
Breaking theO(n1/(2k−1)) Barrier for
Information-Theoretic Private Information Retrieval ∗

Amos Beimel† Yuval Ishai‡ Eyal Kushilevitz§ Jean-François Raymond¶

Abstract

Private Information Retrieval (PIR) protocols allow a
user to retrieve a data item from a database while hid-
ing the identity of the item being retrieved. Specifically, in
information-theoretic, k-serverPIR protocols the database
is replicated amongk servers, and each server learns noth-
ing about the item the user retrieves. The cost of such
protocols is measured by thecommunication complexity
of retrieving one out ofn bits of data. For any fixedk,
the complexity of the best protocols prior to our work was
O(n

1
2k−1) (Ambainis, 1997). Since then several methods

were developed in an attempt to beat this bound, but all
these methods yielded the same asymptotic bound.

In this work, this barrier is finally broken and the com-
plexity of information-theoretick-server PIR is improved to

nO(log log k
k log k). The new PIR protocols can also be used to

constructk-query binarylocally decodable codesof length

exp(nO(log log k
k log k)), compared toexp(n

1
k−1) in previous con-

structions. The improvements presented in this paper apply
even for small values ofk: the PIR protocols are more ef-
ficient than previous ones for everyk ≥ 3, and the locally
decodable codes are shorter for everyk ≥ 4.

1. Introduction

A Private Information Retrieval (PIR) protocol allows a
user to retrieve a data item of its choice from a database
while preventing the server storing the database from gain-
ing information about the identity of this item. This prob-
lem was introduced by Chor, Goldreich, Kushilevitz, and
Sudan [11] and since then has attracted a considerable
amount of attention (see below). In formalizing the prob-
lem, it is convenient to model the database by ann-bit string

∗Some preliminary results of the current work appeared in [31].
†CS Dept., Ben-Gurion University. E-mail: beimel@cs.bgu.ac.il.
‡CS Dept., Technion. E-mail: yuvali@cs.technion.ac.il. Work done

while at Princeton University, AT&T Labs – Research, and DIMACS.
§CS Dept., Technion. E-mail: eyalk@cs.technion.ac.il. Supported by

a grant from the Mitchell Schoref Fund.
¶Accenture, Paris France. E-mail: jeanfrancoisr@hotmail.com.

Work done in part while at McGill University’s School of CS. Partly
funded by a NSERC PGS-A scholarship.

x where the user, holding someretrieval indexi, wishes to
learn thei-th data bitxi. A trivial solution to the PIR prob-
lem is to send the entire databasex to the user. However,
while being perfectly private, thecommunication complex-
ity of this solution may be prohibitively large. Indeed, the
most significant goal of PIR-related research has been to
minimize the communication complexity of PIR protocols.
Unfortunately, if the server is not allowed to gainany in-
formation about the identity of the retrieved bit, then the
linear communication complexity of the trivial solution is
optimal [11]. To overcome this problem, Chor et al. [11]
suggested that the user accessesk replicated copies of the
database stored at different servers, requiring that each in-
dividual server gets absolutely no information abouti. PIR
in this setting is referred to asinformation-theoreticPIR.

The best known complexity for information-theoretic
PIR protocols prior to the current work isO(n1/(2k−1)).
This was first obtained fork = 2 in [11] and generalized
to any fixed value ofk by Ambainis [1]. This upper bound
remained the best known until this work, in spite of var-
ious attempts to improve it [20, 21, 5]. While these at-
tempts resulted in finding new, very different, PIR proto-
cols, they all ended up with the sameO(n1/(2k−1)) bound.
(The constants, which depend onk, were significantly im-
proved; this is in addition to asymptotic improvements for
some extensions of the basic problem.) Note that the num-
ber of servers,k, is usually considered to be “small” and,
in particular, independent of the length of the database,
n; for larger values ofk, there is a construction ([11] and
implicitly in [3, 4]) that gives anO(log n)-server proto-
col with O(log2 n log log n) communication bits or alter-
natively (with different parameters) anO(log n/ log log n)-
server protocol with poly(log n) communication.

Other than the interest in PIR protocols for their own
sake, they also found various applications (see, e.g., [15,
28, 9]). One particularly interesting application of PIR is
for the construction of so-calledlocally decodable codes. A
k-query Locally Decodable Code (LDC) allows to encode a
databasex ∈ {0, 1}n into a stringy, such that even if a large
fraction ofy is adversarially corrupted, each bit ofx can still
be decodedwith high probabilityby probingk, randomly
selected, locations iny. (See Section 4 for a more precise
definition.) Katz and Trevisan [23] have shown an intimate
relation between such codes and information-theoretic PIR.
In particular, any information-theoretic PIR protocol can be

converted into an LDC of related efficiency. The best previ-
ously known upper bound on the length of ak-querybinary
LDC wasm(n) = 2O(n1/(k−1)). This bound was obtained
from PIR protocols with a single answer bit per server.

Our results. We improve over the previous upper bounds
for information-theoretic PIR and LDC. Our main contri-
bution is ak-server PIR protocol whose communication

complexity isO(n
c log log k
k log k) for some constantc. (More

specifically, our analysis shows thatc = 2 can be used
for everyk ≥ 3.) This protocol can be transformed in a
genericway [18, 23] into ak-query binary LDC of length

exp(n
c′ log log k
k log k). However, we also provide a direct con-

struction which is significantly better for small values ofk.
Our protocol is recursive and its analysis is obtained via the
solution of a certain recurrence. As mentioned, the most
interesting values ofk are small ones. Hence, for several
such values, we present in Figure 1 an analysis of the com-
munication complexity where the exponent is determined
exactly. The results in this figure show that our bounds are
better than the previous ones for values which are as small
ask = 3 for the case of PIR andk = 4 for the case of LDC.

communication
of k-server PIR

length ofk-query
binary LDC

k previous new previous new

2 O(n1/3) - 2O(n) -
3 O(n1/5) O(n1/5.25) 2O(n1/2) -
4 O(n1/7) O(n1/7.87) 2O(n1/3) 2O(n3/10)

5 O(n1/9) O(n1/10.83) 2O(n1/4) 2O(n1/5)

6 O(n1/11) O(n1/13.78) 2O(n1/5) 2O(n1/7)

Figure 1. Upper bounds for small values of k.

Techniques. Our construction borrows some ideas from
previous work on PIR. These include the idea of represent-
ing the database using polynomials (as in [11, 2] and espe-
cially [5]), the notion of “blocks” from [20], and the idea
of recursively retrieving bits from the servers’ answers (in-
stead of sending the whole answers) as a way to reduce
communication. Recursion was used previously in PIR pro-
tocols [1, 10, 25]; however, our recursion is somewhat more
sophisticated. Assume that we have a PIR protocolP with
the following three properties:

• The queries are short, however, the answers are long.
• The user only needs few bits from each answer.1

• There is an overlap between the answers that different
servers send to the user. More precisely, each answer
consists of several sub-answers and each sub-answer is
known to several servers.

