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Abstract

Many proposed low-latency anonymous communication
systems have used various flow transformations such as
traffic padding, adding cover traffic (or bogus packets),
packet dropping, flow mixing, flow splitting, and flow merg-
ing to achieve anonymity. It has long been believed that
these flow transformations would effectively disguise net-
work flows, thus achieve good anonymity. In this paper, we
investigate the fundamental limitations of flow transforma-
tions in achieving anonymity, and we show that flow trans-
formations do not necessarily provide the level of anonymity
people have expected or believed. By injecting unique wa-
termark into the inter-packet timing domain of a packet flow,
we are able to make any sufficiently long flow uniquely iden-
tifiable even if 1) it is disguised by substantial amount of
cover traffic, 2) it is mixed or merged with a number of other
flows, 3) it is split into a number subflows, 4) there is a sub-
stantial portion of packets dropped, and 5) it is perturbed
in timing due to either natural network delay jitter or de-
liberate timing perturbation. In addition to demonstrating
the theoretical limitations of low-latency anonymous com-
munications systems, we develop the first practical attack
on the leading commercial low-latency anonymous commu-
nication system. Our real-time experiments show that our
flow watermarking attack only needs about 10 minutes ac-
tive Web browsing traffic to “penetrate” the Total Net Shield
service provided by www.anonymizer.com.

Our analytical and empirical results demonstrate that
achieving anonymity in low-latency communication systems
is much harder than we have realized, and current flow
transformation based low-latency anonymous communica-
tion systems need to be revisited.

∗The work of Shiping Chen was done when he was at George Mason
University.

1 Introduction

Privacy and anonymity have become major concerns as
we are increasingly dependent on the Internet in our daily
lives. For example, people sometimes do not want others to
know what Web sites they have visited. Under certain cir-
cumstances, people want to remain anonymous to the Web
sites they have visited so that their personal interests can
not be profiled by the Web sites. To address these privacy
concerns, a number of anonymous communication systems
(e.g. DC-Net [7] Anonymizer.com [1], Crowds [25], Onion
Routing [24], Tor [9], Hordes [27], Web Mixes [3]) have
been designed to provide anonymity to the communicating
parties.

According to Pfitzmann and Waidner [23], there are
three types of anonymities that can be provided by anony-
mous communication systems: sender anonymity, receiver
anonymity, and unlinkability of sender and receiver. Sender
anonymity means that the identity of the information sender
is hidden, and receiver anonymity means that the identity of
the information receiver is hidden. Unlinkability of sender
and receiver refers to the property that the sender and re-
ceiver of a communication cannot be identified even if the
sender and receiver are known to be of communicating with
someone. Since anonymity is the state of lacking identity,
anonymous communication can only be achieved by remov-
ing all the identifying characteristics from the anonymized
network flows.

It’s well known that encryption alone is not adequate to
achieve anonymity. For example, various traffic analysis
techniques [33, 32, 10, 31, 30] have been shown to be able
to uniquely identify encrypted flows. These traffic analysis
techniques can be used to link the encrypted flow to its orig-
inal information sender and receiver, which would break the
sender and receiver anonymity as well as the unlinkability
of sender and receiver.

Traditional methods of achieving anonymity in commu-



nication include using proxies [24, 25, 9], MIXes [6, 17, 3],
and various other flow transformations such as adding cover
traffic, packet dropping, flow mixing, flow splitting, and
flow merging. Since these flow transformations drastically
change the original network flow, it is generally believed
that these flow transformations would remove most, if not
all, identifying characteristics of the original flow and make
it indistinguishable from some other independent network
flow. For example, cover traffic has long been believed to
be able to prevent the adversary from using traffic analysis
to uniquely identify the covered flow and link the informa-
tion sender and receiver. A number of works [16, 15, 12]
have used cover traffic to achieve anonymity. In addition,
Blum et al. [5] claimed that a packet flow would become
indistinguishable from other independent packet flows if the
ratio of the cover traffic added to the original flow reaches
certain threshold. They further claimed that their hardness
result regarding the traffic analysis holds true even if the
adversary is active.

In this paper, we investigate the fundamental limitations
of flow transformations in anonymizing packet flows by tak-
ing the role of active adversary. If we can uniquely identify
a packet flow in spite of various flow transformations, we
could link the anonymized packet flow to its original flow
thus break the anonymity. We exploit one fundamental lim-
itation of low-latency anonymous communication systems
– low-latency anonymizing systems do not eliminate the
packet timing correlation between the anonymized flow and
the original flow. Therefore, there exists mutual information
in the packet timing domain between the anonymized flow
and the original flow. Such mutual information forms the
very foundation for the unique identification and tracking
the anonymized flow.

The key technique we use in our investigation is to trans-
parently watermark the packet flow by slightly adjusting the
timing of selected packets. If the embedded unique wa-
termark survives various flow transformations, the water-
marked network flow can be uniquely identified and thus
linked to it original sender and receiver. This network
flow watermarking technique can be used to attack low-
latency anonymous communication systems without global
monitoring capability. To break the unlinkability of sender
and receiver, we only need to monitor and perturb the net-
work flows to and from potential senders and receivers we
would like to verify. For example, a malicious Web site
could watermark the Web traffic returned to its visitors,
and determine if some suspected user has visited its Web
site by checking if that user has received the (potentially
anonymized) watermarked traffic. With appropriate moni-
toring capability, our flow watermarking technique can also
be used to attack the sender and receiver anonymity.

