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ABSTRACT
To conceal user identities, Tor, a popular anonymity system, for-
wards traffic through multiple relays. These relays, however, are
often unreliable, leading to a degraded user experience. Worse yet,
malicious relays may strategically introduce deliberate failures to
increase their chance of compromising anonymity. In this paper
we propose a reputation system that profiles the reliability of relays
in an anonymity system based on users’ past experience. A par-
ticular challenge is that an observed failure in an anonymous com-
munication cannot be uniquely attributed to a single relay. This
enables an attack where malicious relays can target a set of hon-
est relays in order to drive down their reputation. Our system
defends against this attack in two ways. Firstly, we use an adap-
tive exponentially-weighted moving average (EWMA) that ensures
malicious relays adopting time-varying strategic behavior obtain
low reputation scores over time. Secondly, we propose a filtering
scheme based on the evaluated reputation score that can effectively
discard relays involved in such attacks.

We use probabilistic analysis, simulations, and real-world exper-
iments to validate our reputation system. We show that the dom-
inant strategy for an attacker is to not perform deliberate failures,
but rather maintain a high quality of service. Our reputation system
also significantly improves the reliability of path construction even
in the absence of attacks. Finally, we show that the benefits of our
reputation system can be realized with a moderate number of ob-
servations, making it feasible for individual clients to perform their
own profiling, rather than relying on an external entity.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Security
and protection

General Terms
Security, Measurement
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1. INTRODUCTION
Anonymous communication systems play a vital role in pro-

tecting users from network surveillance and traffic analysis. The
widely-used Tor network [22] has approximately 5 000 relays and
serves an estimated 300 000 unique users in a day, as of March
2014.1 The effectiveness of Tor depends on the reliability of these
relays. Unreliable relays can both degrade the user experience and
impair the anonymity guarantees provided by Tor. Due to the unre-
liablity of Tor relays certain users will decide to abandon the sys-
tem, thus decreasing the anonymity set, while the remaining users
will end up retransmitting messages, presenting further opportuni-
ties for observation. This latter problem can be exploited by ma-
licious relays where they can strategically affect the reliability of
anonymous communications to increase their odds of compromis-
ing user anonymity [15, 16]. Given previous instances of active
attacks on Tor [2, 10, 11], as well as recent governmental endeav-
ors [24, 26] to deanonymize Tor users, it is important to identify
active attackers in anonymity systems.

We propose a new reputation model, Re3, that can be used to
detect and penalize relays involved in active attacks like selective
DoS. The main challenge in building our model is that it is hard to
pinpoint the single relay responsible for an observed failure. This
enables an attack where malicious relays can target a set of hon-
est relays in order to drive down their reputation. Moreover, mali-
cious relays can oscillate between good and bad behavior in order
to evade detection. To address these challenges we propose using
an exponentially-weighted moving average (EWMA) that can dy-
namically adjust its weighting coefficient to capture the dynamic
behavioral trend of a given Tor relay. Re3 ensures that a malicious
relay that oscillates between reliable and unreliable state obtains a
low reputation score over time. We then propose a filtering protocol
based on relays’ reputation score that can effectively discard relays
mounting active attacks.

We analyze the security of our filtering protocol both probabilis-
tically and through a prototype deployment in the live Tor network.
We find that attackers gain no advantage through active attacks like
selective DoS with Re3 deployed. We also show that our filter-
ing scheme is not vulnerable to strategic attacks like the targeted
attack and a particularly serious form of targeted attack known as
the “creeping death attack” [23]. Furthermore, we study adaptive
attackers who tailor their strategy specifically against our detec-
tion scheme, performing active dropping only if their reputation is
above a chosen threshold. We conclude that with Re3 deployed
the dominant strategy for such attackers is to not perform any cir-
cuit dropping. Finally, we show that our reputation model provides
benefits even outside the context of active attacks, and is able to
substantially increase the reliability of circuit construction in Tor.

1https://metrics.torproject.org



Contributions. We offer the following contributions:

• We present a reputation system that assigns quantitative scores
to relays based on their provided reliability during anonymous
communications. Our system captures dynamic behavioral change
and penalizes relays exhibiting behavioral oscillation. (§3)
• We probabilistically analyze the security of our filtering proto-

col against the selective DoS attack, including its randomized
variants. We also study strategic attacks against our reputation
model such as the targeted attack and creeping-death attack. (§5)
• We perform simulation and experiments on the live Tor network

to demonstrate that our reputation model can effectively filter
out compromised relays. (§6)
• We demonstrate the benefits of our approach even outside the

context of active attacks. Using real world experiments on the
Tor network, we find that our filtering protocol is able to signifi-
cantly improve the reliability of circuit construction. (§6.2.2)
• We present two strategies to incorporate our reputation model

into Tor. One way is to run it locally at individual clients and the
other is to run it at shared directory authority (DA) servers. (§7)

2. BACKGROUND
In this paper we take Tor as a case study to profile its participat-

ing relays. Hence, we present a brief overview of the Tor network,
and then discuss how active attacks can lower anonymity in Tor.
We also briefly discuss different types of reputation systems.

2.1 Tor: A Low-latency Anonymity Network
To anonymize TCP connections, a Tor user constructs a circuit

comprised of several Tor relays (also known as routers). The relays
form a pipeline through which traffic is forwarded back and forth
between the user and destination. Circuits typically involve three
relays: the entry, middle, and exit. Tor protects the contents of
the traffic by using a layered encryption scheme [35], where each
relay decrypts a layer while forwarding. As a result, any individual
router cannot reconstruct the whole circuit and link the source to
the destination. The relays in a circuit are chosen using specific
constraints [21]. Each user selects the entry relay from a small,
fixed number of relays that are flagged as “fast” and “stable”. These
relays are called guard relays [41]; their use is designed to defend
from the predecessor attack [42]. To choose the exit relay, the user
picks from among those relays that have an exit policy compatible
with the desired destination. After these constraints, the relays for
each position are chosen randomly, weighted by their bandwidth.2

Tor aims to provide low-latency traffic forwarding for its users.
As a result, as traffic is forwarded along the path of a circuit, timing
patterns remain observable, and an attacker who observes two dif-
ferent relays can use timing analysis to determine whether they are
participating in the same circuit [30, 37, 39, 45]. Thus, to compro-
mise anonymity it suffices to observe the entry and the exit relays
for a circuit. Standard security analysis of Tor [22, 39] shows that
if c is the fraction of relays that are observed, an adversary can
violate anonymity on c2 of all of the circuits. Due to bandwidth-
weighted path selection in Tor, c is best thought of as the fraction
of total Tor bandwidth that belongs to relays under observation.3

2This is a simplified description of the path selection; a detailed specification can be
found at [21]. The omitted details do not significantly impact our analysis, and we use
the full specification in our experiments.
3To be more precise, the correct fraction would be cg · ce, where cg and ce are
the fractions of the guard and exit bandwidth under observation, respectively. For
simplicity of presentation, we will assume cg = ce = cm = c in the rest of the
paper.

