
such as the exponential mechanism [24], and techniques havebeen
developed to reduce the amount of noise required for repeated
queries, such as the median mechanism [31]. Dwork [13] givesa
useful survey of recent results.

Girard’s linear logic [16] was a turning point in a long and
fruitful history of investigation ofsubstructural logics, which lack
structural properties such as unrestricted weakening and contrac-
tion. A key feature of linear logic compared to earlier substructural
logics [20] is its! operator, which bridges linear and ordinary rea-
soning. Our type system takes its structure from theaffinevariant
of linear logic (also related to Ketonen’s Direct Logic [19]), where
weakening is permitted. The idea of counting, as we do, multiple
uses of the same resource was explored by Wright [32], but only
integral numbers of uses were considered.

The study of database privacy and statistical databases more
generally has a long history. Recent work includes Dalvi, R´e, and
Suciu’s study of probabilistic database management systems [11],
and Machanavajjhala et al.’s comparison of different notions of
privacy with respect to real-world census data [22].

Quantitative Information Flow [21, 23] is, like our work, con-
cerned with how much one piece of a program can affect another,
but measures this in terms of how many bits of entropy leak during
one execution. Provenance analysis [8] in databases tracksthe input
data actually used to compute a query’s output, and is also capable
of detecting that the same piece of data was used multiple times to
produce a given answer [17]. Chaudhuri et al. [10] also studyauto-
matic program analyses that establish continuity (in the traditional
topological sense) of numerical programs. Our approach differs in
two important ways. First, we consider the stronger property of c-
sensitivity, which is essential for differential privacy applications.
Second, we achieve our results with a logically motivated type sys-
tem, rather than a program analysis.

8. Conclusion
We have presented a typed functional programming language that
guarantees differential privacy. It is expressive enough to encode
examples both from the differential privacy community and from



functional programming practice. Its type system shows howdif-
ferential privacy arises conceptually from the combination of sensi-
tivity analysis and monadic encapsulation of random computations.

There remains a rich frontier of differentially private mecha-
nisms and algorithms that are known, but which are describedand
proven correct individually. We expect that the exponential mecha-
nism should be easy to incorporate into our language, as a higher-
order primitive which directly converts McSherry and Talwar’s no-
tion of quality functions[24] into probability distributions. The me-
dian mechanism, whose analysis is considerably more complicated,
is likely to be more of a challenge. The private combinatorial op-
timization algorithms developed by Gupta et al. [18] use different
definitions of differential privacy which have an additive error term;
we conjecture this could be captured by varying the notion ofsen-
sitivity to include additive slack. We believe that streaming private
counter of Chan et al. [9] admits an easy implementation by coding
up stream types in the usual way. We hope to show in future work
how these, and other algorithms can be programmed in a uniform,
privacy-safe language.
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Figure 6. Step-Indexed Evaluation Rules

A. Appendix
In this section we sketch in somewhat more detail the proof ofthe
central novel soundness property of our type system.

At a high level, the proof works in two steps. First, we relatethe
metric as defined above to astep-indexed metric logical relation
which, as we will see, determines the same metric, but in a way
that constitutes a stronger induction hypothesis. Subsequently, we
can prove a metric preservation theorem directly on the logical
relation. The fact that the logical relation isstep-indexedmeans
that we imagine we have a finite budget of ‘computation steps’with
which to discriminate between similar expressions. This notion of
‘computation step’ is made precise in the following section.

A.1 Step-Indexed Evaluation

The purpose of step-indexing (at least for our purposes) is to ac-
commodate the presence of nontermination in the language, which
in turn can be blamed on the presence of recursive types. Because
of this, we consider as computation steps theβ-reductions of afold
against anunfold; that is, from a small-step point of view, we care
about reductions of the form

unfold fold v 7→ v (†)

But we can count such reductions in big-step style without much
difficulty. We give a step-indexed refinement of the existingoper-

ational semantics:e
ℓ
→֒ v means thate evaluates tov, and during

that evaluation, the number of reductions of the form(†) is ℓ. The
rules are given in Figure.??. Observe that the rule that evaluates a
unfold adds one to the count, and all other rules simply add to-
gether the counts from their subderivations, if any.