By developing a novel flow watermarking technique,
we discover a rather surprising result on the inherent lim-

its of flow transformations in anonymizing long network
flows. Our analysis shows that adding cover traffic, drop-
ping packets, mixing or merging with other flows, and
splitting into multiple subflows, do not necessarily make a
long network flow indistinguishable from other independent
flows. In fact, a sufficiently long flow could be uniquely
identified through our flow watermarking technique even
if the amount of cover traffic added is many times more
than the number of original packets. This result is in
contrast to many people’s intuition – ours included. Our
claims are backed by extensive offline experimental results
and real-time experimental results on a leading commercial
anonymizing service. In particular, we were able to “pen-
etrate” the Total Net Shield, the “ultimate solution in on-
line identity protection” of www.anonymizer.com, with our
flow watermarking technique. We only needed less than 11
minutes of active surfing traffic from www.usatoday.com to
achieve virtually 100% true positive rate and less than 0.3%
false positive rate at the same time in linking the sender and
receiver of the Web traffic that was anonymized by the To-
tal Net Shield of www.anonymizer.com. Our analytical and
empirical results demonstrate that 1) the anonymity pro-
vided by low-latency anonymous communication systems
is fundamentally limited, 2) there exists practical attack
to break the anonymity provided by existing low-latency
anonymous communication systems, and 3) existing low-
latency anonymous communication systems need to be re-
visited.

The rest of this paper is organized as follows. In Sec-
tion 2, we elaborate the relation between the network flow
identification and anonymous communication and review
common flow transformations used in low-latency anony-
mous communication systems. In Section 3, we present
our interval centroid based flow watermarking scheme. In
Section 4, we present and analyze a few key properties
of the watermarking scheme. In Section 5, we empiri-
cally validate our findings through real-time experiments
on www.anonymizer.com and offline simulations. In Sec-
tion 6, we review related works. In Section 7, we conclude
the paper.

2 Network Flow Identification and Anony-
mous Communication

In this section, we formulate the network flow identifi-
cation problem in the context of network information flow,
and elaborate on the relationship between the network flow
identification and anonymous communication by reviewing
the flow transformations used in existing anonymous com-
munication systems.



2.1 Network Information Flow and Net-
work Flow Identification

A network generally has multiple network flows between
different nodes. Some network flows are essentially corre-
lated with each other in that they are part of the transmission
of the same information. For example, multicast flows from
the same source are essentially correlated if they convey the
same information. All of the connections in a connection
chain across stepping stones are essentially correlated since
those connections have the same essential payload even if
the payload is encrypted.

Here we use network information flow to represent
the transmission path of some information along the net-
work. Therefore, any communication between different
nodes in a network, whether it has single or multiple
sources/destinations, is a network information flow. A net-
work information flow may consist of multiple network
flows which may appear very different due to various flow
transformations. As indicated by the multicast example, a
network information flow is not necessarily linear.

A generic problem of network information flow is how to
determine those network flows that belong to any particular
network information flows. We define this problem as the
network flow identification problem.

Network flow identification is inherently related to
anonymous communication whose goal is to conceal the
true identities and relationships among the communicating
parties. For example, if we can identify and authenticate
those network flows that belong to any particular network
information flow, we will be able to link a network flow to
its information source and destination. Thus, we can link
the information sender and receiver.

2.2 Anonymous Communication and
Transformations of Network Flow

To conceal the true identities and relationships among
the communicating parties, anonymous communication
systems usually mix multiple network information flows
among multiple communicating parties and transform each
network flow substantially. If the transformed network
flows do not have any identifying characteristics that can
be linked to their information sources or destinations,
anonymity will be achieved.

Existing network flow transformations used by current
anonymous communication systems can be broadly divided
into two categories: intra-flow transformations and inter-
flow transformations. The intra-flow transformations are
those transformations that are within the boundary of the
flow without involving any other flow during the transfor-
mation. Inter-flow transformations are those that involve
more than one flow.

Figure 1 illustrates most common forms of intra-flow
transformation: adding chaff, packet dropping, and repack-
etization. Here we assume that all the network flows have
been encrypted, and we do not show the timing perturbation
and packet reorder in the figure. Reordering of encrypted
packets is equivalent to timing perturbation of encrypted
packets from an outsider’s point of view, and a number of
works [33, 32, 10, 30, 29] have addressed the timing pertur-
bation of encrypted flows. Here, chaff refers to any bogus
packet added to the flow that was not part of the original
flow. For example, any cover traffic used in anonymous
communication systems [12, 15] is chaff. Packet dropping
can happen naturally, but it can be introduced deliberately
as an effort to achieve anonymity [19]. Repacketization can
either combine two or more closely adjacent packets into a
larger packet or split a packet into multiple smaller packets.
Both forms of repacketization can occur naturally and be
triggered deliberately. For example, SSH is known to com-
bine closely adjacent packets into larger packets. IP frag-
mentation happens when the packet size is larger than the
Maximum Transmission Unit (MTU) along the transmis-
sion path. Without considering the packet size, we can view
two forms of repacketization as either chaff or de-chaff.

Figure 2 illustrates most common forms of inter-flow
transformation: flow mixing, flow splitting and flow merg-
ing. Flow mixing refers to mixing some flow f0 with some
unrelated flows: f1, . . . , fn to generate mixed flow f ′

0. To
further frustrate any flow correlation, a flow f0 could be
split into multiple subflows: f1

0 , . . . , fn
0 , which could be

later merged. The difference between flow mixing and flow
merging is that flow mixing combines a flow with unrelated
flows, and flow merging combines a flow with flows that be-
long to the same network information flow. When all of the
network flows are encrypted, flow mixing and flow merg-
ing appear the same. Furthermore, the flows f1, . . . , fn

mixed with flow f0 in Figure 2a (flow mixing) and flows
f2
0 , . . . , fn

0 merged with flow f1
0 in Figure 2c (flow merge)

can be thought as chaff added to flow f0 and f1
0 , respec-

tively. On the other hand, flow splitting can be thought as a
form of packet dropping (or de-chaffing) from the subflow’s
point of view.

Since these flow transformations would change one flow
into a very different flow, many people intuitively believe
that these changes would make one flow virtually indis-
tinguishable from other flows. Many existing low-latency
anonymous communication systems have used variations of
the above flow transformations in addition to any crypto-
graphic operations they may use. For example, Onion Rout-
ing [24] uses packet padding, and Tor [9] uses a fixed-size
cell which requires repacketization. Both NetCamo [15]
and Tarzan [12] deliberately introduce chaff to anonymize
the network traffic. Work [19] uses random packet drop-
ping as a means to achieve anonymity in the presence of
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active timing attacks. Hordes [27] uses multicast, which
can be thought as a variation of flow splitting, to provide
initiator (or sender) anonymity. All mix based anonymizing
systems [4, 22, 17] use some sort of repacketization, packet
reordering, or flow mixing to achieve sender anonymity, the
receiver anonymity, or the unlinkability of sender and re-
ceiver.