The security of Tor, therefore, relies on the assumption that a typ-
ical adversary will not be able to observe a significant fraction of
Tor relays. For most adversaries, the easiest way to observe relay
traffic is to run their own relays. It should be noted that other forms
of adversaries do exist, such as ISP- and Internet exchange-level
adversaries [25,27,33], but these adversaries are typically assumed
to be passive and are thus not the focus of this paper.

2.2 Active Attack: Selective DoS in Tor
An adversary who controls a Tor relay can perform a number of

active attacks to increase the odds of compromise [15,16]. One ap-
proach is selective denial-of-service (DoS) [16]. A compromised
relay that participates in a circuit can easily check whether both
the entry and exit relays are under observation. If this is not the
case, the relay can “break” the circuit by refusing to forward any
traffic. This will cause a user to reformulate a circuit for the con-
nection, giving the adversary another chance to compromise the
circuit. A simple analysis shows that this increases the overall frac-
tion of compromised circuits to: c2

c2+(1−c)3 > c2, because only
circuits with compromised entry and exit relays (c2) or circuits
with no compromised relays ((1 − c)3) will be functional, and
out of those c2 will be compromised. For example, if 20% of the
bandwidth is controlled by an adversary (i.e., c = 0.2) then the
selective DoS attack nearly doubles the overall fraction of compro-
mised circuits from 4% to 7.2%.

The use of guard relays changes the analysis somewhat. If none
of a user’s guards are compromised, then the user is effectively im-
mune from the selective DoS attack, since the user will never use a
compromised entry regardless of the attack. If, on the other hand,
one or more of the guards are malicious then the user is signifi-
cantly impacted, as the dishonest guard(s) chosen for a significant
fraction of all circuits will break any circuit that does not use a com-
promised exit. For c = 0.2, if one of the guards is compromised
then the selective DoS attack increases the overall fraction of com-
promised circuits from 6.7% to 13.5% and for two compromised
guards this value increases from 13.3% to 38.5%. Therefore, guard
relays mitigate the selective DoS attack in that it will affect fewer
users if they choose honest guards, but can adversly affect users
who are unlucky enough to choose dishonest guards.

2.3 Reputation Models
A reputation model [36] collects, aggregates, and distributes feed-

back about participants’ past behavior. Reputation models help
users decide whom to trust, encourage trustworthy behavior, and
discourage participation by users who are dishonest. Reputation
models can be classified as either local or global, based on the way
information is aggregated [32]. In a local reputation model, feed-
back is derived only from direct encounters (first-hand experience)
whereas in a global reputation model feedback is also derived indi-
rectly (second-hand evidence) from other users. Hence, in the case
of a global reputation model [28,43,44], a user aggregates feedback
from all users who have ever interacted with a given participant,
thus enabling it to quickly converge to a better decision. However,
global reputation models are much more complex to manage than
local approaches as malicious users have the opportunity to provide
false feedback. Our focus is on building a local reputation model
that accumulates only first-hand experience with Tor relays.

3. Re3: OUR REPUTATION MODEL
Our goal is to construct a local reputation model that can be used

by a Tor user to filter out less reliable Tor relays. This section
discusses the different components of our model.



3.1 Reputation Score
To evaluate the reputation of a given Tor relay, a user keeps

track of its own local experience with the relay through a mod-
ified form of exponentially-weighted moving average (EWMA).
EWMA combines both recent and historical evaluations of a cho-
sen feature which enables it to compute a representative evaluation
of the feature under question. However, a conventional EWMA as-
signs fixed weights to recent and historical evaluations, and as a
result it fails to capture any oscillating behavior. In our system we
consider strategic relays, capable of altering their behavior in a way
that may benefit them. Aringhieri et al. [13] proposed dynamically
modifying the weighting co-efficient of EWMA to obtain a bet-
ter evaluation, but they do not consider strategic oscillations where
malicious users oscillate between building and milking their repu-
tation. Srivatsa et al. [38] proposed a PID controller-based reputa-
tion framework which can handle strategic behavior by malicious
users. We adopt a similar approach where we dynamically change
the weighting coefficient of our adaptive EWMA in such a way
that it penalizes any relay exhibiting frequent behavioral oscilla-
tion. Figure 1 shows an overview of how we compute a relay’s
reputation score.
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Figure 1: Block diagram of our reputation model. A feedback loop is used to model
the dynamic behavior of a Tor relay. We dynamically adjust the weighting coefficient
of our EWMA based on a relay’s behavior.

Let Rn(x) represent the local reputation of relay x after n in-
teractions (where Rn ∈ [−1, 1]). The local reputation update
function is defined as follows:

Rn(x) = αn(x) ·Rc + [1− αn(x)] ·Rn−1(x) (1)

with R0(x) = 1; i.e., all relays are initially assumed to be good
because we want all relays to be initially usable. Here, Rc repre-
sents the rating of the most recent experience. For simplicity we
have used a binary rating system where a user rates a relay based
on whether the circuit built through that relay was usable or not.

Rc =

{
−1, if circuit failed
1, otherwise (2)

The weighting coefficientαn(x) determines the degree to which
we want to discount older observations. To penalize relays oscillat-
ing between good and bad behavior, we keep track of accumulated
deviation ξn(x) from recent error δn(x), and lower reputation
proportionally (with proportional constant,Kp). The update func-
tion of αn(x) is given as follows:

αn(x) = Kp ·
δn(x)

1 + ξn(x)
(3)

δn(x) =

{
Rc(x)−Rn−1(x)

µ
, ifRc(x) ≥ Rn−1(x)

Rn−1(x)−Rc(x)

ν
, ifRc(x) < Rn−1(x)

(4)

ξn(x) = ξn−1(x) + δn(x) (5)

Here proportional constant, Kp(0 ≤ Kp ≤ 1) controls to
what extent we want to react to recent error (δn(x)) compared to
accumulated deviation (ξn(x)). We setKp = 0.5 after perform-
ing a sensitivity analysis (see Appendix B for more details).

As stated earlier we want our reputation function to penalize os-
cillating behavior and to achieve that we update the error function
δn(x) using a reward and punishment strategy where we reward
relays for successful communication and punish them for unsuc-
cessful communication. Incorporating such a strategy enforces re-
lays to behave faithfully. In equation (4), µ and ν represent the re-
ward and punishment factor respectively. Both µ, ν ∈ <, but we
must ensure that µ > ν because the impact of punishment should
be greater than that of reward. In other words, δn(x) should in-
crease more for unsuccessful communication than successful com-
munication, because that would in turn increase αn(x), giving
higher significance to the recent bad evaluation.

To get a better understanding of how Re3 reacts to different
scenarios like random network failures or strategic oscillating be-
havior, we evaluate the reputation score of a relay dropping circuits
at different rates. Figure 2 shows the evaluated reputation score
for different characteristics. We see that any form of circuit drop-
ping results in lowering reputation. Even strategic oscillating be-
havior (i.e., strategically building and milking reputation) is pun-
ished severely and this is evident from the lower reputation score
for the same drop rate. For example, oscillating at 50% drop rate
results in a lower reputation score compared to 50% random drop
rate. Hence, for a relay to achieve good reputation, it will have to
provide good service consistently (more results available in Sec-
tion 6.1.3). In Appendix B we describe how different parametric
choices affect our reputation metric. We also analyze the stability
of our reputation model in Appendix A.
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Figure 2: Reaction of our reputation metric to different combinations of cooperative
and malicious behavior. We can see that different dropping characteristics result in
lowering reputation.

