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Abstract

Private Information Retrieval (PIR) protocols allow a
user to retrieve a data item from a database while hid-
ing the identity of the item being retrieved. Specifically, in
information-theoretick-serverPIR protocols the database
is replicated among servers, and each server learns noth-
ing about the item the user retrieves.
protocols is measured by theommunication complexity
of retrieving one out of: bits of data. For any fixed,
the complexity of the best protocols prior to our work was
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x where the user, holding sometrieval indexi, wishes to
learn thei-th data bitz;. A trivial solution to the PIR prob-
lem is to send the entire databasé¢o the user. However,
while being perfectly private, theommunication complex-

ity of this solution may be prohibitively large. Indeed, the
most significant goal of PIR-related research has been to
minimize the communication complexity of PIR protocols.

The cost of suchUnfortunately, if the server is not allowed to gany in-

formation about the identity of the retrieved bit, then the
linear communication complexity of the trivial solution is
optimal [11]. To overcome this problem, Chor et al. [11]

O(n?-1) (Ambainis, 1997). Since then several methods suggested that the user accegse@splicated copies of the
were developed in an attempt to beat this bound, but all database stored at different servers, requiring that each in-

these methods yielded the same asymptotic bound.
In this work, this barrier is finally broken and the com-
plexity of information-theoretié-server PIR is improved to

log log k
nO( klogk

constructk-query binarylocally decodable codesf length
loglog k . .
exp(n®Fes®)), compared texp(n* 1) in previous con-

). The new PIR protocols can also be used to

dividual server gets absolutely no information abouRIR
in this setting is referred to asformation-theoretidPIR.

The best known complexity for information-theoretic
PIR protocols prior to the current work ©@(n'/(2k=1)),
This was first obtained fok = 2 in [11] and generalized
to any fixed value ok by Ambainis [1]. This upper bound
remained the best known until this work, in spite of var-

structions. The improvements presented in this paper applyjous attempts to improve it [20, 21, 5]. While these at-

even for small values df: the PIR protocols are more ef-
ficient than previous ones for eveky> 3, and the locally
decodable codes are shorter for evéry 4.

1. Introduction

A Private Information Retrieval (PIR) protocol allows a

tempts resulted in finding new, very different, PIR proto-
cols, they all ended up with the sar@gn'/(2*~1)) bound.
(The constants, which depend énwere significantly im-
proved; this is in addition to asymptotic improvements for
some extensions of the basic problem.) Note that the num-
ber of serversk, is usually considered to be “small” and,
in particular, independent of the length of the database,
n; for larger values of;, there is a construction ([11] and
implicitly in [3, 4]) that gives anO(logn)-server proto-

user to retrieve a data item of its choice from a databaseqq| \with O(log? nloglogn) communication bits or alter-
while preventing the server storing the database from gain-patively (with different parameters) @log n/ log log n)-

ing information about the identity of this item. This prob-
lem was introduced by Chor, Goldreich, Kushilevitz, and

Sudan [11] and since then has attracted a considerableSa
amount of attention (see below). In formalizing the prob- 28

lem, itis convenient to model the database by.ehit string

*Some preliminary results of the current work appeared in [31].
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server protocol with polfiog n) communication.

Other than the interest in PIR protocols for their own
ke, they also found various applications (see, e.g., [15,
, 9]). One particularly interesting application of PIR is
for the construction of so-callddcally decodable code#\
k-query Locally Decodable Code (LDC) allows to encode a
database < {0, 1} into a stringy, such that evenif a large
fraction ofy is adversarially corrupted, each bitotan still

be decodedvith high probabilityby probingk, randomly
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definition.) Katz and Trevisan [23] have shown an intimate
relation between such codes and information-theoretic PIR.
In particular, any information-theoretic PIR protocol can be



converted into an LDC of related efficiency. The best previ- putes its answer. However, the servers do not send their

ously known upper bound on the length ct-guerybinary long answers to the user; instead the user and each subset of
LDC wasm(n) = 20(n"* V) " This bound was obtained Servers that hold a common sub-answer execute a PIR pro-
from PIR protoco's with a Sing'e answer b|t per server. tocol in which the user retrieves the bits it needs from this