Therefore, whether or not we could uniquely identify a
network flow despite these flow transformations is a key
problem that has a direct impact on some of the very foun-
dations of existing anonymizing techniques. In the rest of
this paper, we show that the combination of chaff, packet
dropping, repacketization, flow mixing, and flow splitting
does not necessarily make one flow indistinguishable from
others.

3 Interval Centroid Based Watermarking
Scheme

We present a novel watermarking scheme that could
make a sufficiently long flow uniquely identifiable even af-
ter significant transformations have occurred, such as by
adding chaff, packet dropping, flow mixing, and flow split-
ting/merging. We start with the basic concepts and notions,
and then we describe the watermark encoding and decoding
processes. We further establish an upper bound on the de-
coding error probability assuming there is no active coun-

termeasures. We will consider active countermeasures in
Section 4. In the rest of this section, we use packet flow and
network flow interchangeably.

3.1 Time Interval and Centroid of Interval

Given a packet flow of duration Tf > 0, we want to
embed l-bit watermark with redundancy r > 0. Starting
from offset o > 0, we can choose a duration Td and di-
vide it into 2n (where n = r × l) intervals of length T
(T > 0): I0, . . . , I2n−1. Assume there are np > 0 pack-
ets P1, . . . , Pnp

in the 2n intervals. Let ti (i = 1, . . . , np)
represent the absolute time stamp of packet Pi, and t0 be
the absolute time stamp of the start point of the first inter-
val. Then t′i = ti − t0 is the relative time stamp of Pi from
the starting point of the first interval. Apparently, packet Pi

would occur within interval �t′i/T �.
We are interested in Pi’s relative position within its in-

terval, and we use �ti to represent the Pi’s offset from the
start point of its interval. Then we have

�ti = t′i mod T (1)

Therefore, dividing a duration Td of a packet flow into
equal size intervals is essentially a modulo operation, and
the packets’ relative positions within their respective inter-
vals are essentially the remainders of the modulo operations
on those packets in duration Td.
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Given any particular sequence of time stamps t′1, . . . , t
′
np

and a random interval length T > 0, when T � t′np
−t′1 and

n are large, �ti = t′i mod T is approximately uniformly
distributed in range [0, T ). Figures 3 and 4 show the em-
pirical distributions of the remainders of modulo 1000 oper-
ations over normally and exponentially distributed random
variables, respectively. They clearly show that the remain-
der of modulo operation over random variables of different
distributions is approximately uniformly distributed.

In other words, given any packet flow with sufficient
packets, any randomly chosen offset o > 0 and any interval
size T > 0, the relative positions of all packets within their
respective intervals (�ti) are uniformly distributed.

Therefore, the expected value of �ti is

E(�ti) =
T

2
(i = 1, . . . , n) (2)

and the variance of �ti is

Var(�ti) =
T 2

12
(i = 1, . . . , n) (3)

Assuming interval Ii (i = 0, . . . , 2n − 1) has ni > 0
packets Pi0 , . . . , Pini−1 , we are interested in the “balance
point” of those packets in each interval Ii. We define the
centroid of interval Ii (i = 0, . . . , 2n − 1) as

Cent(Ii) =
1
ni

ni−1∑

j = 0

�tij
(4)

In case interval Ii is empty, we define Cent(Ii) to be T
2 .

3.2 Random Grouping and Assignment of
Intervals

We use the following process to independently and ran-
domly choose n intervals out of the 2n intervals: we se-
quentially scan each of the 2n intervals and we indepen-
dently and randomly choose the current interval with prob-
ability 0.5. We can expect to have n intervals randomly
chosen. We call the n chosen intervals group A intervals
and denote them as IA

k (k = 0, . . . , n − 1). We call the
rest of the n intervals group B intervals and denote them as
IB
k (k = 0, . . . , n − 1). Figure 5 shows the random group-

ing of the time intervals of a packet flow. Apparently, there
are (2n)!

n!n! such equal groupings.
Now we randomly determine which intervals (IA

k and
IB
k , k = 0, . . . , n − 1) will be used for encoding wa-

termark bit i (i = 0, . . . , l − 1). We scan each of
IA
k (k = 0, . . . , n − 1) and randomly assign, with prob-

ability 1
l , the current interval for encoding watermark bit

i (i = 0, . . . , l − 1). Then we can expect to have r = n
l

group A intervals assigned for each watermark bit. We de-
note the j-th (j = 0, . . . , r − 1) group A interval assigned
for watermark bit i (i = 0, . . . , l− 1) as IA

i,j . Similarly, we
randomly assign each IB

k (k = 0, . . . , n − 1) for encoding
watermark bit i (i = 0, . . . , l − 1), and we denote the j-th
(j = 0, . . . , r−1) group B interval assigned for watermark
bit i (i = 0, . . . , l − 1) as IB

i,j . Figure 6 illustrates the
random assignment of the time intervals for embedding dif-
ferent watermark bits. There are totally n!

(r!)l different such
assignments.

We use NA
i,j and NB

i,j to represent the total packet num-
bers in interval IA

i,j and IB
i,j , respectively. Let
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NA
i =

r−1∑

j = 0

NA
i,j and NB

i =
r−1∑

j = 0

NB
i,j

Then NA
i and NB

i represent the total packet number of
group A and B intervals, respectively, assigned for encoding
watermark bit i.