3.2 Confidence Factor
We follow the principle that the more you interact with a relay,

the more confident you become about its behavior, and associate a
confidence factor with our local reputation score. In other words, if
a userA performs n1 and n2 (where n1 > n2) interactions with
relaysB andC respectively, then the reputation score reported for
relay B is more close to its stable score than that reported for C.
We, therefore, formulate the confidence factor as a monotonically
increasing function of the number of interactions with a given relay.
We use the following confidence metric:

Cn(x) = β
1
n (6)

where n represents the number of times a user has communicated
through relay x. Here, β (0 < β < 1) is a user defined variable



which determines how quickly the user becomes confident about
his/her rating (sensitivity analysis is provided in Appendix B).

3.3 Ranking Score
The ranking score reflects how well a given relay has been per-

forming so far. To obtain a high ranking score a relay will have to
persistently exhibit good behavior for a long period of time. We
formulate the final ranking score of a relay by multiplying the rep-
utation score with the confidence value:

Rankn(x) = Rn(x) · Cn(x) (7)

This ensures that the ranking score of a relay is high only when
both its reputation score and confidence value is high. A relay with
a high reputation score but a low confidence value will result in an
overall low ranking score. This hinders whitewashing attacks.

4. FILTERING PARTICIPANTS IN TOR
In this section we describe howRe3 can be used to filter out po-

tentially compromised relays. As mentioned above, Re3 matures
as the user gathers more experience and by assuming that only a
small fraction of all relays are compromised, we can probabilis-
tically show that the average reputation of honest relays will be
higher than that of compromised ones. So to filter out potentially
compromised relays, we only need to find outliers in terms of rank-
ing score. Our filtering protocol assumes γ fraction of the relays
are potentially outliers (ideally γ is equivalent to the fraction of
compromised relays in the system). Now, to filter outliers a client
takes the following steps:
• First, the client computes the average (µ) ranking score and stan-

dard deviation (σ) in ranking score of the top 1− γ fraction of
the relays he/she has interacted with.
• Filters out any relay x with |Rank(x)− µ| > kσ as outlier.

Here, k represents to what degree of deviation we are willing
to tolerate from the expected ranking score. We filter outliers in
both directions because when a large fraction of the guards are
compromised, compromised exits tend to obtain a higher rank-
ing score (as majority of the circuits have a compromised guard
in such scenario) compared to the other honest relays.4

From a security perspective, we are interested in cases when
clients have some compromised guards. In such cases, we can
adopt the following two strategies with respect to selecting guards:
• Strategy 1: Consider all guards that are not outliers.
• Strategy 2: Consider only the highest ranked guard.
The reason behind using strategy 2 is that if 1 or 2 of the guards are
compromised then their reputation score should be lower than that
of the honest ones, so strategy 2 helps to filter out potentially com-
promised guard relays. We evaluate both strategies later in Section
6. We want to point out that clients consider the filtered list of Tor
relays (after profiling a large set of Tor relays) for future circuit
construction following Tor’s conventional bandwidth-proportional
path construction protocol.

5. PROBABILISTIC ANALYSIS
In this section we probabilistically analyze the effectiveness of

Re3 in filtering out compromised relays under four adversarial
strategies. Filtering is done based on the ranking score of relays,
which in turn is computed based on the fraction of time a relay re-
ceives positive (+ve) and negative (-ve) feedback from a user (see
equation (2)). Hence, we conduct our analysis by computing the
4Under our assumption a high ranking score does not always imply a trustworthy
relay, rather a ranking score in the vicinity of the expected ranking score implies a
trustworthy relay.

probability of receiving positive and negative feedback for differ-
ent types of relays. First, we analyze the selective DoS attack sce-
nario. Next, we analyze the impact of targeted attack againstRe3;
followed by an analysis of creeping-death attack. Finally, we an-
alyze random drop strategy where the adversary randomly drops
non-compromised circuits to masquerade its true nature. To carry
out our probabilistic analysis we consider the following parame-
ters:
• g: fraction of guard relays per user that are compromised (by

default each user has 3 guard relays).
• g′: fraction of guard relays per user that are targeted (used for

targeted attack analysis only).
• c: fraction of other relays in the network that are compromised.
Our probabilistic computation assumes that different types of re-
lays can appear only in the middle and exit position of a Tor cir-
cuit, as guard relays are preselected by users and they are changed
only after a period of 30 to 60 days (uniformly chosen). For the
following analyses we give more emphasis to scenarios where g =
1/3, 2/3, as g = 0, 1 are trivial scenarios.

5.1 Analysis of Selective DoS Attack
We start by computing the fraction of positive and negative feed-

back that a given Tor relay will obtain when compromised relays
are carrying out selective DoS attack. For example, a compromised
exit relay will only allow a given circuit to continue if the guard
relay is also compromised. So, the probability of receiving posi-
tive feedback is at most g for a compromised exit relay. We can
similarly calculate the other probabilities. Table 1 summarizes the
different probabilities.

Now our filtering protocol can successfully filter compromised
relays only if they are outliers in the reputation spectrum. We can
approximate reputation scores as the difference between the frac-
tion of positive and negative feedback. For g = 1/3, we see that
the reputation of compromised relays is less than that of honest re-
lays for any value of c < 0.75. But for g = 2/3 we see that the
reputation score of compromised relays is higher than that of hon-
est relays, however, if we assume compromised relays as minorities
then they become outliers compared to honest relays making it pos-
sible forRe3 to filter them. More analysis is in Section 6.1.2.

Table 1: Probabilities under selective DoS attack

Relay Probability of Probability of
Positive (+ve) Feedback Negative (-ve) Feedback

Honest 1
2
gc+ (1− g)(1− c) 1− 1

2
gc− (1− g)(1− c)

Compromised 1
2
(gc+ g) 1− 1

2
(gc+ g)

Table 2: Probabilities under targeted attack strategy
Relay Positive Feedback(+ve) Negative Feedback(-ve)
Target 1

2
[(1− c)(2− g)− gt] 1− 1

2
[(1− c)(2− g)− gt]

Compromised 1
2
[(1− t)(2− g′)− g′c] 1− 1

2
[(1− t)(2− g′)− g′c]

Other 1
2
[2− g′c− gt] 1

2
[g′c+ gt]

5.2 Analysis of Targeted Attack
In this section we analyze the impact of targeted attack against

Re3. Here we assume that the set of compromised relays target
a set of honest relays (preferably high bandwidth relays) and try
to frame them as compromised. The attack strategy is defined as
follows: “Whenever a compromised relay discovers that a targeted
relay lies on the circuit, it kills the circuit forcing the user to lower
the reputation score of the targeted relay”. Now lets assume c frac-
tion of the compromised Tor relays target t fraction of the honest
relays. Intuitively, this scheme will work only if c > t, otherwise
both the compromised and targeted set of relays will have similar
low reputation scores causing them to be filtered out. Table 2 sum-
marizes the probabilities of receiving positive and negative feed-



back for the different types of relays (e.g., if a compromised relay
is in the middle position of a Tor circuit then it will let the circuit
continue only if the adjacent relays are not in the targeted set, this
corresponds to 1

2
(1− g′)(1− t), one of the terms in the table).5

Now we want to check if our filtering protocol can identify re-
lays mounting targeted attacks. To do so we need to ensure that
the reputation score of compromised relays is outside the accept-
able region, i.e., outside (µ − kσ, µ + kσ). First, we approx-
imate the reputation score of the different types of relays. Next,
we compute the average (µ) and standard deviation (σ) of the top
(1 − γ) fraction of the relays. Finally, we determine the value of
k for which the reputation score of compromised relays is outside
(µ− kσ, µ+ kσ).