A.2 Step-Indexed Metric Logical Relation

Now we introduce the step-indexed metric logical relation.The
relationv1 ∼k

r v2 : τ is conceptually a variant ofv1 ∼r v2 : τ . It
means approximately the following: that afterk computation steps,
(in the sense we have just described) there is still no evidence to

refute the possibility that valuesv1 andv2 are at least as close as
distancer. It is defined by the rules in Figure??. This relation is
connected to the metric by the fact thatv1 ∼r v2 : τ holds if
v1 ∼k

r v2 : τ holds for allk; this is proved in Section??.
A basic property of the logical relation, which helps form an

intuition for it, is the fact that it is preserved by decreasing k, and
by increasingr. Formally, we have:

LEMMA A.1 (Monotonicity). Supposev1 ∼k
r v2 : τ .

If k′ ≤ k, thenv1 ∼k′

r v2 : τ .
If r′ ≥ r, thenv1 ∼k

r′ v2 : τ .

Proof By induction.

A.3 Fundamental Lemma of Logical Relations

The usual fundamental lemma to show for a logical relation is
a form of reflexivity: that every expression is related to itself,
assuming everything in its context is related to itself. We must
generalize this to account for the metric, but the required lemma
is essentially identical to the metric preservation lemma we have
already discussed. The only novelty is that both the premiseand
conclusion are indexed by a step-indexk.

LEMMA A.2 (Fundamental Lemma).Let a well-typed expression
Γ ⊢ e : τ be given. Supposeσ, σ′ are two substitutions forΓ such
thatσ ∼k

γ σ′ : Γ. Then we haveσe ∼k
γ·Γ σ′e : τ .

Proof By induction first on the number of stepsk, then on the
typing derivation ofe. We split cases on the typing derivation of
e. We show a couple of illustrative cases as examples.

Case:
Γ ⊢ e1 : τ ⊸ τ ′ ∆ ⊢ e2 : τ

⊸ E
Γ + ∆ ⊢ e1 e2 : τ ′

In this case, we want to show:

∀v.∀j < k. σ(e1 e2)
j
→֒ v ⇒ ∃v′.σ′(e1 e2) →֒ v′

∧ v ∼k−j
γ·(Γ+∆) v′ : τ

Let v andj < k be given, and assumeσ(e1 e2)
j
→֒ v. This

means we have a derivation

σe1
ℓ
→֒ λx.e0 σe2

m
→֒ v2 [v2/x]e0

p
→֒ v

σ(e1 e2)
ℓ+m+p
→֒ v

such thatℓ + m + p = j.
By the induction hypothesis on∆ ⊢ e2 : τ , we know that

∀v∗.∀j∗ < k. σe2
j∗
→֒ v∗ ⇒ ∃v′

2.σ
′e2 →֒ v′

2

∧ v∗ ∼k−j∗
γ·∆ v′

2 : τ

so pickv∗ = v2 andj∗ = m, and use the fact thatσe2
m
→֒ v2 to

obtainv′
2. What we know aboutv′

2 at present is thatσ′e2 →֒ v′
2

and v2 ∼k−m
γ·∆ v′

2 : τ . Using monotonicity, this latter fact
becomes:

v2 ∼k−ℓ−m
γ·∆ v′

2 : τ (∗)