Since we randomly assign each interval, with equal prob-
ability, to group A and B, and we randomly assign each
group A and B intervals, with equal probability, for en-
coding each watermark bit, each of the 2n intervals has
equal probability to be assigned for each watermark bit.
In particular, each interval has r

2n = 1
2l probability to

be assigned for encoding watermark bit i as one of the
IA
i,j (j = 0, . . . , r − 1), and each interval has r

2n = 1
2l

probability to be assigned for encoding watermark bit i as
one of the IB

i,j (j = 0, . . . , r − 1). In addition, each of IA
i,j

and each of IB
i,j have equal probability to have each of the

np packets. Therefore, the expected numbers of packets in
group A and B intervals for encoding watermark bit i are

E(NA
i ) = E(NB

i ) =
np

2l
(5)

3.3 Watermark Encoding and Decoding

In this section, we present the encoding and decod-
ing processes of our interval centroid based watermarking
scheme, and we formally establish an upper bound on the
watermark decoding error probability.

Given a packet flow, offset o > 0 and interval size T ,
we can have 2r intervals IA

i,j and IB
i,j (j = 0, . . . , r − 1)

randomly grouped and assigned to encode watermark bit
i (i = 0, . . . , l − 1). To encode or decode a watermark
bit, we aggregate all of the time stamps in the r group A

and group B intervals (IA
i,j and IB

i,j), respectively, and we
calculate the centroids of those packets.

Let

Ai =

∑r−1
j = 0[N

A
i,jCent(IA

i,j)]∑r−1
j = 0 NA

i,j

=

∑r−1
j = 0

∑NA
i,j−1

k = 0 �tAi,j,k

NA
i

(6)
and

Bi =

∑r−1
j = 0[N

B
i,jCent(IB

i,j)]∑r−1
j = 0 NB

i,j

=

∑r−1
j = 0

∑NB
i,j−1

k = 0 �tBi,j,k

NB
i

(7)
where �tAi,j,k and �tBi,j,k represent the k-th packet in

interval IA
i,j and IB

i,j , respectively.
Here, Ai and Bi are aggregated centroids of group A and

B packets, respectively, assigned for encoding and decoding
watermark bit i, and they are actually the sample means of
those NA

i �tAi,j,ks and NB
i �tBi,j,ks, respectively, that fall

within those r group A and B intervals IA
i,j and IB

i,j (j =
0, . . . , r − 1).

Since E(�tAi,j,k) = E(�tBi,j,k) = T
2 , we have

E(Ai) = E(Bi) =
T

2
(8)

We encode and decode watermark bit i into the differ-
ence between Ai and Bi. Let

Yi = Ai − Bi (9)

then E(Yi) = 0 and Yi is symmetric around zero.
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3.4 Watermark Encoding

To encode bit ‘1’, we deliberately increase Ai so that Yi

will be more likely to be positive than negative. Similarly,
to encode bit ‘0’, we deliberately increase Bi so that Yi will
be more likely to be negative than positive.

To increase Ai or Bi, we can simply delay each packet
within each interval IA

i,j or IB
i,j . Let 0 < a < T be the max-

imum delay to be applied, �ti,j,k be packet Pi,j,k’s offset
from the start of its interval Ii,j , and �t′i,j,k be the resulting
offset after Pi,j,k has been delayed. We delay packet Pi,j,k

according to the following strategy

�t′i,j,k = a +
(T − a)�ti,j,k

T
(10)

Since �ti,j,k is uniformly distributed on range [0, T ),
�t′i,j,k ∈ [a, T ). In fact, �t′i,j,k is uniformly distributed1

on range [a, T ). In other words, our delay strategy actually
“squeezes” the original uniform distribution of �ti,j,k from
range [0, T ) to range [a, T ). Figure 7 illustrates the effect
of our packet delay strategy over the distribution of packets
within an interval of size T .

Let A′
i and B′

i be the random variables that denote the re-
sulting values of Ai and Bi, respectively, after all the pack-
ets in IA

i,j and IB
i,j (j = 0, . . . , r − 1) have been delayed

according to equation 10. Then we have

E(A′
i) = E(B′

i) =
T + a

2
(11)

We use Y 1
i = A′

i − Bi to represent the resulting value
of Yi after bit ‘1’ is encoded by increasing Ai, and we use
Y 0

i = Ai − B′
i to represent the resulting value of Yi after

bit ‘0’ is encoded by increasing Bi. We have

E(Y 1
i ) =

a

2
and E(Y 0

i ) = − a

2
(12)

1The derivation of �t′i,j,k’s distribution can be found in Appendix A.

where Ni = min(NA
i , NB

i ).
Therefore, our watermark encoding actually shifts the

distribution of Yi to the left or right for a
2 , and it makes

the resulting distributions of Y 1
i and Y 0

i slightly more clus-
tered than that of Yi. Figure 8 illustrates the effect of our
watermark encoding over distribution of Yi.

3.5 Watermark Decoding

To decode the watermark from a flow, we can calculate
each Yi (i = 0, . . . , l − 1) given the correct decoding offset
o, interval size T , and the exact interval grouping and as-
signment information. If Yi is greater than 0, the decoding
of watermark bit i is 1; otherwise, the decoding is 0.

Therefore, the probability that encoded bit ‘0’ is mistak-
enly decoded as bit ‘1’ is Pr[Y 0

i > 0], and the probabil-
ity that encoded bit ‘1’ is mistakenly decoded as bit ‘0’ is
Pr[Y 1

i < 0].
Now we apply Chebyshev inequality to Y 0

i and Y 1
i to

derive the upper bound of the decoding error probability.

Pr[|Y 1
i − E(Y 1

i )| ≥ a

2
] ≤ 4Var(Y 1

i )
a2

≤ T 2 + (T − a)2

3a2Ni
(13)

Since distribution of Pr[Y 1
i − a

2 ] is symmetric

Pr[Y 1
i < 0] =

1
2

Pr[|Y 1
i −E(Y 1

i )| ≥ a

2
] ≤ T 2 + (T − a)2

6a2Ni
(14)

Similarly, we have

Pr[Y 0
i > 0] ≤ T 2 + (T − a)2

6a2Ni
(15)

Therefore, given any T , 0 < a < T , we can always min-
imize the decoding error to arbitrarily low by increasing Ni,



which can be achieved by increasing the redundancy num-
ber r provided that the flow is long enough with sufficient
packets.