sub-answer. The difficulty of constructing an appropriate
protocolP, to be used in the recursion, is in the somewhat
. . X ; -~ contradicting goals of the above description. On one hand,
Lﬁtigﬁo{?gz?gétrbi;rgﬁg Plrlgtgggl I\?V?\S.seog(r)rrr?r?]lgn(i:é)aﬂggh we want the number of sub-answers and their size to be as
o < log loz k P small as possible. On the other hand, we want the “replica-
complexity is O(n"F1os% ) for some constant. (More tion” (i.e., the overlap between sub-answers) to be as large
specifically, our analysis shows that= 2 can be used  as possible. Organizing the answers appropriately into sub-
for everyk > 3.) This protocol can be transformed in a answers with good parameters according to the paradigm
genericway [18, 23] into ak-query binary LDC of length  suggested above does not seem to be straightforward. Most
exp(n“FHEES). However, we also provide a direct con- Of the technical work in this paper shows, in a sense, how to

struction which is significantly better for small valuesiof ~ construct a protocaP with such properties.
Our protocol is recursive and its analysis is obtained via the

solution of a certain recurrence. As mentioned, the MoStpajated work.  Several extensions of the basic PIR model
mterr]esulng values of are small ones. Hencl:e,.forfsr?veral were studied. These include extensionsi4arivate pro-
such values, we present in Figure 1 an analysis of the COMyneols, in which the user is protected against collusions
munication complexity where the exponent is determined o\ 1o ¢+ servers [11, 20, 5]; extensions which protect
exactly. The results in this figure show that our bounds are o servers holding the database (in addition to the user),

better than the previous ones for values which are as smalkarmed svymmetric PIR (SPIR) [17. 29]: and other exten-
ask = 3 for the case of PIR ankl = 4 for the case of LDC.  jons [30y16 13 6. 9 7(]_ PIR) \[/vaé als,]c') studied icoan-

putational setting where privacy should only hold against

Our results.  We improve over the previous upper bounds

g?zrg(;cg\ gﬁg Ieng:]hatr);kl_gléery computationally bounded servers; computational PIR was
| previous | new previous| new studied in both the multi-server setting [10] and a sin-
gle server setting [25, 27, 32, 8, 26, 14, 24]. In contrast
2| O(n'?) - 200 - to information-theoretic PIR, computational PIR protocols
3| O(n'/%) | O(n!/525) || 20(n*?) - with sublinear communication exist even in the single-
41 O(mM7y | On!/787) 90(n'/?) | 9O(n*1%) server case (under standard cryptographic assumptions).
5| O(n'/%) | O(n!/10:83) 90(n*/*) | 9O(n!/?) From a practical point of view, single-server PIR pro-
111 1/13.78 O(n'/%) O(n/) tocols are preferable to multi-server ones for obvious rea-
610n ") | O ) || 2 2 sons: they avoid the need to maintain replicated copies of

the database or to compromise the user’s privacy against
several colluding servers. Moreover, single-server proto-
cols from the literature obtain better asymptotic communi-

Techniques. Our construction borrows some ideas from ; . . ! ) .
previous work on PIR. These include the idea of represent-cat'on complexity than information-theoretic protocols with
: a constant number of servers. However, for typical real-

ing the database using polynomials (as in [11, 2] and espe-; .
cially [5]), the notion of “blocks” from [20], and the idea life parameters the known single-server protocols are less
of recursively retrieving bits from the servers’ answers (in- eff||C|er|1:t t?ﬁn known _mL:Itl—server (e\f{en I2-sherver) Jproto-
stead of sending the whole answers) as a way to reduce®'s: tl'ur't (ta_rmore,h_swr:g e-sethI'-:r tp))ro ochs da_tve Smﬂﬁ.
communication. Recursion was used previously in PIR pro- erentiimitations which can only b€ avoided in a muitl-
tocols [1, 10, 25]; however, our recursion is somewhat more server setting. For instance, itis impossible for a (sublinear-