This protocol leads to a recursive protocolP ′ as follows:
The user sends its queries as inP, and each server com-

1The user cannot reveal to the servers which bits it needs since this
information might disclose the indexi it is interested in.

putes its answer. However, the servers do not send their
long answers to the user; instead the user and each subset of
servers that hold a common sub-answer execute a PIR pro-
tocol in which the user retrieves the bits it needs from this
sub-answer. The difficulty of constructing an appropriate
protocolP, to be used in the recursion, is in the somewhat
contradicting goals of the above description. On one hand,
we want the number of sub-answers and their size to be as
small as possible. On the other hand, we want the “replica-
tion” (i.e., the overlap between sub-answers) to be as large
as possible. Organizing the answers appropriately into sub-
answers with good parameters according to the paradigm
suggested above does not seem to be straightforward. Most
of the technical work in this paper shows, in a sense, how to
construct a protocolP with such properties.

Related work. Several extensions of the basic PIR model
were studied. These include extensions tot-private pro-
tocols, in which the user is protected against collusions
of up to t servers [11, 20, 5]; extensions which protect
the servers holding the database (in addition to the user),
termed symmetric PIR (SPIR) [17, 29]; and other exten-
sions [30, 16, 13, 6, 9, 7]. PIR was also studied in acom-
putationalsetting where privacy should only hold against
computationally bounded servers; computational PIR was
studied in both the multi-server setting [10] and a sin-
gle server setting [25, 27, 32, 8, 26, 14, 24]. In contrast
to information-theoretic PIR, computational PIR protocols
with sublinear communication exist even in the single-
server case (under standard cryptographic assumptions).

From a practical point of view, single-server PIR pro-
tocols are preferable to multi-server ones for obvious rea-
sons: they avoid the need to maintain replicated copies of
the database or to compromise the user’s privacy against
several colluding servers. Moreover, single-server proto-
cols from the literature obtain better asymptotic communi-
cation complexity than information-theoretic protocols with
a constant number of servers. However, for typical real-
life parameters the known single-server protocols are less
efficient than known multi-server (even 2-server) proto-
cols. Furthermore, single-server protocols have somein-
herent limitations which can only be avoided in a multi-
server setting. For instance, it is impossible for a (sublinear-
communication) single-server PIR protocol to have very
short queries (say,O(log n) bits long) sent from the user
to the server, or very short answers (say, one bit long) sent
in return. These two extreme types of protocols, which can
be realized in the information-theoretic setting, have vari-
ous applications [13, 6]. Finally, the close relation between
information-theoretic PIR and locally decodable codes [23]
further motivates the study of PIR in this setting.

No strong general lower bounds on PIR are known.
Mann [27] obtained a constant-factor improvement over the
trivial log2 n bound, for any constantk. In the 2-server
case, much stronger lower bounds can be shown under
the restriction that the user reconstructsxi by computing
the exclusive-or of aconstantnumber of bits sent by the

servers [19]. Other lower bounds for restricted PIR proto-
cols are given by Itoh [22]. Lower bounds for locally de-
codable codes appear in [23, 12]. These results still leave
an exponential gap between known upper bounds and lower
bounds in the general (unrestricted) case.

Organization. In Section 2 we provide some necessary
definitions. In Section 3 we describe a concrete PIR proto-
col with the promised complexity. In Section 4 we describe
PIR protocols with short answers and their applications to
locally-decodable codes. In Section 5 we describe an ab-
stract framework which generalizes the concrete protocol.
Finally, in Appendix A we give a high-level description of
our protocol explaining why it saves communication.

2. Preliminaries

We use in our protocols multivariate polynomials. By
default, all polynomials are over GF(2). Variables of such
polynomials are denoted with capital letters, e.g.,Zh; as-
signments to these variables are in small letters, e.g.,zh.
The termdegree-d polynomial refers to a polynomial whose
total degree isat mostd. For an integert, [t] denotes the set
{1, . . . , t}. Finally, log r should be read aslog2 r.

A k-server PIR protocol involvesk serversS1, . . . ,Sk,
each holding the samen-bit stringx (the database), and a
userU who knowsn and wants to retrieve some bitxi, i ∈
[n], without revealingi. We restrict our attention toone-
round, 1-private, information-theoretic PIR protocols.

Definition 2.1 (PIR) A PIR protocol is a triplet of algo-
rithmsP = (Q,A, C). At the beginning of the protocol, the
userU invokesQ(k, n, i) to pick a (randomized)k-tuple of
queries(q1, q2, . . . , qk), along with an auxiliary informa-
tion string aux. It sends each serverSj the queryqj and
keepsaux for a later use. Each serverSj responds with an
answeraj = A(k, j, x, qj). (We can assume without loss
of generality that the servers are deterministic; hence, each
answer is afunction of the query and the database.) Fi-
nally,U computes its output by applying the reconstruction
algorithmC(k, n, a1, . . . , ak,aux). We view the number of
serversk as constant, and require all algorithms to be effi-
cient in the data lengthn. A protocolP restricted to a fixed
k will be referred to as ak-serverprotocol. A protocol as
above should satisfy the following requirements:

Correctness. For any k, n, x ∈ {0, 1}n and i ∈ [n],
the user outputs the correct value ofxi with probability 1
(where the probability is over the randomness ofQ).

Privacy. Each server learns no information abouti. For-
mally, for anyk, n, i1, i2 ∈ [n], and serverj ∈ [k], the dis-
tributionsQj(k, n, i1) andQj(k, n, i2) are identical, where
Qj denotes thej-th output ofQ.

Thecommunication complexityof a PIR protocolP, de-
notedCP(n, k), is a function ofk andn measuring the to-
tal number of bits communicated between the userU and

the k servers maximized over all choices ofx ∈ {0, 1}n,
i ∈ [n], and random inputs. Thequery lengthof P, denoted
QP(n, k), is the maximal number of bits sent fromU to any
single server, and theanswer length, denotedAP(n, k), is
the maximal number of answer bits sent by any server.

Finally, we say that a PIR protocolP is linear (over
GF(2)) if U recoversxi by taking the exclusive-or of some
subset of the answer bits determined by aux. All protocols
constructed in this work are linear.

3. A Concrete Protocol

We present below a PIR protocol that achieves the de-
sired upper bound. It builds upon several ideas that are bor-
rowed from [20, 5]; however, for self containment, the pre-
sentation assumes no knowledge of these works.

The protocol is based on representing then-bit database
x by a multivariate polynomialPx(Z1, . . . , Zm) over
GF(2). The polynomialPx will be defined in Section 3.1;
for the time being we only describe its important features.
In this representation we carefully control two parameters:
the degreed and the number of variablesm which is cho-
sen such thatm = Θ(n1/d).2 The polynomialPx repre-
sentsx in the following sense: with everyi ∈ [n] we asso-
ciate a distinct assignment (also referred to as “encoding”)
E(i) ∈ {0, 1}m; the polynomialPx satisfies

∀i ∈ [n], Px(E(i)) = xi (1)

(we do not care about the valuePx(~z) for assignments~z
which are not of the formE(i), for somei). Each coeffi-
cient ofPx is determined byx and hence each serverSj can
compute it. The userU , on the other hand, does not know
x. It has an indexi, pointing to the bit fromx it is interested
in, and it can computeE(i). Hence, the PIR problem is
reduced to the problem of evaluatingPx(E(i)) while keep-
ingE(i) secret from each server. To this end,U chooses at
random~y1, . . . , ~yk ∈ {0, 1}m subject to the constraint

E(i) =
k∑
j=1

~yj (2)

and sends to each serverSj all the ~y ’s except~yj . Note
that since eachk − 1 of the ~y ’s are uniformly and inde-
pendently distributed, a single server can learn no informa-
tion abouti. The user’s goal is to evaluatePx(

∑k
j=1 ~yj) =

Px(E(i)) = xi. (Each~yj consists ofm valuesyj,h, for
j ∈ [k], h ∈ [m].) Equivalently, we can think of each vari-
ableZh of Px as the sum ofk variables:Zh =

∑k
j=1 Yj,h.