4 Properties of the Interval Centroid Based
Watermarking Scheme

In this section, we present and analyze a few key prop-
erties of the interval centroid-based watermarking scheme
that are fundamental to the capability of uniquely identi-
fying a flow even after significant transformation has oc-
curred.

Here, we use a pseudo random number generator (RNG)
and a seed s to randomly group and assign each inter-
val to a different watermarking bit. In other words, the
random interval grouping and assignment are determined
and represented by the RNG and seed s used. Tuple <
o, T, RNG, s > represents the complete information needed
for the watermarking encoder and decoder to determine the
pseudo-random interval grouping and assignment for en-
coding and decoding the watermark, and it will be shared
only between the watermarking encoder and decoder.

4.1 Self-Synchronization

Being able to self-synchronize during the decoding pro-
cess is one of the most distinct features of our interval cen-
troid based method compared with all watermarking meth-
ods. This property enables our watermarking method to
uniquely identify flows even after they have been repack-
etized, merged/mixed with other flows, split into multiple
subflows, and perturbed in packet timing.

Given the watermark embedding parameter tuple < o, T ,
RNG, s >, the decoder should be able to derive the exact
random interval grouping and assignment used for encod-
ing the watermark. However, the correct decoding offset
not only depends on the value of o but also the clock set-
ting of the decoding host as well as any timing perturbation
on the packet timing. When the clock of the watermark
decoding host is perfectly synchronized with the clock of
the watermark encoding host and there is not packet tim-
ing perturbation, offset o will point to the correct decoding
start time. When the clocks of the watermark encoding and
decoding hosts are not perfectly synchronized, o will point
to the wrong decoding start time. In addition, any network
delay, network delay jitter, deliberate timing perturbation
would shift the correct decoding offset.

Fortunately, our interval centroid-based watermarking
could self-synchronize the decoding offset with the encod-
ing offset even if 1) the clocks of the watermark encoding
host and decoding host are not synchronized; 2) there is
substantial network delay, delay jitter or timing perturba-
tion on the watermarked flows. Due to the symmetric nature
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Figure 9. Decoding with different offsets

of our random interval grouping and assignment for water-
mark encoding and decoding, the decoding with wrong off-
sets appears random and it tends to have l

2 different bits
than the encoded l-bit watermark. This property gives us an
easy way to determine if the decoding offset used is correct.
When decoding from a host without precise clock synchro-
nization with the watermark encoding host, we can simply
try a range of different offsets, and the offset that results in
the closest match with the watermark is the correct offset
for decoding. Figure 9 shows the offline decoding of a flow
that was watermarked with a 32-bit watermark (with 10 sec-
ond offiset) under different offsets, and it clearly shows that
only the offset that is very close to the correct one yields the
best watermark decoding.

One cost of trying different offsets is that it tends to in-
crease the false-positive rate of the watermark decoding.
For example, if we try 10 different offsets for decoding, the
resulting watermark decoding false-positive rate could be
increased to up to 10 times the original false-positive rate.
Nevertheless, we can lower the aggregated false-positive
rate of the multi-offset decoding sufficiently by lowering the
false-positive rate of the single-offset decoding if we have
enough packets.

4.2 Robustness Against Chaff and Flow
Mixing

Robustness against chaff and flow mixing/merging is
the most important property of our interval centroid-based
watermarking scheme. In this subsection, we analyze the
strength of our method by establishing an upper bound on
the decoding error probability in the presence of chaff.

Given any packet flow of n packets, we consider any
other packets added to or mixed with the original flow as
chaff or chaff packets. Assume there are totally m chaff
packets Pc,1, . . . , Pc,m added to packet flow P1, . . . , Pn,
then the resulting flow P ′

1, . . . , P
′
m+n (P ′

i is either Pj or
Pc,j) is a mix of the original flow and the chaff.



Here we consider all the chaff packets as originating
from another random packet flow. From Section 3.1, we
know that the relative offsets of all chaff packets within
their respective intervals are uniformly distributed. There-
fore, the chaff added to a watermarked flow tends to shift
the centroid within each interval toward the center of the in-
terval, which would weaken the strength of the embedded
watermark. In the rest of this subsection, we quantitatively
analyze the negative impact of chaff.

We use �t̂Ai,j,k and �t̂Bi,j,k to represent the offsets of the
k-th chaff packet added to the j-th group A interval IA

i,j

and group B interval IB
i,j , respectively. Let MA

i,j and MB
i,j

be the number of chaff packets added to interval IA
i,j and

IB
i,j , respectively. The MA

i =
∑r−1

j = 0 MA
i,j and MB

i =
∑r−1

j = 0 MB
i,j are the total number of chaff packets added to

those r group A intervals IA
i,j and r group B intervals IA

i,j ,
respectively, assigned for watermark bit i.

We first consider the statistical characteristics of the off-
sets of the chaff packets within their intervals. Let

CA
i =

∑r−1
j = 0

∑MA
i,j−1

k = 0 �t̂Ai,j,k

MA
i

(16)

and

CB
i =

∑r−1
j = 0

∑MB
i,j−1

k = 0 �t̂Bi,j,k

MB
i

(17)

Now we consider the impact of the chaff packets over
the watermark detection error probability Pr[Y 0

i > 0] and
Pr[Y 1

i < 0]. Let Ŷ 0
i and Ŷ 1

i be the random variables that
denote the resulting values of Y 0

i and Y 1
i , respectively, af-

ter chaff has been added. Then the probability that bit ‘1’
is mistakenly decoded as bit ‘0’ is Pr[Ŷ 1

i < 0], and the
probability that bit ‘0’ is mistakenly decoded as bit ‘1’ is
Pr[Ŷ 0

i > 0]. By applying the Chebyshev inequality to Ŷ 0
i

and Ŷ 1
i , we establish the following upper bounds on the de-

coding error probabilities (we omit the detailed derivation
due to space limitation):

Pr[Ŷ 0
i > 0] = Pr[Ŷ 0

i − E(Ŷ 0
i ) > −E(Ŷ 0

i )] (18)