Lets first approximate the average reputation score of different
types of relays. Since we use a binary rating system (see equation
(2)), we can approximate the average reputation score of different
types of relays using the following equations:

RT = Pr(+vefb)target − Pr(−vefd)target
RC = Pr(+vefb)compromised − Pr(−vefd)compromised
RO = Pr(+vefb)other − Pr(−vefd)other

Here the probabilities represent the fraction of the feedbacks that
are positive and negative. RT ,RC andRO refers to the reputation
score of relays belonging to the targeted, compromised and non-
targeted honest set respectively. From Table 2, we see that for c >
t, the reputation score of a compromised relay is greater than that
of a targeted relay. But both of their reputation score are much
lower than that of a non-targeted honest relay, i.e., RO > RC >
RT . If we assume that c is still a minority group, we can use this
discrepancy to filter out the malicious relays from the selection.

A client starts by ignoring a fraction γ of the relays with the
lowest reputation and then computes the average and standard de-
viation of the remaining reputation scores. If c < γ < c+ t, then
this computation will exclude all of the targeted relays but include
a fraction of the malicious relays:

µ =
(1− t− c) ·RO + (c+ t− γ) ·RC

1− γ

σ =

√
(1− t− c)(µ−RO)2 + (c+ t− γ)(µ−RC)2

1− γ

The client only keeps the relays whose reputation score lies within
k standard deviations from the mean, i.e., in the interval (µ −
kσ, µ+kσ). Some calculations show that if we set γ = 0.2 and
k <

√
3, then RC will fall outside this interval. This is true for

all value of g and g′ taken from the set {1/3, 2/3}.
Figure 3(a) highlights the average reputation score of the differ-

ent relays along with the acceptable upper and lower bound when
c = 0.2. Now, let us assume that the compromised relays perform
targeted attack first, and once the targeted relays are blacklisted
they start performing selective DoS attack to increase their chance
of being selected. Figure 3(b) shows the probability of selecting a
compromised circuit for different values of k with different frac-
tions of honest relays being targeted. From Figure 3(b) we can see
that with the proper setting of k <

√
3, we can effectively filter

compromised relays even when they launch targeted attacks on a
small set of honest relays.

Thus, we can see that compromised relays do lower the reputa-
tion score of the targeted set (as evident from Figure 3(a)). How-
ever, this in turn increases the reputation score of the remaining
5Our analyses are approximations where we are assuming replacement of relays after
selection, however, with a large number of relays this introduces negligible error.
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Figure 3: For the targeted attack scenario: (a) Average ranking score of different types
of relays along with the acceptable upper and lower bounds. We see that the reputation
score for both the targeted and compromised relays lie outside the acceptable bounds.
(b) Probability of selecting a compromised circuit once filtering has been done. As
we increase the acceptable range of reputation (by increasing k) the probability of
selecting a compromised circuit increases.

relays (i.e., relays that are neither in the compromised or targeted
set) because under this attack strategy the target set is much smaller
compared to the vanilla selective DoS scenario where all honest re-
lays are included in the targeted set. And since we use the average
and standard deviation of the top (1 − γ) fraction of the relays,
this raises the bar of acceptance, making it harder for compromised
relays to be accepted. If adversaries adopt the strategy to change
the target set then relays in the previous target set will eventually
be reconsidered for usage due to their honest nature. Thus, shifting
the target set does not affect the system as compromised relays will
also have to wait until they buildup a good reputation.

5.3 Analysis of the Creeping Death Attack
Dingledine et al. defined the “creeping death attack” [23] as

follows: “Whenever a compromised relay discovers that majority
of the relays on the circuit are honest, it kills the circuit forcing
the user to lower the reputation score of the honest relays”. In
Tor, circuits contain three relays, so a honest relay will succeed
only if the other two participating relays are honest or compromised
(with probability (1 − g)(1 − c) + gc). Table 3 summarizes
the probabilities for different types of relays. Again we see that for
g = 1/3 the reputation score of honest relays is higher than that of
compromised relays, but for g = 2/3 it is reverse. But assuming
compromised relays as minorities we can successfully filter them
by setting k <

√
3.

Table 3: Probabilities of under the creeping death attack strategy

Relay Positive Feedback(+ve) Negative Feedback(-ve)
Honest (1− g)(1− c) + gc 1− (1− g)(1− c)− gc

Compromised g + c− gc 1− g − c+ gc

Table 4: Probabilities under the random drop attack strategy
Relay Positive Feedback (+ve) Negative Feedback (-ve)
Honest (1− g − c+ 3

2
gc) + [g + c− 3

2
gc](1− d) [g + c− 3

2
gc]d

Compromised 1
2
(gc+ g) + [1− 1

2
(gc+ g)](1− d) [1− 1

2
(gc+ g)]d

5.4 Analysis of the Random Drop Attack
Next we analyze the impact of random dropping strategy, a vari-

ant of selective DoS. In this scenario, compromised relays ran-
domly drop circuits that they cannot compromise instead of al-
ways dropping non-compromised circuits. The objective behind
randomly dropping some fraction of the non-compromised circuits
is to masquerade their circuit dropping characteristic as a simple
network/reliability failure.

Now, let us compute the probabilities of receiving positive and
negative feedback for different types of relays withRe3 deployed.
Table 4 summarizes the different probabilities. For c = 0.2, we
verify that any form of dropping results in reducing reputation, but



compared to honest relays compromised relays suffer greatly for
g = 1/3. For g = 2/3, the reputation score of compromised
relays is greater than that of honest relays, but that makes them out-
liers which in turn helps our filtering scheme to easily filter them.
Thus, random circuit dropping (i.e., d > 0) becomes a losing pro-
posal withRe3 deployed.

6. EXPERIMENTAL EVALUATION
In this section, we present a series of simulation and real-world

experimental results, all of which highlight the effectiveness of
Re3 in filtering unreliable/compromised relays under real-world
settings. We first look at the false positive and false negative er-
rors of our filtering scheme. Next, we evaluate the probability of
selecting a compromised circuit. Finally, we run experiments over
the live Tor network and find that there is significant difference in
the application and network level reliability of individual Tor re-
lays. All these findings help us conclude that Re3 can assist users
in selecting more reliable and well-behaved Tor relays.