By the induction hypothesis onΓ ⊢ e1 : τ ⊸ τ ′, we know that

∀v∗.∀j∗ < k. σe1
j∗
→֒ v∗ ⇒ ∃v•.σ

′e1 →֒ v•

∧ v∗ ∼k−j∗
γ·Γ v• : τ ⊸ τ ′

so pickv∗ = λx.e0 andj∗ = ℓ and use the fact thatσe1
ℓ
→֒

λx.e0 to obtainv•. By inversion on the rules defining∼, we



∀s:R≥0 ∪ {∞}.∀j ≤ k.∀v1, v2 : τ1.v1 ∼j
s v2 : τ1 ⇒ [v1/x]e1 ∼j

r+s [v2/x]e2 : τ2

λx.e1 ∼k
r λx.e2 : τ1 ⊸ τ2

v1 ∼k
r1

v′
1 : τ1 v2 ∼k

r2
v′
2 : τ2

(v1, v2) ∼
k
r1+r2

(v′
1, v

′
2) : τ1 ⊗ τ2

∀s:R≥0 ∪ {∞}.∀j ≤ k.∀v1, v2 : τ1.v1 ∼j
s v2 : τ1 ⇒ [v1/x]e1 ∼j

r+∞s [v2/x]e2 : τ2

λx.e1 ∼k
r λx.e2 : τ1 → τ2

v1 ∼k
r v′

1 : τ1 v2 ∼k
r v′

2 : τ2

〈v1, v2〉 ∼
k
r 〈v′

1, v
′
2〉 : τ1 & τ2

() ∼k
r () : 1

v ∼k
r v′ : [µα.τ/α]τ

fold v ∼k+1
r fold v′ : µα.τ fold v ∼0

r fold v′ : µα.τ

v ∼k
r v′ : τi

inji v ∼k
r inji v′ : τ1 + τ2

v ∼k
r v′ : τ

!v ∼k
rs !v′ : !sτ

∀v1.∀j < k.e1
j
→֒ v1 ⇒ ∃v2.e2 →֒ v2 ∧ v1 ∼k−j

r v2 : τ

e1 ∼k
r e2 : τ

∀i.xi : τi ∈ Γ ∧ vi ∼
k
ri

v′
i : τi

[v1/x1] · · · [vn/xn] ∼k
r1,...,rn

[v′
1/x1] · · · [v

′
n/xn] : Γ

∀v ∈ τ.δ1(v) ≤ erǫδ2(v)

δ1 ∼k
r δ2 : #τ

Figure 7. Step-Indexed Metric Logical Relation

have thatv• must be of the formλx.e′0, and so what we know
about it is thatσ′e1 →֒ λx.e′0 and

λx.e0 ∼k−ℓ
γ·Γ λx.e′0 : τ ⊸ τ ′

By inversion on this, we have

∀s.∀j∗ ≤ k − ℓ. ∀v2, v
′
2 : τ ′. v2 ∼j∗

s v′
2 : τ ⇒

[v2/x]e0 ∼j∗
γ·Γ+s [v′

2/x]e′0 : τ ′

so choosej∗ = k− ℓ−m ands = γ ·∆ and use(∗) to see that

[v2/x]e0 ∼k−ℓ−m
γ·Γ+γ·∆ [v′

2/x]e′0 : τ ′

By inversion on this, we have

∀v.∀j∗ < k − ℓ − m. [v2/x]e0
j∗
→֒ v ⇒ ∃v′.[v′

2/x]e′0 →֒ v′

∧ v ∼k−ℓ−m−j∗
γ·Γ+γ·∆ v′ : τ ′

so choosej∗ = p and apply the known fact that[v2/x]e0
p
→֒ v,

to obtain the requiredv′ such that

v ∼k−j
γ·(Γ+∆) v′ : τ

by observing thatγ · (Γ + ∆) = γ · Γ + γ · ∆. Note also that
we have established enough facts about evaluation to derive

σe1 →֒ λx.e′0 σe2 →֒ v′
2 [v′

2/x]e′0 →֒ v′

σ′(e1 e2) →֒ v′

Case:
Γ, x :1 τ ⊢ e : τ ′

⊸ I
Γ ⊢ λx.e : τ ⊸ τ ′

Let σ, σ′ be given, and assumeσ ∼k
γ σ′ : Γ. We must show

λx.σe ∼k
γ·Γ λx.σ′e : τ ⊸ τ ′

which means showing that

∀s.∀j ≤ k.∀v1, v2 : τ. v1 ∼j
s v2 : τ ⇒

[v1/x]σe ∼j
γΓ+s [v2/x]σ′e : τ ′

by the definition of the logical relation atτ ⊸ τ ′. But this
follows immediately from the induction hypothesis appliedto
the derivation ofΓ, x :1 τ ⊢ e : τ ′ and the substitutions
[v1/x]σ and[v2/x]σ′.

As a corollary, we obtain a more familiar result, that every
expression is related to itself at distance zero.

COROLLARY A.3. If ⊢ e : τ , then for anyk we havee ∼k
0 e : τ .

A.4 Relating the Metric to the Logical Relation

To see that the metric coincides with the logical relation, we must
first show that the metric satisfies a variant of the triangle inequality
familiar from the study of metric spaces.

LEMMA A.4 (Triangle Inequality).For any closed, well-typed
valuesv, v′, v′′ : τ ,
If v ∼r v′ : τ andv′ ∼s v′′ : τ , thenv ∼r+s v′′ : τ .

Proof By induction on the derivation.

With this in place, we can show the soundness and completeness
of the logical relation with respect to the metric. We assumetacitly
in both of the following results thatv, v′ are closed, well-typed
values of typeτ .

LEMMA A.5. If v ∼k
r v′ : τ for all k, thenv ∼r v′ : τ .

LEMMA A.6. If v ∼r v′ : τ , thenv ∼k
r v′ : τ for all k.