=
1
2

Pr[|Ŷ 0
i − E(Ŷ 0

i )| ≥ −E(Ŷ 0
i )]

≤ Var(Ŷ 0
i )

2(E(Ŷ 0
i ))2

=
(1 + RB)2T 2

3a2Ni(1 + R)

Pr[Ŷ 1
i < 0] ≤ Var(Ŷ 1

i )
2(E(Ŷ 1

i ))2
=

(1 + RA)2T 2

3a2Ni(1 + R)
(19)

Here, RA = MA
i

NA
i

, RB = MB
i

NB
i

, R = Mi

Ni
, and they rep-

resent the ratios between the number of chaff packets and

the number of original packets. By the law of large num-
bers, RA ≈ RB ≈ R when Ni is large. Equations 18
and 19 show that the larger the RA, RB , R, the higher the
decoding error probabilities. This result confirms our intu-
ition: the more chaff, the more errors the decoding tends to
have. However, no matter how large the RA, RB , R (as long
as they are finite), we can always make the decoding error
probabilities arbitrarily close to zero by having sufficiently
large Ni. From equation 5, we can make Ni sufficiently
large by having sufficiently large np provided the flow is
sufficiently long and there are enough packets.

The important result here is that our interval centroid-
based watermarking scheme can achieve asymptotic error-
free decoding even if the number of chaff packets added
is many times more than the number of original packets,
provided the original flow is long enough and has enough
packets. This result holds true regardless of the distribution
of chaff added and it counters the claims by Blum et al. [5].

4.3 Robustness Against Packet Dropping,
Repacketization, and Flow Splitting

Packet dropping, merging adjacent packets, and splitting
flows into multiple subflows will decrease the number of
packets in the original flow. We can summarize this effect
as de-chaff. Since we randomly divide flow duration into
multiple intervals and randomly group those intervals for
each watermark bit, any packet lost should be uniformly dis-
tributed within each interval IA

i,j and IB
i,j . Therefore, when

there are enough packets left in the flow, the centroids of all
the intervals tend to remain the same even after the pack-
ets have been randomly dropped and merged. This property
would allow the embedded watermark to persist even after
random packet dropping, merging, or flow splitting.

5 Experiments

5.1 Real-Time Experiments on Live
Anonymized Web Traffic

We conducted real-time penetration experiments on the
Total Net Shield service provided by leading anonymiz-
ing service provider www.anonymizer.com. According to
www.anonymizer.com, the Total Net Shield is their “ulti-
mate solution in online identity protection”. This makes
it an attractive candidate for examining the effectiveness of
our flow watermarking technique in identifying transformed
network flows.

Figure 10 illustrates the setup of our real-time ex-
periments. We watermarked the live Web traffic from
www.usatoday.com and we wanted to see if our watermark
could penetrate the the Total Net Shield service provided
by www.anonymizer.com. We set up an Apache server



Total Net Shield 
www.anonymizer.com

Client ...
 

Server 1 

Server 2 

Server n 

www.usatoday.com

Apache 
Server 

Reverse Proxy for 
www.usatoday.com

Watermarked 
Web Traffic 

SSH Tunnel 

Can we detect 
watermark 

here? 

Unwatermarked 
Web Traffic Mixed Web 

Traffic 

Figure 10. Experimental setup for penetrating the Total Net Shield service by www.anonymizer.com

as a reverse proxy to www.usatoday.com so that we could
access all the Web pages of www.usatoday.com by point-
ing a browser to the URLs of our Apache server. This
setup also enabled us to watermark most Web traffic from
www.usatoday.com at our Apache server machine. We no-
ticed that our Apache reverse proxy did not catch all of the
Web traffic between the Web servers of www.usatoday.com
and our client. In a separate experiment, we found that
about 11% of the Web traffic from www.usatoday.com,
most of which was related to JavaScript, did not pass our
Apache server. Therefore, when we watermarked the Web
traffic from www.usatoday.com at our Apache server ma-
chine, we only watermarked 89% of them. In other words,
when the Web traffic from www.usatoday.com reached the
entry point(s) of anonymizer.com, it consisted of water-
marked traffic mixed with unwatermarked traffic.

From the client machine, we browsed various Web pages
of www.usatoday.com through anonymizer.com’s Total Net
Shield. All of the HTTP traffic between the client ma-
chine and anonymizer.com was transferred through the
SSH tunnel. From our Apache server’s point of view,
all of the HTTP requests originated from hosts within
anonymizer.com. We also noticed that one click from
the client’s browser could trigger multiple connections be-
tween our Apache server and multiple access points of
anonymizer.com.

We conducted our experiments between 10:00am to
20:00pm from April 19 to 24, 2006. We chose to use a
500 ms time interval, 350 ms maximum delay, and 10 sec-
onds offset for embedding 32-bit watermarks into the live
Web traffic. We randomly generated 100 32-bit watermarks,
each of which had a Hamming distance of at least 12 to
any other watermarks. We used redundancy numbers 12,
14, 16, 18, and 20, which required the Web traffic duration
from 394 to 650 seconds. For each redundancy number, we

conducted 20 separate experiments with 20 different wa-
termarks. Table 1 shows the statistics of the Web traffic
collected at the client machine and the Apache server ma-
chine. For all redundancy numbers, both the average packet
numbers and average packet rates at the client side were
about 90% of those at the server side. However, the aver-
age packet sizes at the client side were only about 43% of
the average packet sizes at the server side. As a result, the
average information flow rates (in terms of bytes/second)
at the client side were around 39% of those at the server
side. This observation indicates that anonymizer.com had
removed over 60% information from the Web traffic re-
turned by www.usatoday.com. Such a drastic content filter-
ing has made the inter-packet timing characteristics of the
flows before and after the anonymizer’s Total Net Shield
appear completely different.