The valuePx(E(i)) is obtained by assigning the valueyj,h
to each variableYj,h. LetQx be the polynomial obtained by

viewing Px as a polynomial in the variables{Yj,h}h∈[m]
j∈[k] .

This is a degree-d polynomial inmk variables. Consider

2To be more precisem = Θ(dn1/d). As we treatd andk as constants,
we will ignore constants depending ond andk throughout the paper.

a monomialM of this polynomial;M depends on at most
d variables. Since each variable is known tok − 1 of the
servers (i.e., only one server does not know it) then there
exists a server that is missing at mostbd/kc of the variables
of M ; we assignM to this server (if there is more than one
server with this property we pick one arbitrarily).

Suppose, for the moment, thatd = k − 1. In this case
bd/kc = 0; i.e., the server to whichM is assigned knows
the assignmentyj,h for all the variablesYj,h in M and
can actually compute the value ofM . The PIR protocol
therefore consists ofU picking values~yj as in (2), sending
each~yj to all servers exceptSj , and each server answer-
ing U with the sum (in GF(2)) of all monomials assigned
to it. By the above discussion, the sum of these answers
equalsxi. The communication complexity of this protocol
is O(m) = O(n1/d) = O(n1/(k−1)) bits. More specifi-
cally, we have shown:

Claim 3.1 ([13, 20, 5]) There exists ak-server PIR proto-
col with query lengthO(n1/(k−1)) and answer length1.

Next, consider the cased = 2k − 1. Again, assign
each monomialM to a server that missesbd/kc = 1 of
the variables ofM . Each serverSj can therefore substitute
the values for all but (at most) one of the variables of each
monomialM assigned to it. After substituting these values,
the sum of the monomials assigned toSj can be expressed
as a degree-1 polynomialPj(Yj,1, . . . , Yj,m), whose vari-
ablesYj,1, . . . , Yj,m are precisely those whose values are
unknown toSj . Note, however, that if the user could learn
all polynomialsPj , then by substituting the correct values
yj,h for all their variables and summing up the values of the
k polynomials it will get

k∑
j=1

Pj(yj,1, . . . , yj,m) = Px(
k∑
j=1

~yj) = Px(E(i)) = xi.

The PIR protocol starts as before, but this timeSj sends the
m + 1 coefficients(a single bit each) of the degree-1 poly-
nomialPj . The communication complexity of this protocol
is therefore stillO(m) = O(n1/d) which, by the choice of
d, equalsO(n1/(2k−1)) bits. To summarize the discussion
so far, we have shown how to obtain a PIR protocol with the
best known complexity prior to the current work:

Claim 3.2 ([1, 20, 5]) There exists ak-server PIR protocol
with communication complexityO(n1/(2k−1)).

Next, it is useful to note that just further increasing the
value ofd is of no use. While in such a case each poly-
nomial Pj as above indeed has less variables, it is of a
higher degree (i.e.,bd/kc); hence the list of coefficients is
no shorter than what we get by choosingd = 2k − 1, as
above. We emphasize that the amount of information that
the user needs about each polynomialPj is very small (i.e.,
the valuePj(~yj)); however, it cannot reveal~yj to Sj as this
will expose the valueE(i) and hencei.

The contribution of this paper starts with the following
idea to go around the above difficulty. Suppose that we

can choose the parameters in a way that each polynomial
which the user wants to evaluate is known to several servers.
Rather than asking the servers to send the coefficients, the
user canrecursivelyretrieve the value of this polynomial by
using a PIR protocol among the servers sharing the polyno-
mial. Assume that we can express

Px(
k∑
j=1

~yj) =
∑
V⊆[k]

PV (zV), (3)

where each polynomialPV is known to every server in the
setV , and zV is an assignment known to the user. The
polynomialsPV may have higher degree (than the degree-1
polynomials that we have in thed = 2k − 1 case), yet we
hope to avoid sending the list of coefficients by the servers
and instead let the user get each valuePV (zV) by applying,
recursively, a PIR protocol with the servers ofV . Note that
the number of servers in each suchV is smaller thank,
which is a disadvantage compared to the number of servers
that we have, say, for retrieving the valuePx(E(i)). One
may hope, however, thatPV will have a low degree and a
small number of variables.

We do not know how todirectly construct such polyno-
mials (with good parameters); instead, we use a recursive
PIR in the following way. EachPV will be such that, know-
ing zV , it suffices to get a small number of its coefficients
in order to obtainPV (zV); the identity of these coefficients
may reveal information abouti and hence each coefficient
will be retrieved using a PIR protocol. Before showing how
to construct the polynomialsPV , we specify their proper-
ties that imply the complexity of the overall solution. We
use two parametersλ andk′. The parameterk′ is a lower
bound on the size of the setsV we will use (except for the
setsV of size 1 which will also be used). Each polyno-
mialPV consists of monomialsM in which each of the|V |
servers misses at mostλ of the variables. Therefore, all but
at mostλ|V | variables ofM are known to all servers inV
and so after substituting the values known to all servers inV
the degree ofPV will be at mostλ|V |. The number of vari-
ables on whichPV depends ism (as inPx) and, in fact, the
user will seek the value ofPV (E(i)). The motivation for
doing so has to do with our choice of encodingE(·); in our
encoding most bits ofE(i) are set to0 and thus most mono-
mials ofPV (E(i)) are set to0 (and so their coefficients are
of no interest). The user therefore needs to retrieve only the
coefficients of those monomials where all variables are set
to 1. The number of these coefficients is small (at most2d).
SincePV hasO(mλ|V |) coefficients, the user can retrieve
the valuePx(E(i)) using2d executions of a|V |-server PIR
protocol with database of sizeO(mλ|V |) = O(nλ|V |/d).

Assuming we can indeed find such polynomialsPV with
the above properties and that we have a PIR protocolP with
communication complexityCP(n, k), we get a protocolP ′
with communication complexity

CP′(n, k) ≤ Ok

(
n1/d +

k∑
`=k′

(
k

`

)
CP(nλ`/d, `)

)
. (4)

(The notationOk indicates that the constant depends onk.)
An appropriate choice of parameters will ensure, in partic-
ular, thatλk/d < 1 and soP is applied to shorter strings.