6.1 Simulation Results

6.1.1 Simulation Setup
We implemented a simulator that emulates the basic function-

ality of Tor circuit construction and active circuit dropping. We
collected actual relay information (such as IP address, advertised
bandwidth and probability of the relay being selected for entry,
middle and exit position) from the Tor compass project [4] and
randomly tagged 20% of the bandwidth to be controlled by an ad-
versary; i.e., in our threat model we assume c = 0.2. For our
experimental setup we consider 3 guards, 23 middle relays and 23
exits where all relays belong to a distinct /16 IP subnet. The reason
behind using 23 middle and exit relays is that we assume a user
uses Tor for three hours continuously6 and since a given circuit is
alive for only 10 minutes, a user would need 18 circuits in a 3 hour
period, i.e., at most 18 different middle and exit relays. Since we
assume 20% of the available bandwidth is controlled by a malicious
entity, on average we need 18/0.8 ≈ 23 relays to build 18 non-
compromised circuits.7 We create a total of 3×23×23 = 1587
circuits (each tested exactly once) to determine the reputation score
of the selected relays.

Table 5 summarizes the parametric settings for our simulation.
We vary two environmental parameters (g, d) to analyze the ro-
bustness and effectiveness of Re3 against active circuit dropping
attacks. Here, 100% drop rate refers to selective DoS and 0% drop
means no dropping at all. In the following evaluations we again
give more emphasis to results for g = 1/3, 2/3, as g = 0, 1
are trivial scenarios. Regarding guard selection strategy, our de-
fault strategy is to use all guards that are not outliers (i.e., strategy
1 as described in Section 4). To approximate the circuit failure rate
present in the current Tor network we use scripts from the TorFlow
project [8]. The TorFlow project measures the performance of Tor
network by creating Tor circuits and recording their failure rate. We
run TorFlow’s buildtime.py [8] python-script to generate 10 000 Tor
circuits and record their failure rate. We found the average failure
rate over 10 runs to be approximately 21%. Thus, we set the cir-
cuit failure rate, f to 0.21 in all our simulations. All simulation
results are averaged over 100 000 runs with 95% confidence inter-
vals shown on all graphs (though they are sometimes too small to
see).
6Tor users download the Tor consensus data every three hours so it would make sense
to refresh the relay list every three hours.
7Due to uneven bandwidth allocation, the actual number of honest relays could be
significantly different.

6.1.2 Filtering Compromised Relays
To compare the ranking score of honest relays with that of com-

promised relays, we set d = 1 and compute the ranking score of
all the relays by varying g. Figure 4 shows the ranking score of
both honest and compromised relays for different numbers of com-
promised guards. As discussed in Section 4, we set cutoffs based
on the average ranking score of the top 80% (= 1 − c) ranked
relays. To filter outliers we exclude relays that are further than√
3 standard deviations away from the average (i.e., k =

√
3;

we analyze the sensitivity of k in Appendix C). The dotted/dashed
lines in the figure represent the boundaries for acceptable region
(µ − kσ, µ + kσ). Figure 4 shows that as the number of com-
promised guards increases the distinction between honest and com-
promised relay shrinks. This is understandable because as the num-
ber of compromised guards increase, the ranking score for compro-
mised relays also start to increase because more and more circuits
with compromised guards are created. However, since honest re-
lays dominate the total population, the average reputation score of
the system lies close to the average reputation score of the honest
relays. As a result, even with g = 2/3 we can successfully filter
out a significant portion of the compromised relays.

Table 5: Simulation Parameters
Parameter Description Value/Range
Kp Proportional gain 0.5

Computation µ Rewarding factor 2
Setting ν Punishment factor 1

β Confidence co-efficient 0.5
Environment g Fraction of compromised guards {0, 1/3, 2/3, 1}

Setting d Drop rate for compromised relays 0 ≤ d ≤ 1
f Transient network failure 0.21

6.1.3 Evaluating Robustness
In this section we present results that show the robustness of our

reputation model in the presence of compromised relays. First, we
look at false positive and false negative errors of our filtering pro-
tocol, and then we evaluate the probability of constructing a com-
promised circuit under different strategic scenarios.

False errors of our filtering scheme: We define false negative
(FN) and false positive (FP) error as follows:
• FN: Fraction of compromised relays in the accepted list.
• FP: Fraction of honest relays in the discarded list.

Figure 5 highlights the calculated FN and FP errors. Ideally you
want both false errors to be low but since compromised relays are
a minority and honest relays are plentiful, lowering FN is more im-
portant than lowering FP. Figure 5 shows that as the drop rate d
increases, FN decreases (except for g = 1, which is not inter-
esting to look at as all the guards are compromised). We see a
similar trend for FP, where the FP error decreases as the drop rate
d increases. This is expected because as the drop rate increases
the distinction between compromised and honest relays becomes
more clearer. So, whether honest relays are heavily penalized (for
g ≥ 2/3) or rewarded (for g ≤ 1/3), the average ranking score
of the relays in the system shifts towards the ranking score of hon-
est relays as the majority of the relays are assumed to be honest.
That is why we see FP error reduce to almost 5%. These results in-
dicate that carrying out active attacks like selective DoS is a losing
proposition for an attacker.

Probability of constructing compromised circuits: Next, we
evaluate the probability of constructing a compromised circuit once
outliers have been discarded. The probability of such an event is:

gfcf

gfcf+(1−gf )(1−cf )2+(1−d)(1−gfcf−(1−gf )(1−cf )2)
(8)
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Figure 4: Ranking score of honest and compromised relays for various fractions of compromised guards. relays that are k =
√

3 standard deviations away from the mean are
considered outliers. We can see that even with g = 2/3 a client can successfully filter out a significant portion of the compromised relays.
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Figure 5: Average FN and FP with 95% confidence interval against drop rate d. Both
FN and FP decrease as drop rate increases.

where gfcf refers to the fraction of circuits with a compromised
guard and exit, while (1− gf)(1− cf)2 refers to the fraction of
circuits with all honest relays at each position in the circuit (gf and
cf represent the fraction of compromised guards and other relays
in the accepted list, respectively). Now we evaluate this probabil-
ity under both guard selection strategies as outlined in Section 4.
Figure 6 shows the probability of constructing a compromised cir-
cuit against drop rate d, under both strategies. For g ≤ 1/3,
we see that this probability quickly decreases to almost zero as
the drop rate increases, which is significantly better than what con-
ventional Tor guarantees (indicated by the dashed lines). Even for
g = 2/3, we see a significant improvement but compared to strat-
egy 1, strategy 2 performs much better. The main reason behind
this is that with two guards out of the three being compromised we
could potentially lower the probability of constructing a compro-
mised circuit by considering only the honest available guard. This
is what strategy 2 does, as it considers only the top ranked guard re-
lay while discarding the remaining two guards during actual usage.
For g = 1, we do not see much improvement, however, g = 1 is
a hopeless case as all the guards are already compromised. Thus,
for g < 1 the dominant attack strategy is to perform no dropping.
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Figure 6: Probability of constructing a compromised (CXC) circuit after filtering out-
liers using strategy 1 and 2. We see that our approach outperforms conventional Tor
as drop rate increases.