Despite of the significant flow transformations (i.e.,
repacketization, flow mixing, and packet dropping) and net-
work delay jitter introduced by www.anonymizer.com to the
Web traffic, we were able to achieve surprisingly good re-
sults in linking the information sender and receiver through
our flow watermarking technique. When we decoded the
32-bit watermark from a network flow, we allowed a few
bits mismatched with the watermark we were seeking. The
number of allowed mismatched bits is called the Hamming
distance threshold in our watermark decoding. Figure 11
shows that we can achieve a 100% watermark detection rate
with a Hamming distance thresholds of 5, 6, 7, and 8, re-
spectively, and redundancy of 20 from the Web traffic re-
ceived at the client side. This only requires less than 11 min-
utes active browsing. With less than 6 1

2 minutes of active
browsing traffic, we were able to achieve a 60% watermark
detection rate with a Hamming distance threshold of 5. By
decoding each of the 100 watermarked network flows with
99 different watermarks, we calculated the watermark de-



Redundancy Number 12 14 16 18 20
Average Number from Server 3748 4301 4745 5246 5489

of Packets to Client 3356 3884 4332 4774 5031
Packet Number Ratio 89.54% 90.30% 91.29% 91.00% 91.66%

Average Packet from Server 8.83 8.90 8.83 8.57 8.19
Rate (Pkt/sec) to Client 7.88 8.02 8.05 7.79 7.54

Packet Rate Ratio 89.24% 90.11% 91.17% 90.90% 92.06%

Average Packet from Server 801.84 806.45 804.52 812.73 814.09
Size (Byte) to Client 354.28 349.18 351.89 346.80 353.85

Packet Size Ratio 44.18% 43.30% 43.74% 42.67% 43.47%

Average Information Flow from Server 7080.23 7177.37 7103.87 6965.11 6667.36
Rate (Byte/sec) to Client 2791.69 2800.45 2832.69 2701.56 2668.04
Information Flow Rate Ratio 39.43% 39.02% 39.88% 38.79% 40.02%

Table 1. Packet Flow Statistics of Online Experiments
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Figure 11. Watermark detection true pos-
itive rate with different redundancy num-
bers and different Hamming distance
thresholds
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Figure 12. Watermark detection false
positive rate with different redundancy
numbers and different Hamming dis-
tance thresholds

tection false positive rate. Figure 12 shows that we achieved
a less than 0.3% watermark detection false positive rate with
a Hamming distance threshold of 5 for all redundancy lev-
els. These results on live Web traffic confirmed that our
flow watermarking technique can effectively penetrate the
anonymizing service provided by www.anonymous.com.

5.2 Offline Experiments

We obtained 100 watermarked flows by encoding a syn-
thetic flow, generated by tcplib [8], with 100 different 32-bit
watermarks. We used redundancy number r = 20, inter-
val size T = 500ms, and timing adjustment a = 350ms.
For each watermarked flow, we further generated 10 trans-
formed flows by adding uniformly distributed chaff (or bo-
gus packets) of rates between 10 to 100 packets/second.
We then tried to decode the 1000 transformed watermarked
flows with correct watermarking parameters. For all rates
of chaff, we are able to obtain a 100% watermark detection
rate while getting no more than a 0.5% watermark detection
false positive rate. Since the average packet rate of the orig-
inal unwatermark synthetic flow is only 0.8 packet/second,
the flow we watermarked has only about 512 packets. A
chaff rate of 100 packets/second is over 120 times more
than the packet rate of the original flow. We also tried wa-
termark decoding with normally distributed chaff, and we
could achieve virtually a 100% watermark detection rate
when the normally distributed chaff is 4 times more than
the original packets.

These results confirmed our claim that it is possible to
uniquely identify a long network flow even if the amount
of chaff added to the flow is many times more than the
number of original packets as indicated by equations (18)
and (19). This also implies that a flow can be uniquely iden-
tified even if it is mixed with other flows. Our offline ex-
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Figure 13. Watermark detection rates of
split Subflows
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Figure 14. Watermark detection rates
with timing perturbation

periments also confirmed that when two watermarked flows
are mixed, both watermarks could be successfully decoded
from the mixed flow by our interval centroid based water-
marking scheme.

For each of the 100 watermarked flows (with 100 dif-
ferent watermarks), we randomly and uniformly split them
into 2, 3, 4, 5, 6 subflows. We tried to detect the watermark
from each of the subflows. Figure 13 shows the average
watermark detection rates from various subflows under dif-
ferent Hamming distance thresholds. The figure indicates
that splitting a flow into a few subflows does not make a
flow unidentifiable as long as each subflow has a reasonable
number of packets. In specific, we could get about 80% wa-
termark detection rate with Hamming Distance threshold 5
on each of the 3 subflows that were split from a 512-packet
flow. These results imply that a watermarked flow can be
uniquely identified even if substantial portion of its packets
have been dropped.

To evaluate the robustness of our interval centroid based
watermarking scheme against timing perturbation, we in-
troduced uniformly distributed random timing perturbation
to every packet of the 100 watermarked flows, and tried to
detect the watermark from the perturbed flows. Figure 14
shows the average watermark detection rates under various
levels of random timing perturbation. It clearly indicates
that the interval centroid based watermarking scheme is ro-
bust against any timing perturbation that is less than the in-
terval size T .

5.3 Discussion

Our experimental results confirm that our interval cen-
troid based watermarking scheme is highly effective in
identifying sufficiently long flows even after significant
transformations have occurred. This technique allows us
to effectively link an anonymized packet flow to the orig-

inal packet flow. Here the number of packets in a packet
flow is the fundamental limiting factor of the robustness
of our flow watermarking scheme against various flow
transformations. As shown in our real-time experiments
on www.anonymizer.com, our flow watermarking tech-
nique only need about 5,500 packets to penetrate the best
anonymizing service of www.anonymizer.com, which uses
combinations of flow mixing, repacketization and substan-
tial packet dropping in addition to timing perturbation due
to network delay jitter. For single flow transformation such
as adding cover traffic, packet dropping, flow mixing, flow
splitting, flow merging, our flow watermarking technique
could be effective on packet flows of only a few hundred
packets.