3.1. Constructing the Polynomials

To complete the description of the protocol, we provide
specific implementations for the encodingE(·), the poly-
nomialsPx andPV , and the valueszV that together satisfy
Equation (3). More precisely, we describe an encodingE
of lengthm = Θ(n1/d), polynomialsPx, PV as above and
polynomialsPj of degree 1, such that for everyi

xi = Px(E(i))

=
∑

V⊆[k],|V |≥k′
PV (E(i)) +

k∑
j=1

Pj(~yj). (5)

(For eachPV we usezV = E(i) and for eachPj we use
~yj .) Furthermore, each polynomialPV can be computed
from Px and{~yj}j /∈V (this holds forV = {j} as well).

The construction ofE andPx proceeds as follows. Let
E(1), . . . , E(n) be n distinct binary vectors (strings) of
lengthm and weightd. Such vectors exist if

(
m
d

)
≥ n,

i.e.,m = Θ(n1/d) variables are sufficient.3 Define

Px(Z1, . . . , Zm) def=
n∑
i=1

xi
∏

E(i)`=1

Z`,

(E(i)` is the`th bit ofE(i)). Since eachE(i) is of weight
d then the degree ofPx is d. Each assignmentE(i) to the
variablesZ1, . . . , Zm satisfies exactly one monomial inPx
(whose coefficient isxi); thus,Px(E(i)) = xi.

Consider the polynomial Qx({Yj,h}h∈[m]
j∈[k]) def=

Px(
∑k
j=1 Yj,1, . . . ,

∑k
j=1 Yj,m). This is a polynomial

with mk variables and degreed. That is,Qx is obtained
from Px by settingZh =

∑k
j=1 Yj,h. For every monomial

M , consider the setV (M) ⊆ [k] that contains all servers
that appear at mostλ times inM . The first attempt to
definePV is by assigning all monomials withV (M) = V
to V and obtainingPV by substituting{~yj}j /∈V in these
monomials. The resulting polynomialPV has small
degree, namelyλ|V |, and has few variables, namelym|V |.
However, in this casePV should be evaluated at the point
〈~yj〉j∈V ; this point may be of arbitrary weight and hence
we do not know how to apply the recursion.

Before constructing the polynomialsPV , we choose the
“correct” value ofd, i.e., the maximal value that guarantees
that for any monomialM of degree at mostd either there
is a serverSj that knows all but at most one variable in
the monomial (in this case this monomial contributes to the
correspondingPj), or the setV (M) has size at leastk′.

3Alternatively, one can use an encoding with strings of weightat most
d; however, for small values ofd (e.g., constant) this yields only minor
efficiency improvements. Another option is to use the encoding of [11, 20]
(calledE3 in [5]). This can improve the efficiency of our protocols by a
factor of2d in some cases, but will further complicate the presentation.

Claim 3.3 Letλ, k′ ≤ k be parameters, andd ≤ (λ+1)k−
(λ − 1)k′ + (λ − 2). Furthermore, letM be a monomial
of degree at mostd in the variablesYj,h, wherej ∈ [k] and
h ∈ [m]. Then, either there is a server that misses at most
one variable, or|V (M)| ≥ k′.

Proof: Assume that the claim does not hold. That is,
everySj misses at least two variables in the monomialM
(i.e., at least two of the variables{Yj,h}h∈[m] appear inM)
and at mostk′ − 1 servers miss at mostλ variables ofM
(equivalently at leastk− (k′−1) servers miss at leastλ+1
variables). Therefore, the number of variables in the mono-
mial is at least(k− (k′− 1))(λ+ 1) + (k′− 1) · 2 ≥ d+ 1,
contradicting the choice ofd. 2

Following is the main technical claim underlying our
construction.4

Claim 3.4 Let k, λ, k′ and d be as in Claim 3.3,
Px(Z1, . . . , Zm) a polynomial of degree at mostd, and~z =∑k
j=1 ~yj . Then, there are polynomialsPV (Z1, . . . , Zm)

for everyV ⊆ [k], where |V | ≥ k′, and polynomials
Pj(Z1, . . . , Zm) for j ∈ [k], such that

1. Each polynomialPV is of degreeλ|V | and can be com-
puted fromPx and{~yj}j /∈V ;

2. Each polynomialPj is of degree1 and can be computed
fromPx and{~yj′}j′ 6=j ;

3. Px(~z) =
∑
V⊆[k],|V |≥k′ PV (~z) +

∑
j∈[k] Pj(~yj).

Proof: It suffices to prove the claim for polynomi-
als that consist of a single monomial (and then summing
over all monomials inPx). Hence, consider, w.l.o.g.,
P (Z1, . . . , Zm) = Z1Z2 · · ·Zd (instead ofPx). Let

Q({Yj,h}h∈[m]
j∈[k]) def= P (

k∑
j=1

Yj,1, . . . ,

k∑
j=1

Yj,d)

= (
k∑
j=1

Yj,1)(
k∑
j=1

Yj,2) · · · (
k∑
j=1

Yj,d).

The polynomialQ has kd monomials of degreed each.
Each monomialM is of the formYj1,1 · · ·Yjd,d. Denote

T (M) def=
∏

jq∈V (M)

Zq
∏

jq /∈V (M)

Yjq,q.

Note thatT (M) is expressed in terms of bothZ ’s andY ’s
and it should be interpreted as follows: (a) whenT (M)
is part of a polynomial in{Yj,h} then it should be inter-
preted as the polynomial obtained by substituting eachZq
with

∑k
j=1 Yj,q. (b) whenT (M) is part of a polynomial

in {Zj} then it should be interpreted as a single monomial
of degree≤ λ|V (M)| whose coefficient

∏
jq /∈V (M) Yjq,q is

known to all servers inV (M).
4In the full version of this paper we will present an alternative proof of

this claim based on the inclusion-exclusion principle.

Below is an algorithm to construct the polynomialsPV
as in the claim. The algorithm maintains a polynomialQ′

(initially Q′ = Q) with all the monomials that we need to
take care of (monomials may be repeatedly taken out and
inserted intoQ′). Denote byδ(M) the number of variables
Yjq,q in M with jq ∈ V (M).

1. SetQ′ = Q and for allV setPV (Z1, . . . , Zm) = 0.
2. Find a setV such thatV = V (M) for some monomial
M (currently) inQ′, and such thatV is of the largest size
among all setsV (M) for suchM ’s.
If |V | < k′ then STOP.

3. While there is a monomialM s.t.V (M) = V :
• among theseM ’s pickM that maximizesδ(M);
• addT (M) to PV , setQ′ = Q′ − T (M).

4. GOTO 2.

To argue the correctness of the algorithm, view anyT (M)
added toPV in Step 3 as a sum ofkδ(M) monomials in the
{Yj,h} variables. Clearly, thePV ’s are of the desired degree
and their sum evaluated at~z isP (~z)−Q′(~z) (forQ′ that the
algorithm halts with). We need to argue that the algorithm
halts.

We say that two monomialsM1 = Yj1,1 · · ·Yjd,d and
M2 = Yj′1,1 · · ·Yj′d,d are equivalent (with respect toW ⊆
[k]) if (a) V (M1) = V (M2) = W ; and (b) for each index
q ∈ [d] eitherjq, j′q are both inW or jq = j′q (i.e., the same
variableYjq,q appears in both monomials). Note that this is
an equivalence relation and denoteM1 ≡M2.