sophisticated. Assume that we have a PIR protgelith ~ communication) single-server PIR protocol to have very
the following three properties: short queries (say)(logn) bits long) sent from the user
' to the server, or very short answers (say, one bit long) sent

e The queries are short, however, the answers are long. in return. These two extreme types of protocols, which can
e The user only needs few bits from each anstver. be realized in the information-theoretic setting, have vari-

e There is an overlap between the answers that differentous applications [13, 6]. Finally, the close relation between
servers send to the user. More precise'y, each answefnformanon-theore“c PIR and |Oca||y decodable codes [23]
consists of several sub-answers and each sub-answer iirther motivates the study of PIR in this setting.
known to several servers. No strong general lower bounds on PIR are known.

Mann [27] obtained a constant-factor improvement over the

trivial log, n bound, for any constark. In the 2-server

case, much stronger lower bounds can be shown under
LThe user cannot reveal to the servers which bits it needs since thisthe restriction that the user reconstrugtsby computing
information might disclose the indeit is interested in. the exclusive-or of a&onstantnumber of bits sent by the

Figure 1. Upper bounds for small values of  &.

This protocol leads to a recursive protod@ as follows:
The user sends its queries asfn and each server com-




servers [19]. Other lower bounds for restricted PIR proto- the k servers maximized over all choices ofc {0,1}",
cols are given by Itoh [22]. Lower bounds for locally de- ¢ € [n], and random inputs. Theuery lengttof P, denoted
codable codes appear in [23, 12]. These results still leaveQp(n, k), is the maximal number of bits sent frdito any
an exponential gap between known upper bounds and lowesingle server, and thenswer lengthdenotedA»(n, k), is

bounds in the general (unrestricted) case.

Organization.

In Section 2 we provide some necessary
definitions. In Section 3 we describe a concrete PIR proto-
col with the promised complexity. In Section 4 we describe
PIR protocols with short answers and their applications to

the maximal number of answer bits sent by any server.

Finally, we say that a PIR protoc@® is linear (over
GF(2)) if U recoverse; by taking the exclusive-or of some
subset of the answer bits determined by aux. All protocols
constructed in this work are linear.

locally-decodable codes. In Section 5 we describe an ab-3. A Concrete Protocol

stract framework which generalizes the concrete protocol.

Finally, in Appendix A we give a high-level description of
our protocol explaining why it saves communication.

2. Preliminaries

We use in our protocols multivariate polynomials. By
default, all polynomials are over GE). Variables of such
polynomials are denoted with capital letters, e4,, as-
signments to these variables are in small letters, e;g.,
The termdegreed polynomial refers to a polynomial whose
total degree it mostd. For an integet, [t] denotes the set
{1,...,t}. Finally,logr should be read dsg, r.

A k-server PIR protocol involves serversSy, ..., Sk,
each holding the same-bit string = (the database), and a
userl/ who knowsn and wants to retrieve some hit, i €
[n], without revealing;. We restrict our attention tone-
round, 1-private, information-theoretic PIR protocols.

Definition 2.1 (PIR) A PIR protocol is a triplet of algo-
rithmsP = (Q, A,C). At the beginning of the protocol, the
user/ invokesQ(k, n, %) to pick a (randomizedj-tuple of
queries(qi, ¢2, - - -, qx), along with an auxiliary informa-
tion stringaux It sends each serve$; the queryg; and
keepsauxfor a later use. Each serve$; responds with an
answera; = A(k, j, x,q;). (We can assume without loss

of generality that the servers are deterministic; hence, each

answer is afunction of the query and the database.) Fi-

nally,// computes its output by applying the reconstruction

algorithmC(k,n,aq, . .., ax,aux). We view the number of
serversk as constant, and require all algorithms to be effi-
cient in the data length. A protocolP restricted to a fixed

k will be referred to as a&-serverprotocol. A protocol as
above should satisfy the following requirements:

Correctness. For any k,n,z € {0,1}" andi € [n],
the user outputs the correct value of with probability 1
(where the probability is over the randomnessQ)f

Privacy. Each server learns no information aboit For-
mally, for anyk, n, i1,i2 € [n], and serverj € [k], the dis-
tributions Q; (k, n, 41 ) andQ; (k, n, i2) are identical, where
Q; denotes thg-th output ofQ.