Finally, we test our reputation model against an adversary who
tries to oscillate between building and milking its reputation. The
adversary adopts the following strategy—“Drop circuit only if its
reputation is above a chosen threshold”. Under this scenario we as-
sume the adversary mimics a normal user in the system and keeps
track of the reputation score of its relays, so that it can optimally de-

cide whether to drop a circuit or not. We vary the reputation thresh-
old chosen by the adversary from -1 to +1 in increments of 0.1. In
all the simulations we compute the drop rate carried out by the ad-
versary along with the probability of constructing a compromised
circuit by clients. Figure 7 shows that as the reputation threshold
increases the drop rate declines to zero. In other words, to obtain
a positive reputation score the adversary cannot afford to to drop
too many circuits. The probability of constructing a compromised
circuit (Pr(CXC)) rises to a stable value as drop rate declines to
zero. This happens because with no dropping, the reputation score
of each relay remains unaffected. We, therefore, conclude thatRe3

discourages active circuit dropping by compromised relays.
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Figure 7: Evaluating drop rate and probability of constructing a compromised circuit
for various reputation threshold. In this scenario compromised relays drop circuits
only if its reputation is above the chosen threshold. We see that to retain positive
reputation compromised relays cannot afford to drop too many circuits.

6.2 Real World Experiments
In this section we perform a series of live experiments on the Tor

network to show the effectiveness of our reputation system. First
of all, we show that clients from different geographic regions suc-
cessfully filter compromised relays. Next, we determine what kind
of benefit our reputation system provides in terms of reliability.

6.2.1 Filtering Compromised relays
We carried out our experiment by introducing our own relays into

the Tor network, all of which acted as compromised relays. For this
purpose we used 11 Emulab [1] machines, 10 of which were con-
figured to act as Tor relays with a minimum bandwidth capacity of
20KBps. Note that all our relays belonged to the same /16 subnet,
meaning that no user would (by default) choose two of our relays
in the same circuit. Moreover, to prevent other users from using
our relays as exit relays, we configured our relays with a fixed exit
policy (allowing connection to only specific web sites). All these
steps were taken to respect user privacy. To emulate real clients



we used 10 PlanetLab [3] machines from 5 different continents and
had them create circuits through the Tor network.

To implement selective DoS we take an approach similar to the
one described by Bauer et al. [15]. Here, out of the 11 machines,
we run Tor protocol (version tor-0.2.2.35) on 10 of them, and used
the remaining machine as a server for gathering timing information
about which relay is communicating with whom at what time. The
sever performs timing analysis and informs the other 10 machines
when to drop communication to carry out selective DoS. We imple-
mented our reputation model in the client side in Python (we used
the open source Python library of the Tor Controller [6]).

In our experiments we first query the Tor directory server to re-
trieve a list of all available Tor routers and then filter this list by
considering only those routers which are flagged as running, stable
and valid, because we want our routers to be alive and running dur-
ing our experiments. We selected 39 Tor relays (3 guards, 18 exits
and 18 middle relays) at random with probability proportional to
their bandwidth and added our own 10 relays to this set to get a to-
tal of 49 relays (for the same reasons as described in Section 6.1.1).
This choice results in about 20% of the relays being compromised.8

To emulate user traffic, we retrieve a random web file of 300 KB in
size. Each client investigates a total of 3× 232 = 1587 circuits
and builds its own reputation score for those relays.9 Clients first
filter outliers and then compute FN and FP errors.

Table 6 summarizes our findings. Real world results are quite
similar to what we found in our simulation. However, some of the
false positive errors are somewhat higher than what we found in our
simulation. One plausible reason is that some of the relays were
down during our experiment, which is understandable because Tor
consensus is updated every 1 hour. Also, since not all the PlanetLab
machines were of the same configuration, the total time required to
complete all the probing varied from machine to machine. How-
ever, similar to our simulation results, we see that as the number of
compromised guards increases, FN also increases. For g ≤ 2/3
FN is almost zero. Another observation is that clients, though geo-
graphically distant, observe a similar ranking of Tor relays. Thus,
Re3 succeeds in capturing the selective dropping characteristics of
our deployed Tor relays.

Table 6: Experimental results from the live Tor network (all values are in %)

Continent Country g=0 g=1/3 g=2/3 g=1
(State) FN FP FN FP FN FP FN FP

North US(Illinois) 0 10.3 0 10.3 0 17.9 15.2 0
America US(California) 0 7.69 0 10.3 0 15.4 11.4 0

South Argentina 0 5.13 0 10.3 0 17.9 11.4 0
America Brazil 0 7.69 0 5.13 0 10.3 15.2 0

Europe UK 0 7.69 0 7.69 0 12.8 15.2 0
Russia 0 7.69 0 10.3 2.9 15.4 11.3 0

Asia India 0 7.69 0 10.3 2.8 10.3 11.4 0
Singapore 0 7.69 0 10.3 0 15.9 9.3 0

Australia Australia 0 5.13 0 12.8 0 17.9 9.3 0
NewZealand 0 17.9 0 17.9 0 20.5 15.2 0

6.2.2 Reliability
In addition to protecting Tor against maliciousness, our reputa-

tion model can also improve Tor’s resilience to poorly performing
relays. To motivate this, we first show that there is a high degree
of variance in reliability across Tor relays. For this experiment we
build Tor circuits using our own entry and exit relay pairs while
using existing Tor relays as the middle relay of a Tor circuit. We
then record statistics of circuit construction success rate for each

8Alternatively, we could set the bandwidth of our relays such that they make up 20%
of the total bandwidth
9Without considering the same relay at different position, because guards and exits
can be middle relays, too.

Tor relay. We use the nmap command to scan the Tor-port (OR-
port) of all the available Tor relays to cross-check whether they are
actually online. The whole experiment was rerun every 30 minutes
for a period of one full day. Figure 8 shows the difference between
application level and network level reliability. We see that a cer-
tain fraction of the Tor relays drop circuits more often than others
even though they are reachable. Figure 8 also shows the ratio of
the total number of relays that failed to the total number of relays
that succeed in building our customized circuit over different time
intervals. Again we see a significant deviation in the application
and network level reliability across the full day inspection and it is
not the case that the deviation alters significantly across the time
axis. We also highlight the distribution of these failures against the
Tor relay’s observed and advertised bandwidth. We computed the
correlation between the advertised bandwidth and reliability. We
found the correlation coefficient to be less than 10−8 in magni-
tude. So, we can say bandwidth is not an indicator of reliability in
Tor network. We also verified that past performance is an indica-
tion of future results. For this we compute the “Pearson Correla-
tion” between past observed failure probability and next observed
outcome; we found the correlation co-efficient to be 0.72 which
suggests that monitoring the reliability of relays is helpful for pre-
dicting their future performance.