LetM1 be a monomial ofT (M) and note the following
observations about its structure.(i) V (M1) ⊆ V (M) (any
server not inV (M) = V , i.e., one that appears more than
λ times inM , appears at least the same number of times in
M1, by definition ofT (M)). (ii) δ(M1) ≤ δ(M) (any vari-
able that does not contribute toδ(M) does not contribute to
δ(M1) either).(iii) if V (M1) = V (M) andδ(M1) = δ(M)
then, by definition,M1 ≡ M . (iv) if M2 ≡ M1 (with re-
spect to someW) thenM2 must also be inT (M) (by (i),
W ⊆ V (M)). It follows that if M1 ≡ M2 then, at any
time during the algorithm, they are either both inQ′ or both
are not inQ′. This is because it is true at the beginning (all
thekd monomials of the formYj1,1 · · ·Yjd,d are inQ′ = Q)
and wheneverQ′ is modified by subtractingT (M) for some
monomialM then if, say,M1 is inT (M) then so isM2 and
vice versa.

Using the above observations, we now argue the halt-
ing of the algorithm. The idea is that, even though new
monomials may be added toQ′ when subtractingT (M) in
Step 3, such monomialsM ′ either have smallerV (M ′) or
smallerδ(M ′) and hence we always make progress. This is
because in each application of Step 3 we pickM that max-
imizesV (M) and among those one that maximizesδ(M).
The monomials added toQ′, when subtractingT (M) sat-
isfy either (a)V (M ′) ⊂ V (M) – in which case it will be
dealt in future application of Step 2 if it will still exist; or
(b) V (M ′) = V (M) but δ(M ′) < δ(M) – in which case it
will be dealt in future application of Step 3 if it will still ex-
ist; or (c)V (M ′) = V (M) andδ(M ′) = δ(M) – in which

case ifM is inQ′ so isM ′ and when subtractingT (M) we
eliminate both. Once we finish the construction ofPV we
do not return to thisV anymore.

When the algorithm halts there is noM in Q′ for which
|V (M)| ≥ k′. By Claim 3.3 and the choice ofd, in such
a case for each of these monomials there is at least oneSj
missing at most one variable (from{Yj,h}h∈[m]). Each such
M is now added to a correspondingPj . Hence, the claim
follows. 2

Note that, in spite of the recursion, the resulting protocol
can still be implemented as a one-round PIR protocol. The
indices of the bits that the user needs in the recursive calls
are determined byE(i). Thus, in the first round, when the
user sends its query fori, it can also send its queries for the
indices that it needs from every setV . The properties of this
protocol are summarized by the next theorem.

Theorem 3.5 Suppose there is a PIR protocolP with com-
munication complexityCP(n, k). Let d, λ, k′ be positive
integers (which may depend onk) such thatk′ < k and
d ≤ (λ + 1)k − (λ − 1)k′ + (λ − 2). Then there is a PIR
protocolP ′ with communication complexity

CP′(n, k) = Ok

(
n1/d +

k∑
`=k′

(
k

`

)
CP(nλ`/d, `)

)
. (6)

Remark 3.6 For all PIR protocols from the litera-
ture (including the current work)CP(nλ`/d, `) =
O(CP(nλk

′/d, k′)) for ` ≥ k′. Thus, the sum in Eq. (6)
is dominated by its first term.

Example 3.7 We demonstrate how to get the first two im-
proved protocols from Figure 1. In the 3-server case, we
setλ = k′ = 2 andd = 7. By using a 2-server protocol
with complexityO(n1/3) (see Claim 3.2) the communica-
tion complexity isO(n1/7 + (n4/7)1/3) = O(n4/21). In
the4-server case we can rely on the above protocol and use
λ = 2, k′ = 3, andd = 9 to obtain communication com-
plexity ofO(n1/9 + (n6/9)4/21) = O(n8/63).

3.2. Analysis of the Protocol

The above discussion yields a recursive complexity anal-
ysis. Below we get a specific bound by choosing appro-
priate parameters. This analysis is somewhat crude and is
mainly intended for large values ofk (which are still viewed
as constants). For small values ofk, one should be more
careful; e.g., the results specified in Figure 1 are derived by
choosing optimal values for the parameters.

Lemma 3.8 For every positive integeri there is a PIR pro-
tocolPi such thatCPi(n, k) = Ok(n2/(ik)) for every con-
stantk ≥ (i− 1)!.

Proof: By induction. The first nontrivial case isi =
3, in which the lemma follows from Claim 3.2. For the
induction step, suppose thati ≥ 3 and there exists a PIR

protocolPi such thatCPi(n, k) = Ok(n2/(ik)) for every
k ≥ (i − 1)!. Using Theorem 3.5 we constructPi+1 such
thatCPi+1(n, k) = Ok(n2/((i+1)k)) for everyk ≥ i!. Let
k′ =

⌊
k
i

⌋
≥ (i − 1)!, λ =

⌈
i
2

⌉
(in particular,λ ≥ 2), and

d = (λ+1)k−(λ−1)k′ ≤ (λ+1)k−(λ−1)k′+(λ−2), as
required to apply Theorem 3.5. Note thatCPi(n

λ`/d, `) =
Ok(n2λ/(id)) for every` ≥ k′. Thus, to complete the proof
it suffices to prove that2λ/(id) ≤ 2/((i+ 1)k):

λ

id
≤ λ

i((λ+ 1)k − (λ− 1)k/i)
=

λ

k(λi+ (i− λ+ 1))

≤ λ

k(λi+ λ)
=

1
k(i+ 1)

,

where the first inequality is by the choice ofd andk′ and
the last inequality is by the choice ofλ. 2

Corollary 3.9 There exists a PIR protocolP such that
CP(n, k) = Ok(n2 log log k/(k log k)) for everyk ≥ 3.

Proof: For k ≥ 3 the protocolP executes the protocol
Pi promised by Lemma 3.8, wherei = dlog k/ log log ke.
Then,(i − 1)! ≤ (i − 1)i−1 ≤ log klog k/ log log k = k, and
CP(n, k) = CPi(n, k) = Ok(n2 log log k/(k log k)). 2

In the full version of the paper we will show that the
above analysis is essentially optimal. This is not to say that
there are no other protocols that can do better; it only says
that within the freedom that our protocol has in choosing
the parametersλ and k′, the above choice, that achieves
complexity ofnO(log log k/(k log k)), is essentially the best.

4. PIR Protocols with Short Answers and Lo-
cally Decodable Codes

In this section we obtain efficient PIR protocols in which
the answer of each server consists of a single bit; we refer to
such protocols as “binary protocols.” We start by noting that
the protocols from the previous section can be transformed
in a genericway to binary protocols with related complex-
ity. Specifically, given anylinear k-server PIR protocol in
which the total communication with each server isc(n), it is
possible to construct a2k-server binary protocol with query
lengthc(n) [18].5 Thus, there is a binaryk-server PIR pro-
tocol with query lengthnO(log log k/(k log k)). Below is a di-
rect construction which improves the constants in the above
exponent. In particular, while the generic transformation

5It is easy to verify that the protocols constructed in the previous sec-
tion are in fact linear. The transformation to a binary protocol may proceed
as follows. The user generates queriesq1, . . . , qk as in the original pro-
tocol and sends eachqj to bothSj andSk+j ; each of them generates the
corresponding answeraj but does not send it back. Instead, the user pri-
vately retrieves the exclusive-or of the bits that it needs fromaj using the
following procedure. The user needs to learn the inner product (in GF(2))
of aj with some vectorbj it knows. To this end it sends a random vectorrj
of length|aj | toSj andrj+k = rj−bj toSj+k. Each of the two servers
replies with the inner product ofaj and the received vector, allowing the
user to recover〈bj , aj〉 by adding (in GF(2)) the two received bits.

improves over the best previously knownbinary protocols
only for k ≥ 6, the following direct construction gives the
first improvement whenk = 4.