Thecommunication complexigf a PIR protocolP, de-
notedCp(n, k), is a function ofk andn measuring the to-
tal number of bits communicated between the dgeand

We present below a PIR protocol that achieves the de-
sired upper bound. It builds upon several ideas that are bor-
rowed from [20, 5]; however, for self containment, the pre-
sentation assumes no knowledge of these works.

The protocol is based on representing thbkit database
x by a multivariate polynomialP,(Z,,...,Z,,) over
GF(2). The polynomialP, will be defined in Section 3.1;
for the time being we only describe its important features.
In this representation we carefully control two parameters:
the degreel and the number of variablea which is cho-
sen such thatr = ©(n'/%).2 The polynomialP, repre-
sentsz in the following sense: with every e [n] we asso-
ciate a distinct assignment (also referred to as “encoding”)
E(i) € {0,1}™; the polynomialP, satisfies

vienl, Pu(E(0) = €
(we do not care about the valug, (%) for assignments’
which are not of the fornE (i), for some:). Each coeffi-
cient of P, is determined by and hence each servgy can
compute it. The usér, on the other hand, does not know
x. It has an index, pointing to the bit frome it is interested
in, and it can computd’(i). Hence, the PIR problem is
reduced to the problem of evaluatify(E(:)) while keep-
ing E(i) secret from each server. To this etfichooses at
randomy, . .., ¥x € {0,1}™ subject to the constraint

k
E(i) = Zﬁj

and sends to each servsy all the 3j’s excepty;. Note
that since eaclk — 1 of the ¢’s are uniformly and inde-
pendently distributed, a single server can learn no informa-
tion abouti. The user’s goal is to evaluaiQ;(Zle ¥i) =
P,(E(i)) = z;. (Eachy; consists ofm valuesy; p, for

j € [k],h € [m].) Equivalently, we can think of each vari-
ableZ,, of P, as the sum of variables:Z,;, = Z?Zl Yin.

The valueP, (E(4)) is obtained by assigning the valyey,

to each variabl&’; ;. Let(), be the polynomial obtained by

viewing P, as a polynomial in the variable[éfj,h}?ee[[;’]l].

This is a degreet polynomial inm#k variables. Consider

)

2To be more preciser = ©(dn!/?). As we treatd andk as constants,
we will ignore constants depending drandk throughout the paper.



a monomialM of this polynomial;M depends on at most can choose the parameters in a way that each polynomial
d variables. Since each variable is knownite- 1 of the which the user wants to evaluate is known to several servers.
servers (i.e., only one server does not know it) then thereRather than asking the servers to send the coefficients, the
exists a server that is missing at mogf'k | of the variables  user cammecursivelyretrieve the value of this polynomial by

of M; we assign\/ to this server (if there is more than one using a PIR protocol among the servers sharing the polyno-

server with this property we pick one arbitrarily). mial. Assume that we can express
Suppose, for the moment, thét= k£ — 1. In this case .
|d/k] = 0; i.e., the server to whicli/ is assigned knows .
the assignmeny; ;, for all the variablesy;, in M and Pf(z gi) = Z Py (2v), @)
Jj=1 VC[k]

can actually compute the value 8f. The PIR protocol
therefore consists @f picking valuesy; as in (2), sending
eachy; to all servers excep$;, and each server answer-
ing U with the sum (in GF2)) of all monomials assigned
to it. By the above discussion, the sum of these answers
equalsz;. The communication complexity of this protocol

is O(m) = O(n*/%) = O(n'/(*=1)) bits. More specifi-
cally, we have shown:

where each polynomidaPy, is known to every server in the
setV, andzy is an assignment known to the user. The
polynomialsPy may have higher degree (than the degree-1
polynomials that we have in thé = 2k — 1 case), yet we
hope to avoid sending the list of coefficients by the servers
and instead let the user get each valyg zy/) by applying,
recursively, a PIR protocol with the serversiof Note that
Claim 3.1 ([13, 20, 5]) There exists &-server PIR proto-  the number of servers in each suthis smaller thark,

col with query lengttO(n'/(*=1)) and answer length. which is a disadvantage compared to the number of servers
that we have, say, for retrieving the valig(FE(i)). One