From this, we can see that a client potentially benefits by keeping
track of the reliability of the Tor relays he/she uses. To demonstrate
this we run experiments on the live Tor network where a client cre-
ates circuits from a small set of Tor relays (3 guards, 23 middle
relays and 23 exits). In one setting the client first generates a rank-
ing of the Tor relays by probing each possible circuit once and then
filters out potentially unreliable ones. The client then creates 100
circuits from the filtered list of relays. In the other setting the client
just simply creates 100 circuits randomly from the full set of 49
non-filtered Tor relays. In both cases we record the percentage of
circuits failing at different hops (we take the avg. of 10 runs). Table
7 shows the obtained results and we can see thatRe3 assists users
to choose more reliable Tor relays for anonymous communications.

Table 7: Reliability result from the live Tor network

Measurements
Our Model Conventional Tor

1st hop 2nd hop 3rd hop 1st hop 2nd hop 3rd hop
(%) (%) (%) (%) (%) (%)

Mean 0.00 0.00 2.55 0.00 4.00 9.73
SD 0.00 0.00 2.21 0.00 3.01 8.01

Max 0.00 0.00 6.00 0.00 9.00 22.00
Min 0.00 0.00 0.00 0.00 0.00 0.00

7. DEPLOYMENT CONSIDERATIONS
In this section we discuss the following two ways of deploying

Re3 into the live Tor network.
• Localized: Individual clients runRe3

• Centralized: Re3 is run by directory authorities (DA servers).
We also study the convergence of Re3 as this is important for any
practical deployment.

7.1 Localized Approach
The easiest way to incorporate our reputation model is to have

it run in the client side. Each client can accumulate his/her experi-
ence to compute the reputation of Tor relays. Such a local approach
does not require cooperation from any other relays in the system.
However, this approach requires some incubation time to mature.
That being said, clients can speedup the bootstrapping process by
randomly browsing a small number of nonsensitive web sites or re-
playing some nonsensitive browsing history. The client could probe
circuits periodically if needed and can also share reputation score
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Figure 8: (a) Comparison of application and network level reliability of Tor relays. (b) Distribution of the ratio of total failure to success across different time intervals (c) Distribution
of reliability against both observed and advertised bandwidth. We see that there is a significant difference between application level and network level availability.

with friends that they trust to speedup the convergence. Addition-
ally, a client can initially concentrate on profiling higher bandwidth
Tor relays before profiling other relays. For example, about 500 re-
lays provide 80% of the available bandwidth in Tor [9].

7.2 Centralized Approach
In this approach the reputation model is run by the Tor direc-

tory authorities (DA servers). Tor authority servers already gather
statistics of Tor relays (mainly observed bandwidth) to build a con-
sensus database [5]. Each DA server can probe Tor circuits peri-
odically and build its own reputation table. DAs can then include
this information when they participate in the consensus protocol.
The benefit of this approach is that it requires very few modifica-
tions to the existing protocol and the overhead of this approach is
minimal. However, centralized probes need to be indistinguishable
from real user traffic, otherwise malicious relays may alter their be-
havior during periods when they are probed. Randomizing both the
entry relay of a probe and the time at which probes are made can
make it harder for compromised relays to distinguish probes from
actual user traffic.

7.3 Convergence of Re3

For any system to be practically deployable it must converge
quickly to its stable state. In this section we investigate how the
number of interactions affect the accuracy of Re3. For this pur-
pose, we run our simulator where a client iteratively creates circuits
following the default Tor path selection algorithm and then applies
our filtering scheme. We then compute the probability of selecting
a compromised circuit after every 10 interactions. We vary drop
rate d (0 ≤ d ≤ 1) and consider the maximum probability that
an adversary can achieve. Results are averaged over 100 000 runs.

Figure 9 shows the probability of selecting compromised circuits
after every 10 interactions. We can see that as the number of in-
teractions increases this probability dies down. This is expected
because the more a client interacts with relays the more he/she
becomes confident about those relays’ reliability. However, we
see that this probability quickly descends to a stable value after
≈200 interactions. We also look at the distribution of the number
of unique relays against different number of interactions. Figure
10 shows that after 1000 interactions a client can roughly profile
around 600 Tor relays (or 60% of Tor’s bandwidth). Alternatively,
clients can profile higher bandwidth relays first. We conclude that
a user does not need to accumulate too much experience to obtain
a consistent view of the reliability of the Tor relays. Therfore, it is
feasible for individual clients to perform their own profiling, rather
than relying on an external entity.
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8. RELATED WORK
Securing anonymity systems against active attacks is relatively a

new research topic. Borisov et al. [16] first showed that a selective
DoS attack can have devastating consequences for both high and
low-latency anonymity systems.

More recently, Danner et al. [19] proposed a detection algorithm
for selective DoS attack in Tor. Their algorithm probes each indi-
vidual Tor relay in the network and requires O(n) probes to de-
tect all compromised relays for a network comprising of n par-
ticipants. However, to handle transient network failures they pro-
posed repeating each probe r number of times, so their approach
requires O(nr) probes. So, at best their approach seems suit-
able for a centralized deployment. However, their algorithm as-
sumes that compromised relays exhibit fixed characteristic of al-



ways dropping non-compromised circuits. They do not consider
complex attack strategies where compromised relays may perform
random dropping. Such dynamic malicious behavior could poten-
tially increase the number of probes required to successfully iden-
tify compromised relays.

Mike Perry proposed a client-side accounting mechanism that
tracks the circuit failure rate for each of the client’s guards [7]. The
goal is to avoid malicious guard relays that deliberately fail circuits
extending to non-colluding exit relays. However, profiling only
guards is not enough because it is less likely that an attacker will
launch selective DoS at guard position, only to sacrifice the cost
of obtaining a guard status (guards fulfill strong commitments like
minimum bandwidth and minimum uptime). Rather deploying a
moderate number of cheap middle-only relays can boost the effect
of selective DoS attack [14].

Researchers have also leveraged incentive schemes [12, 40] to
encourage good behavior from Tor relays. All incentive schemes
basically encourage participants to be cooperative by providing the
cooperating participants with something that they care about; how-
ever, incentive schemes do not enforce malicious participants to
behave properly.

There are reputation based routing protocols for wireless adhoc
networks [17, 31, 34] that try to identify selfish/malicious routers
with the objective of avoiding them during forward path setup.
While these protocols have similar goal as ours there are differ-
ent challenges in directly using them for anonymity systems. For
example, in all of these protocols routers maintain reputation infor-
mation about their neighbors which they share with other routers in
the network. This information sharing could potentially introduce
new attack vectors where an adversary could figure out which re-
lays certain users are using. Moreover, to the best of our knowledge
none of these protocols handle strategic malicious behavior.

There are many papers on reputation systems for P2P networks
[28,43,44]. TrustGuard [38] proposes a reputation framework which
is capable of handling strategic malicious behavior. But TrustGuard
is vulnerable to whitewashing attack, we introduce a confidence
metric to hinder whitewashing attack. Moreover, most models fo-
cus on building distributed reputation systems, rather than worrying
about privacy and anonymity as described br Resnick et al. [36].
Dingledine et al. [20] described a reputation system for MIX-net
environment [18]. But their approach relies on trusted witnesses
which are hard to find in Tor network. Later on Dingledine et
al. [23] restructured their initially proposed reputation system [20]
to avoid trusted witnesses and proofs in favor of self-rating groups
of remailers. However, their approach does not reduce or prevent
the creeping death attack. They only propose to randomize the
choice of node selection hoping that compromised nodes occupy-
ing the top positions in the reputation spectrum are not selected. In
our case we propose a filtering scheme based on reputation score
to discard such compromised relays, where the reputation metric
itself can handle strategic oscialltions.