Theorem 4.1 Suppose there is a PIR protocolP with query
lengthQP(n, k) and answer lengthAP(n, k). Let d, λ, k′

be positive integers (which may depend onk) such thatk′ <
k andd ≤ (λ + 1)k − λk′ + (λ − 1). Then there is a PIR
protocolP ′ with query length

QP′(n, k) = Ok

(
n1/d +

k∑
`=k′

QP(nλ`/d, `)

)
(7)

and answer lengthOk(
∑k
`=k′ AP(nλ`/d, `)). Furthermore,

if P is binary and linear then there is a binary linearP ′ with
query length as above.

For lack of space, we only sketch the proof. The condi-
tion d ≤ (λ + 1)k − λk′ + λ − 1 guarantees that in every
monomialM , eitherV (M) ≥ k′ or there is a server that
knowsall variables in the monomial. This allows to obtain
a stronger variant of Claim 3.4 where the polynomialsPj
are of degree0. Thus, it suffices for each server to send
one bit to the user in addition to the answers in the recur-
sive calls. In the linear binary case, it suffices to send to the
user the exclusive-or of the additional bit and the answer
bits from the recursive calls.

Example 4.2 We illustrate the use of Theorem 4.1 for ob-
taining the first two improvements over previous protocols.
As a basis we can use the casek = 3, for which the
best known binary protocol has query lengthO(n1/2) (see
Claim 3.1). For k = 4 we let λ = 1, k′ = 3, and
d = 5, and get a4-server binary protocol with query length
O(n1/5 + (n3/5)1/2) = O(n3/10). In the5-server case we
let λ = 1, k′ = 4, d = 6 and get a binary protocol with
query lengthO(n1/5).

Application to locally decodable codes. A binary code
C : {0, 1}n → {0, 1}m is said to be(k, δ, ρ)-locally de-
codableif every bitxi of x can be decoded fromy = C(x)
with success probability≥ 1/2 + ρ by readingk (randomly
chosen) bits ofy, even if up to aδ-fraction of y was ad-
versarially corrupted. Ak-query binary locally-decodable
codeis a family of(k, δ(n), ρ(n))-locally decodable codes
Cn : {0, 1}n → {0, 1}m(n) such thatδ(n), ρ(n) are lower
bounded by some positive constant, independent ofn.

Given a binaryk-server PIR protocol with query length
c(n), it is possible to construct ak-query binary locally-
decodable code of lengthO(k2c(n)) [23]. If the query to
each server is uniformly distributed over its domain, as is
the case for the protocols we obtain, the encoding of a string
x ∈ {0, 1}n can be defined as the concatenation of the
servers’ answers to all possible queries, i.e.,A(k, j, x, q)
for all j ∈ [k] and all queriesq. Thus, we have:

Corollary 4.3 There is a constantc such that for everyk
there is ak-query binary locally-decodable code of length
O(2n

c log log k/(k log k)
).

5. An Abstract Framework

In this section we describe an abstract framework which
generalizes the specific protocol from Section 3 and cap-
tures the scope of the underlying technique. We start by
formulating a general linear algebra problem that lies in the
core of Claim 3.4.

Fix some fieldF (whereF = GF(2) by default), and
consider the linear space of polynomials overF in thedk
variablesYj,h, wherej ∈ [k], h ∈ [d]. In fact, we will only
be interested in the subspace spanned by thekd monomials
of the formYj1,1Yj2,2 · · ·Yjd,d, for j1, . . . , jd ∈ [k].

We useZh as an abbreviation for the sum
∑k
j=1 Yj,h.

Following the terminology from [20], ablock is a polyno-
mial which can be expressed as a product of sumsZh and
variablesYj,h. For example, everyT (M) from the proof
of Claim 3.4 is a block. Note that ifb is a block, then
its representation as such a product must be unique, and
must involve each indexh ∈ [d] exactly once. With each
block b, let δ(b) denote the number of sumsZh in b, and
V (b) denote the set of indicesj ∈ [k] which do not oc-
cur (in variablesYj,h) in the representation ofb. For in-
stance, ifd = 5, k = 5, andb = Z1Y5,2Y5,3Z4Y2,5 then
δ(b) = 2 (sinceZ1, Z4 are the sums occurring inb) and
V (b) = {1, 3, 4}. In the context of the PIR application, the
block b will be used by the servers inV (b) to construct a
polynomial of degreeδ(b) in the variablesZ1, . . . , Zm.

We now define a key property of sets of blocks, general-
izing a corresponding notion from [20].

Definition 5.1 Let B be a set of blocks with parameters
d, k. We say thatB is spanningif the blocks inB, viewed
as polynomials in thedk variablesYj,h, span the block
Z1Z2 · · ·Zd. Denote by∆d,k the class of spanning block
setsB with parametersd, k.

Example 5.2 Let d = k = 2. The block set{Y1,1Y1,2,
Z1Y2,2, Y2,1Y1,2} is spanning. On the other hand, it is easy
to verify that block setB = {Y1,1Z2, Z1Y2,2, Y2,1Y1,2} is
not spanning, i.e.B does not span the blockZ1Z2, although
each of the four monomials inZ1Z2 is involved in some
block inB.

Example 5.3 If d = 2k − 1, then the set of all blocksb
such thatδ(b) ≤ 1 and |V (b)| ≥ 1 is spanning. This set
of blocks is used in [20] to construct a PIR protocol with
communication complexityO(k3n1/(2k−1)).

The following set of blocks corresponds to Claim 3.4.

Example 5.4 Let k, λ, k′, d, be as in Claim 3.3. Then the
following setB is spanning.B includes: (1) every blockb
such thatδ(b) ≤ 1 and |V (b)| ≥ 1; (2) every blockb such
that k′ ≤ |V (b)|, δ(b) ≤ λ|V (b)|, and eachj ∈ [k] \ V (b)
occurs inb more thanλ times.

Generalizing Theorem 3.5, it is possible to use any span-
ning block setB for reducingk-server PIR to instances of
PIR with a smaller number of servers. This is formalized by
the following theorem.

Theorem 5.5 Suppose there is a PIR protocolP with com-
munication complexityCP(n, k). Then, for anyd = d(k)
and a spanning block setB = B(d, k) ∈ ∆d,k there is a
PIR protocolP ′ with communication complexity

CP′(n, k) = Ok

(
n1/d +

∑
b∈B

CP(nδ(b)/d, |V (b)|)

)
.