Since we can watermark a network flow from its source
(e.g. from the Web site), we can make sure that whenever
a flow is watermarked, only the watermarked flow is ob-
servable by others. Without access to the original unwater-
marked flow, it would be very difficult, if possible at all, for
any one to tell whether an arbitrary flow has been water-
marked. In addition, our random grouping and assignment
of intervals would make it difficult to detect the existence
of watermark in a flow via statistical analysis of the inter-
packet timing characteristics.

6 Related Works

A number of low-latency anonymous communication
systems [1, 24, 9, 25, 12, 15, 22, 4, 17] have been developed
based on proxies or MIXes. Notably, Onion Routing [24],
and its second generation, Tor [9], use public key encryp-
tion on a pre-determined sequence of proxies to protect the
transport of TCP flows. Crowds [25] uses randomly se-
lected proxies to hide the information’s sender and receiver.
However, none of these methods were designed to provide
the unlinkability of sender and receiver. NetCamo [15] and



Tarzan [12] used cover traffic to provide low-latency anony-
mous communication. A leading anonymous communica-
tion service provider, www.anonymizer.com [1], uses mul-
tiple proxies and a number of flow transformations (i.e.,
repacketization, packet dropping, flow mixing/merging) to
provide its low-latency anonymous communication ser-
vices. Instead of relying on proxies or MIXes, Hordes [27]
leverages multicasting to provide sender anonymity. P5 [26]
uses broadcast to provide sender-, receiver-, and sender-
receiver anonymity assuming the adversary is passive.

There are also substantial works on attacking the pri-
vacy of Web application and low-latency anonymous com-
munication systems. Felton and Schneider [11] identified
an exploit of the Web cache which would allow a malicious
Web site to infer whether its visitors have visited some other
Web pages. Sun et al. [28] investigated how to statistically
identify Web pages based on HTTP object size. Levine et
al. [19] investigated passive timing-based attacks on low-
latency anonymizing systems with the assumption that the
attacker could control both the first and the last mix in the
anonymizing network. However, they only provided a the-
oretical analysis on general low-latency anonymizing mod-
els, and no real experiments or tests were performed on real
systems. Murdoch et al. [20] proposed a low-cost timing at-
tack on Tor [9] with the assumption that the attacker could
control a corrupt Tor node. Wang et al. [29] proposed an
active watermarking technique that can uniquely identify
VoIP flows anonymized by www.findnot.com [2]. Com-
pared with their watermarking method, ours is able to self-
synchronize during the watermark decoding process which
makes our watermarking scheme robust against such flow
transformations as repacketization, packet dropping, flow
mixing/merging/splitting in addition to timing perturbation.

Fu et al. [13] analyzed the effectiveness of traffic
padding in resisting traffic analysis and showed that con-
stant rate traffic padding is not optimal. Gogolewski et
al. [14] investigated the implications when a user could
only choose from a limited subset of all possible proxies in
anonymous communication and showed that the anonymity
could be degraded dramatically even if the set of all possi-
ble proxies was large. Kesdogan et al. [18] investigated the
theoretical limits of the anonymity provided by the MIXes
in the presence of omnipresent passive adversary. However,
their result is limited to the MIXes that do not introduce
any bogus traffic or dummy messages. Compared with their
analysis, ours does not require the global monitoring capa-
bility, and our attack is effective even if the anonymizing
system introduces bogus traffic or bogus messages.

Peng et al. [21] proposed an offline statistical method to
detect the existence of watermark embedded in a network
flow by method [30]. However, their watermark detection
method assumes the watermark embedding follows some
simple patterns and requires access to both the unwater-

marked and watermarked flows to be effective. Since our
interval centroid based watermarking scheme 1) uses non-
trivial random grouping and assignment of intervals and
2) could prevent others from accessing the unwatermarked
flow by watermarking a flow from its source, it is unlikely
that method [21] could detect our watermark from a given
flow offline.

7 Conclusions

It is a common belief that drastic flow transforma-
tions would effectively disguise network flows and traffic
padding is effective in anonymizing network flows. The
main contribution of this paper is that we have demonstrated
that existing flow transformations, such as adding bogus
packet, packet dropping, flow mixing, flow splitting, and
flow merging, in addition to timing perturbation do not nec-
essarily make a long network flow indistinguishable from
others.

By developing a novel flow watermarking technique, we
are able to uniquely identify a long flow even if it has gone
through drastic flow transformations. In particular, our anal-
ysis has revealed a rather surprising result regarding the in-
herent limitation of flow transformations in anonymizing
network flows – a sufficiently long network flow could be
uniquely identified even if the amount of cover traffic (or
bogus packets) is many times more than the original pack-
ets. In addition to demonstrating the theoretical limitations
of the flow transformation based low-latency anonymizing
systems, we have also developed the first practical attack on
a leading commercial anonymizing system. Our real-time
experiments on www.anonymizer.com have shown that we
only need a little over 10 minutes of active surfing traffic
(about 5500 packets) to penetrate the Total Net Shield ser-
vice provided by www.anonymizer.com.

Our packet flow watermarking attack is based on the
packet timing correlation between the original packet
flow and the anonymized packet flow. Since no practical
low-latency anonymizing system could remove all the
mutual information from the packet timing domain, our
flow watermarking attack is applicable to all practical
low-latency anonymous communication systems. It is an
open research problem to determine whether and to what
extent we can practically achieve good anonymity through
low-latency anonymous communication systems in the
presence of active adversary.
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Appendix

A Derivation of Distribution of �t′i,j,k

We use X to represent random variable �ti,j,k and use
Y to represent random variable �t′i,j,k. Let r(X) = a +
(T−a)X

T and s(Y ) = (Y −1)T
T−a , then Y = r(X) and X =

s(Y ).
Let f(x) be the p.d.f. of random variable �ti,j,k, and

g(y) be the p.d.f of random variable �t′i,j,k. We have
f(x) = 1

T for X ∈ [0, T ).
Since both r(X) and s(Y ) are continuous, strictly in-

creasing and differentiable, we have

g(y) =
dG(y)

dy
= f [s(y)]

ds(y)
dy

(A-1)

=
1
T

× T

T − a
=

1
T − a

Therefore, random variable �t′i,j,k is uniformly dis-
tributed on range [a, T ).