9. LIMITATIONS
Our work has a few limitations. First, in the absence of attacks,

a small fraction of honest relays are classified as outliers due to
random network failures. For anonymity systems, it is much more
critical to blacklist malicious relays than to ensure that all honest
relays are included. Moreover, these discarded honest relays should
reflect either low performing or highly congested relays in absence
of attack. Thus, discarding them might actually help in shuffling
the overall network load. Second, for the local deployment ap-
proach, our model does not defend against the scenario where all
of a user’s guard relays are malicious. We note that for 20% of ma-

licious relays, the probability of all three of a user’s guard relays
being malicious is less than 1%. Finally, new users benefit from
our reputation model only after a certain amount of usage.

10. CONCLUSION
Anonymity systems are vulnerable to active attacks like selec-

tive denial-of-service. Such attacks, however, can be detected by
profiling relay behavior. We proposed a generic reputation model
that profiles relays based on their historical behavior. Our model
takes adaptive malicious behavior into consideration and penalizes
any participant exhibiting such behavior. We theoretically analyze
our system under different attack scenarios, including probabilistic
variants of selective DoS, targeted framing attack and the creeping-
death attack. Our simulation and experimental results on the live
Tor network suggest that our reputation model can effectively filter
compromised relays mounting active attacks. We also show that
our reputation model provides benefits even outside the context of
active attacks; Tor clients using our model experienced significant
improvement in the reliability of circuit construction.

Our reputation model has broad applicability, and can be used
in domains such as P2P and recommendation systems, where users
would benefit from profiling participants with dynamic behavior.
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APPENDIX
A. STABILITY ANALYSIS

From control theory we know that for a discrete-time linear sys-
tem to be stable all of the poles of its transfer function must lie in-
side the unit circle [29]. To determine this we first need to take the
Z-transform of the transfer function and then determine its poles.
We first rewrite equation (1) as the following first order discrete-
time linear system.

y(n) = αx(n) + (1− α)y(n− 1) (9)

where y(n) and x(n) denotes the n-th output and input of the
system respectively (i.e., y(n) refers to newly generated reputation
valueRn of a relay while x(n) refers to the reference valueRc).
Taking the Z-transform of equation (9) yields:

Y (z) = αX(z) + (1− α)z−1Y (z) (10)
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Figure 11: Sensitivity analysis of (a) controller gain Kp (b) reward µ and punish-
ment ν factor (c) confidence factor β.

From equation (10) we can compute the transfer function as:

H(z) =
Y (z)

X(z)
=

αz

z − (1− α) (11)

So the transfer function H(z) has a pole at z = 1 − α. From
equation (3) we know that 0 < α < 1, so the pole will always
lies inside the unit circle. Thus, our closed-loop reputation system
guarantees stability.

B. TUNING MODEL PARAMETERS
In this section we look at how the parameters related to Re3

affect the reputation score of compromised relays. As shown in Ta-
ble 5, Re3 has a total of four parameters. We will study each of
their impact on reputation score. In the following study, we mainly
want to see how our model reacts to dynamic behavioral change.
For this purpose we assume that a compromised relay, with all the
other relays being honest, participates in a total 100 circuits oscil-
lating between honest and malicious nature every 25 interactions.

B.1 Proportional constant (Kp)
The proportional constant, Kp, determines to what degree we

want to react to the deviation between the reference value (Rc) and
current system output (Rn−1). This should not be set either too
high (near 1) or too low (near 0). If it is set too high it will oscillate
too much and if it is set too low then it will discount most of the
deviation and result in slow convergence. Figure 11(a) highlights

what we have just discussed. As we can see from the figure for
Kp = 1 it oscillates heavily and for Kp = 0, it totally discards
the difference between the reference value and system output. We,
therefore, conservatively setKp to 0.5, so that the model becomes
neither too sensitive nor too insensitive to sudden deviation.

B.2 Reward (µ) and Punishment (ν) Factor
We now investigate how our reputation model responds to a se-

ries of failures and successes. We want the degree of punishment
to be greater than that of reward. So whenever the model receives a
negative feedback (in our case a rating of -1) we want our EWMA
function (equation (3)) to give higher weight to the current feed-
back (i.e., consider a larger value of α). As α in dependent of δ
(see equation (5)), we need to increase δ more for failure than suc-
cess. So under our setting we require µ > 1 and ν ≤ 1. Figure
11(b) highlights how reputation score reacts to different combina-
tions of (µ, ν). As long as µ > 1 and ν ≤ 1 our model can
effectively discourage selective DoS.

B.3 Confidence Factor (β)
Now, we look at our confidence factor β. The confidence fac-

tor determines how confident a user is about the reputation score
of a particular relay. As the number of experience with a partic-
ular relay increases, a user becomes more confident about his/her
computed reputation score. β controls how quickly we become
confident about a reputation score. Figure 11(c) highlights how
confidence factor increases as the number of interaction increases.
It should be mentioned that any monotonically increasing function
of the number of interactions can be used as a confidence metric.

C. TUNING CUTOFFS FOR OUTLIERS
In filtering outliers we previously chose a deviation interval of√
3 times the standard deviation from the average (see Section 6).

Here, we investigate what kind of impact other deviation intervals
would have on the performance ofRe3. A tradeoff exists between
the value of k and false errors — FN and FP. As we increase k
more relays become acceptable, so FP goes down but FN rises. We
tested for k = 1.3, 2.0. Figure 12 illustrates the FN and FP errors
for different values of k. From the figure we see that as we increase
the allowed deviation from average, more and more relays become
acceptable and as a result FP decreases while FN increases.
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Figure 12: False Negative (FN) and False positive (FP) errors for different values of
k. As k increases FN tends to rise and FP tends to fall.


	Introduction
	Background
	Tor: A Low-latency Anonymity Network
	Active Attack: Selective DoS in Tor
	Reputation Models

	Re3: Our Reputation Model
	Reputation Score
	Confidence Factor
	Ranking Score

	Filtering Participants in Tor
	Probabilistic Analysis
	Analysis of Selective DoS Attack
	Analysis of Targeted Attack
	Analysis of the Creeping Death Attack
	Analysis of the Random Drop Attack

	Experimental Evaluation
	Simulation Results
	Simulation Setup
	Filtering Compromised Relays
	Evaluating Robustness

	Real World Experiments
	Filtering Compromised relays
	Reliability


	Deployment Considerations
	Localized Approach
	Centralized Approach
	Convergence of Re3

	Related Work
	Limitations
	Conclusion
	References
	Stability Analysis
	Tuning Model Parameters
	Proportional constant (Kp)
	Reward () and Punishment () Factor
	Confidence Factor ()

	Tuning Cutoffs for Outliers