We note that Theorem 5.5 gives, in a sense, a closed-
form expression for the best communication complexity at-
tainable by the current approach. The main difficulty, how-
ever, is in finding appropriate choices for the spanning block
setB that optimize the overall complexity. We do not know
if, using Theorem 5.5, it is possible to construct a protocol
whose complexity is significantly better than the protocol
presented in Corollary 3.9. In the full version of the paper
we will show that, using Theorem 5.5, one cannot construct
a protocol whose complexity is better thanO(n1/k2

).

Acknowledgments. We thank Enav Weinreb for valuable
comments on earlier drafts of this paper. We also thank Don
Coppersmith for a helpful discussion.

References

[1] A. Ambainis. Upper bound on the communication complexity of
private information retrieval. In24th ICALP, LNCS1256, pp. 401–
407, 1997.

[2] L. Babai, P. G. Kimmel, and S. V. Lokam. Simultaneous messages
vs. communication. InSTACS ’95, LNCS999, pp. 361–372, 1995.

[3] D. Beaver and J. Feigenbaum. Hiding instances in multioracle
queries. InSTACS ’90, vol. 415 ofLNCS, pp. 37–48, 1990.

[4] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally ran-
dom reductions: Improvements and applications.J. of Cryptology,
10(1):17–36, 1997.

[5] A. Beimel and Y. Ishai. Information-theoretic private information
retrieval: A unified construction. In28th ICALP, vol. 2076 ofLNCS,
pp. 912–926, 2001.

[6] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’ compu-
tation in private information retrieval: PIR with preprocessing. In
CRYPTO 2000, vol. 1880 ofLNCS, pp. 56–74, 2000.

[7] A. Beimel and Y. Stahl. Robust information-theoretic private infor-
mation retrieval.3rd Conf. on Security in Commun. Networks, 2002.

[8] C. Cachin, S. Micali, and M. Stadler. Computationally private in-
formation retrieval with polylogarithmic communication. InEURO-
CRYPT ’99, vol. 1592 ofLNCS, pp. 402–414, 1999.

[9] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld, and R. N.
Wright. Selective private function evaluation with applications to
private statistics. In20th PODC, pp. 293 – 304, 2001.

[10] B. Chor and N. Gilboa. Computationally private information re-
trieval. In29th STOC, pp. 304–313, 1997.

[11] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private infor-
mation retrieval.J. of the ACM, 45:965–981, 1998.

[12] A. Deshpande, R. Jain, T Kavita, V. Lokam, and J. Radhakrishnan.
Better lower bounds for locally decodable codes. In16th CCC, pp.
184–193, 2002.

[13] G. Di-Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-
providers for private information retrieval. J. of Cryptology,
14(1):37–74, 2001.

[14] G. Di-Crescenzo, T. Malkin, and R. Ostrovsky. Single-database pri-
vate information retrieval implies oblivious transfer. InEUROCRYPT
2000, vol. 1807 ofLNCS, pp. 122–138, 2000.

[15] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and
R. N. Wright. Secure multiparty computation of approximations. In
28th ICALP, vol. 2076 ofLNCS, pp. 927–938, 2001.

[16] Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for
private information retrieval. InRANDOM ’98, vol. 1518 ofLNCS,
pp. 200–217, 1998.

[17] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data
privacy in private information retrieval schemes.JCSS, 60(3):592–
629, 2000.

[18] O. Goldreich. Personal communication, 2000.

[19] O. Goldreich, H. Karloff, L. Schulman, and L. Trevisan. Lower
bounds for linear locally decodable codes and PIR. In16th CCC,
pp. 175 – 183, 2002.

[20] Y. Ishai and E. Kushilevitz. Improved upper bounds on information
theoretic private information retrieval.31st STOC, pp. 79 – 88, 1999.

[21] T. Itoh. Efficient private information retrieval.IEICE Trans. Fund.
of Electronics, Commun. and Comp. Sci., E82-A(1):11–20, 1999.

[22] T. Itoh. On lower bounds for the communication complexity of pri-
vate information retrieval.IEICE Trans. Fund. of Electronics, Com-
mun. and Comp. Sci., E84-A(1):157–164, 2001.

[23] J. Katz and L. Trevisan. On the efficiency of local decoding proce-
dures for error-correcting codes. In32nd STOC, pp. 80–86, 2000.

[24] A. Kiayias and M. Yung. Secure games with polynomial expressions.
In 28th ICALP, vol. 2076 ofLNCS, pp. 939–950, 2001.

[25] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Sin-
gle database, computationally-private information retrieval. In38th
FOCS, pp. 364–373, 1997.

[26] E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations
are sufficient for single-database computationally-private informa-
tion retrieval. InEUROCRYPT 2000, LNCS 1807, pp. 104–121,
2000.

[27] E. Mann. Private access to distributed information. Master’s thesis,
Technion, 1998.

[28] M. Naor and K. Nissim. Communication preserving protocols for
secure function evaluation. In33th STOC, 2001.

[29] M. Naor and B. Pinkas. Oblivious transfer and polynomial evalua-
tion. In 31st STOC, pp. 245–254, 1999.

[30] R. Ostrovsky and V. Shoup. Private information storage. In29th
STOC, pp. 294–303, 1997.

[31] J. F. Raymond. Private information retrieval: Improved upper bound,
extension and applications. Master’s thesis, McGill University, 2000.

[32] J. P. Stern. A new and efficient all-or-nothing disclosure of secrets
protocol. InASIACRYPT ’98, vol. 1514 ofLNCS, pp. 357–371, 1998.

A. A High-Level View: Replication vs. Degree

In this appendix we try to explain where the improve-
ment over previous protocols comes from. The recursive
formulation of our protocol, as well as the various techni-
calities involved in its implementation and analysis, make
it somewhat difficult to trace the actual source for improve-
ment. The following overview of our approach attempts to
give a fairly accurate intuition as tohowandwhy it works,
while ignoring some details or difficulties that are dealt with
in the technical sections.

A key technique in previous solutions, as well as in ours,
is anarithmetizationof the PIR problem. Using a polyno-
mial representation for the databasex, the user’s goal is re-
duced to evaluating a multivariate polynomialP (~Z), known
to all k servers, on some point~z determined by its retrieval
indexi.6 This task should be achieved while hiding~z from
each server. There are three parameters associated with the
above problem: (1) thenumber of variablesin P , denoted
bym; (2) thedegreeof P , denoted byd; and (3) therepli-
cation amountk, i.e., the number of servers to which the
polynomialP is known. The first two parameters deter-
mine thedescription sizeof P , which isΘ(md) whend is
constant. Using an appropriate polynomial representation,
the database sizen is roughly equal to the description size
of P , i.e.n = Θ(md).

A first observation is that if we manage to reduce the de-
gree ofP by a factor ofc (without changing the number
of variablesm by much), the new description size will be
roughly thec-th root of the original one. The new polyno-
mial can be communicated to the user using onlyO(n1/c)
communication bits. We therefore try to reduce the degree
of P , possibly updating the evaluation point~z, without re-
vealing~z to any server. In what follows we first describe the
previous approach for achieving this goal, following [2, 5],
and then explain where we depart from this approach.