Next, consider the casé = 2k — 1. Again, assign  may hope, however, that, will have a low degree and a
each monomiall/ to a server that misses//k| = 1 of small number of variables.

the variables of\/. Each serve&; can therefore substitute We do not know how talirectly construct such polyno-
monomialM assigned to it. Aftgr substituting these values, p|R in the following way. Eact®, will be such that, know-
the sum of the monomials assignedSpcan be expressed jng 2, it suffices to get a small number of its coefficients
as a degree-1 polynomidt;(Y;1,...,Y;m), whose vari- in'order to obtainPy (z ); the identity of these coefficients
ablesYjy, ..., Y}, are precisely those whose values are may reveal information aboutand hence each coefficient
unknown toS;. Note, however, that if the user could learn || be retrieved using a PIR protocol. Before showing how
all polynomla_Ist,_then by substltut_lng the correct values tg construct the polynomial®y,, we specify their proper-
y;.n for all their variables and summing up the values of the tjes that imply the complexity of the overall solution. We
k polynomials it will get use two parameters andk’. The parametek’ is a lower
& bound on the size of the setswe will use (except for the
~ , setsV of size 1 which will also be used). Each polyno-
Py Ygm) = Px(z_: %) = Po(BG) = i mial Py, consists of monomiala/ in which)each of tﬂ¢l¥\
=t servers misses at masiof the variables. Therefore, all but
The PIR protocol starts as before, but this tifjesends the ~ at most\|V| variables ofA are known to all servers il
m + 1 coefficientga single bit each) of the degree-1 poly- and so after substituting the values known to all servevs in
nomial P;. The communication complexity of this protocol the degree of, will be at most\|V'|. The number of vari-
is therefore stillO(m) = O(n'/%) which, by the choice of ~ ables on whichP, depends isn (as inP,) and, in fact, the
d, equalsO(n/ k=) bits. To summarize the discussion USer will seek the value aPy (E(i)). The motivation for

so far, we have shown how to obtain a PIR protocol with the 90ing S0 has to do with our choice of encodifig.); in our
best known complexity prior to the current work: encoding most bits of (¢) are set td) and thus most mono-

mials of Py, (E(i)) are set td (and so their coefficients are
Claim 3.2 ([1, 20, 5]) There exists &-server PIR protocol  of no interest). The user therefore needs to retrieve only the
with communication complexity (n'/(2F=1)), coefficients of those monomials where all variables are set
to 1. The number of these coefficients is small (at nd3t
Since Py hasO(m?V1) coefficients, the user can retrieve

k

Jj=1

Next, it is useful to note that just further increasing the
value ofd is of no use. While in such a case each poly- ) , ;
nomial P; as above indeed has less variables, it ispofya the vaIueP?(E(z)) using2 gxecut;loﬂs of aw'i?/rl\ﬁr PIR
higher degree (i.e|d/k|); hence the list of coefficients is  Protocol with database of siz(m™"1) = O(n""" /7).
no shorter than what we get by choosifig= 2k — 1, as Assuming we can indeed find such polynomig|s with
above. We emphasize that the amount of information thatth€ above properties and that we have a PIR protBawith
the user needs about each polynonitas very small (i.e., ~ communication complexitf’»(n, k), we get a protocaP
the valueP; (j/;)); however, it cannot revegl; to S; as this ~ With communication complexity
will expose the valud® (i) and hence.