A degree reduction as above is achieved as follows. The
user picks random points~y1, . . . , ~yk ∈ Fm subject to the
condition~y1 + . . . + ~yk = ~z, and sends each serverSj a
query consisting of allk pointsexcept~yj . The intuition for
this step is that it provides maximal redundancy subject to
the requirement of hiding~z. Note that the cost of this step
is dominated bym = O(n1/d). Thus, for the total commu-
nication complexity to be small, the initial representation
degreed must be large.

The next step is to express the desired valueP (~z) as the
value of the polynomialQ(~Y1, . . . , ~Yk) def= P (~Y1 + . . .+ ~Yk)
at the point(~y1, . . . , ~yk). The advantage of switching to this
new representation is that the value assigned to each of its
variables is known toalmost allservers (in contrast to the
original polynomialP (~Z), whose values~z are completely
unknown to the servers and should remain so).

To make use of this advantage, we writeQ as a sum of
monomials. Every such monomial is a product ofd vari-
ables. Each variable is missed by exactly one out of thek
servers; hence, for thed variables involved in a given mono-
mial there must beat least oneserver which missesat most
d/k values of these variables. We now assign each mono-
mial to one of the servers corresponding to this monomial,
and let each server substitute specific values for all of the
variables it knows in each of the monomials assigned to it.
After this step, each server holds a polynomialPj in its un-
knownvariables~Yj , such that the degree ofPj is at most
d/k and

∑k
j=1 Pj(~yj) = P (~z). Thus, we can complete the

protocol by letting each serverj send to the user adescrip-

6Here and in the following all polynomials are assumed to be over a
finite field, which is taken to be GF(2) by default.

tion of its lower degree polynomialPj (e.g., using a list of
its coefficients), which allows the user to compute the de-
sired valueP (~z).

We now take a more quantitative look at the type of sav-
ings obtained by the above degree reduction technique. As
discussed above, reducing the representation degree by a
factor ofk induces a1/k-th power reduction in its size. By
picking a “high” degreed, the queries sent to each server
will be short, and the answers will be of lengthO(n1/k). At
a first glance, this seems to be the end of the road. However,
a crucial (and easy to overlook) observation is that the above
degree analysis involvesintegers. Thus, the reduced degree
is actually guaranteed to be bounded bybd/kc. While such
integer truncation operations are typically viewed as a nui-
sance, in this case they turn out to make make a big differ-
ence. In a sense, in an “integer-less world” a PIR protocol
with O(n1/k) communication is the best we would have.

How far can the advantage of truncation be pushed?
Two useful examples are the following. First, assume that
d = k − 1. In this case, we get the most evident benefit:
bd/kc = 0, instead of1− 1/k in the fractional case, imply-
ing that that each polynomialPj will have degree-0 (i.e., be
a constant) and therefore can be described by one bit. How-
ever, a disadvantage of this choice of parameters is thatd
is rather small, and therefore the length of the queries will
be rather large (O(n1/d) = O(n1/(k−1))). Still, a useful
feature of of the corresponding protocol is that it requires
only one answer bit from each server. Indeed, the latter
protocol was prior to this work essentially the best proto-
col of this type. A second useful choice of parameters is
d = 2k − 1. In this case the answers are longer than be-
fore: sincebd/kc = 1 the degree is reduced by a factor of
d = 2k−1, and consequently the description length ofPj is
O(n1/d) = O(n1/(2k−1)). However, since the queries now
are also shorter, namely of lengthO(n1/(2k−1)), we get a
protocol of a smaller total communication complexity. The
above protocol was the best known protocol (in terms of the
total communication complexity) prior to this work.

In light of the above surprising effect of integer trunca-
tion on the complexity of PIR, it is natural to ask whether
the savings can be pushed even further. We start with the
following observation. The degree reduction process we
used may be thought of as a way fortrading replication for
degree: We started with a polynomialP of degreed which
is replicated amongk servers, and ended up with polyno-
mialsPj of degreebd/kc, each known to onlyoneserver.
Thus, we have given away all of the original replication, and
in return obtained the biggest possible gain in the degree.
However, it is not clear a-priori that this greedy approach
is optimal. An alternative approach that comes to mind is
to apply severalpartial degree reduction steps, hoping to
benefit multiple times from the integer truncation effect.

To this end, we generalize the above degree reduction
procedure as follows. Suppose that we are willing to re-
duce the replication fromk to k′ (rather than1). Then,
we may assign each monomial to some setV of k′ servers
which jointly miss the least number of variables from this

monomial. This allows us to write the desired valueP (~z)
as the sum of valuesQV (~y), where eachQV is a polyno-
mial known to a setV of at leastk′ servers. Note that the
maximal degree ofQV increases ask′ grows, and in any
case is no more thanbdk′/kc.

We return to the previous question: can we gain by re-
ducing the degree (along with the replication) in multiple
steps? Intuitively, there is no advantage in applying the
above “local” degree reduction process in multiple steps,
as the final representation could have been directly attained
in one step. The additional key idea that makes such a
multi-step process useful is to use additional interaction
with the user for adjusting the degree between each two re-
duction steps. In such adegree conversionstep, both the
number of variables and the degree are changed, but the
description size remains the same. For instance, suppose
that some set ofk′ servers holds a degree-3 polynomialQ′

in m variables, and the user holds a point~z whose addi-
tive shares~y1, . . . , ~yk′ are replicated among the servers as
above. Moreover, suppose that it is possible for the servers
to locally compute a degree-2 polynomialQ in O(m3/2)
variables and for the user to locally compute a point~z ′,
such thatQ(~z) = Q′(~z ′). (Note that such a conversion is
presumably plausible, since(m3/2)2 = m, and so we have
not decreased the description size.) Then, by re-sharing the
point~z ′ among the servers, the user can adjust the degree to
2 without reducing the amount of replication or increasing
the description size. Such a degree conversion procedure
would allow to obtain additional savings by interleaving re-
duction steps with degree conversion steps.

We illustrate this by a 4-server example. Suppose that
d = 5. Dispensing with all the replication in one step
(i.e., by lettingk′ = 1), reduces the degree tob5/4c = 1.
Instead, we letk′ = 3. This brings the degree down to
b5 · 3/4c = 3, since for any monomial there is a set of
3 servers which jointly miss at most 3 variables from this
monomial. Now, we adjust the degree to 2. This increases
the number of variables toO(m3/2) = O((n1/5)3/2) =
O(n3/10), and requires the user to send additional queries
of comparable size. Finally, we can apply the reduction step
again to reduce the replication from 3 to 1. This brings
the degree down to 0, and allows the servers to commu-
nicateP (~z) to the user by sending a single bit each. Thus,
we obtain a protocol with query lengthO(n3/10) and an-
swer length 1 – improving the protocol with query length
O(n1/(k−1)) described above.

We do not wheter the above degree conversion problem
can be solved in general.7 Instead, we get around this prob-
lem by relying on a specificpromiseon the value of the
point ~z held by the user. The abstract linear algebra prob-
lem that underlies our solution is described in Section 5.
The recursive invocations of PIR in our protocol achieve, in
effect, the degree-conversions which result in the efficiency
improvement.

7Speficically, it is open if foreveryd′ < d it is possibvle to convertm-
variavte degre-d polynomials tom′-variavte degre-d′ polynomials where
m′ = O(md/d

′
).