k
The contribution of this paper starts with the following Cpi(n, k) < Oy [ /4 + Z <k> Cp(ne o). (4)
idea to go around the above difficulty. Suppose that we T ey ¢ ’



(The notatiornD;, indicates that the constant dependsion

An appropriate choice of parameters will ensure, in partic-

ular, that\k/d < 1 and soP is applied to shorter strings.
3.1. Constructing the Polynomials

To complete the description of the protocol, we provide
specific implementations for the encodig-), the poly-
nomialsP, and Py, and the values,, that together satisfy
Equation (3). More precisely, we describe an encodihg
of lengthm = ©(n'/?), polynomialsP,, Py as above and
polynomialsP; of degree 1, such that for eveiy

;= Pp(E(i)
k
— Y REG) + SR 6
VC[k],|V|>K j=1

(For eachPy, we usezy = E(i) and for eachP; we use
y;.) Furthermore, each polynomidh, can be computed
from P, and{7;},¢v (this holds forV" = {j} as well).

The construction o and P, proceeds as follows. Let
E(1),...,E(n) be n distinct binary vectors (strings) of
length m and weightd. Such vectors exist if”}) > n,
i.e.,m = ©(n'/9) variables are sufficierft Define

Z) = anx I 2.

i=1  E(i)=1

(E (i), is thelth bit of E(i)). Since eactE(i) is of weight
d then the degree aP, is d. Each assignmerf (i) to the
variablesZ, ..., Z,, satisfies exactly one monomial i?,
(whose coefficient ig;); thus,P,.(E(i)) = xl

Consider the polynomial Ql({Yﬁ}JE k] )

Py(3r Y4, ..., 35 Vi), This is a polynomial
with mk variables and degre¢ That is, @, is obtained
from P, by settingZ;, = Z?:l Y; n. For every monomial
M, consider the se¥' (M) C [k] that contains all servers
that appear at most times in M. The first attempt to
define Py is by assigning all monomials withf (M) = V

to V' and obtainingPy, by substituting{y; } ;¢v in these
monomials. The resulting polynomiaP,, has small
degree, namely|V|, and has few variables, namely|V|.
However, in this casé’, should be evaluated at the point
(¥;);ev; this point may be of arbitrary weight and hence
we do not know how to apply the recursion.

Before constructing the polynomialy,, we choose the
“correct” value ofd, i.e., the maximal value that guarantees
that for any monomial/ of degree at most either there
is a serverS; that knows all but at most one variable in

P.(Zy,...,

def

the monomlal (in this case this monomial contributes to the with E 1Y,

corresponding?;), or the sel’ (M) has size at leadt.

SAlternatively, one can use an encoding with strings of weighnost
d; however, for small values af (e.g., constant) this yields only minor

efficiency improvements. Another option is to use the encoding of [11, 20]

(calledE3 in [5]). This can improve the efficiency of our protocols by a
factor of2¢ in some cases, but will further complicate the presentation.

Claim 3.3 Let\, k' < k be parameters, and < (A+1)k—

(A = 1)K’ + (A — 2). Furthermore, letM be a monomial

of degree at most in the variablesY; 5, wherej € [k] and

h € [m]. Then, either there is a server that misses at most
one variable, ofV (M)| > k.

Proof: Assume that the claim does not hold. That is,
everyS; misses at least two variables in the mononiial
(i.e., at least two of the variabl€¥’; ; } ¢}, appear inM/)
and at mosk’ — 1 servers miss at most variables ofM
(equivalently at least — (k' — 1) servers miss at leaat+ 1
variables). Therefore, the number of variables in the mono-
mial is atleastk — (k' —1))(A+1)+ (k' —1)-2 > d+1,
contradicting the choice af. O
Following is the main technical claim underlying our
constructiorf:

Claim 3.4 Let k,\,k" and d be as in Claim 3.3,

P.(Z,...,Z,) apolynomial of degree at modtandz =

Zley*j. Then, there are polynomialBy (Z1,...,2Z,)

for everyV C [k], where|V| > K/, and polynomials

P(Zy,...,2Zy) for j € [k], such that

1. Each polynomiaPy is of degree\|V| and can be com-
puted fromP, and{y;};¢v;

2. Each polynomiaP; is of degreel and can be computed
from P, and {4 };/;;

3. Po(2) = Xvemvize PV (E) + 2 em Pi8))-

Proof: It suffices to prove the claim for polynomi-
als that consist of a single monomial (and then summing
over all monomials inP,). Hence, consider, w.l.0.g.,

P(Zy,...,Zmnm) = Z1Zs- - Z, (instead ofP,). Let
k k
h def

QUYRMIEh = PO Yin, > V)

j=1 j=1

k k k

= O Vi > Ya).
j=1 j=1 j=1

The polynomial@ hask? monomials of degree each.
Each monomialV/ is of the formY}, ; --- Y}, 4. Denote

H Z H qu’q‘

Jq€V (M) Jq#V (M)

Note thatT'(M) is expressed in terms of bo#fis andY"’s
and it should be interpreted as follows: (a) wHEOM)

is part of a polynomial in{Y; ,} then it should be inter-
preted as the polynomial obtained by substituting eZgh
(b) whenT' (M) is part of a polynomial
in{Z;} then |t should be interpreted as a single monomial
of degree< A|V/(M)| whose coefficienf[; .y (rs) Yj,.q IS
known to all servers itV (M).

4In the full version of this paper we will present an alternative proof of
this claim based on the inclusion-exclusion principle.



Below is an algorithm to construct the polynomidts
as in the claim. The algorithm maintains a polynondl
(initially Q' = Q) with all the monomials that we need to

case ifM isin Q' so isM’ and when subtracting (M) we
eliminate both. Once we finish the construction/&f we
do not return to thi$” anymore.

take care of (monomials may be repeatedly taken out and When the algorithm halts there is dd in @’ for which

inserted intaR’). Denote by (M) the number of variables
Y, qin M with j, € V(M).

1. SetQ’ = Q and for allV setPy (Zy,...,Z,) = 0.

2. Find a sel/ such thaty’ = V(M) for some monomial
M (currently) in@’, and such thak” is of the largest size
among all set§” (M) for suchM’s.

If [V| < k" then STOP.

3. While there is a monomiall s.t. V(M) = V:
e among thesd/’s pick M that maximizes(M);
e addT (M) to Py, setQ' = Q' — T(M).

4. GOTO 2.

To argue the correctness of the algorithm, view @ty/)
added toPy in Step 3 as a sum &™) monomials in the
{Y; 1} variables. Clearly, théy s are of the desired degree
and their sum evaluated dts P(2) — Q'(2) (for @’ that the
algorithm halts with). We need to argue that the algorithm
halts.

We say that two monomial8/; = Y, ;---Y;, ¢ and
My = Yj; 1Yy q are equivalent (with respect 16" C
[k]) if (@) V(M) = V(M) = W; and (b) for each index
q € [d] eitherj,, j, are both inl or j, = j; (i.e., the same
variableY;, , appears in both monomials). Note that this is
an equivalence relation and dendtg = M.

Let M; be a monomial of (M) and note the following
observations about its structur@) V(M) C V(M) (any
server not inV’ (M) = V, i.e., one that appears more than

|[V(M)| > k. By Claim 3.3 and the choice @f, in such

a case for each of these monomials there is at leastSpne
missing at most one variable (frof; » }rc}m)- Each such
M is now added to a correspondig. Hence, the claim
follows. O

Note that, in spite of the recursion, the resulting protocol
can still be implemented as a one-round PIR protocol. The
indices of the bits that the user needs in the recursive calls
are determined by’(¢). Thus, in the first round, when the
user sends its query férit can also send its queries for the
indices that it needs from every dét The properties of this
protocol are summarized by the next theorem.

Theorem 3.5 Suppose there is a PIR protocBlwith com-
munication complexitCr(n, k). Letd, A, k' be positive
integers (which may depend @n such thatk’ < k and
d< A+ 1)k—(A—1DK + (A—2). Thenthereis a PIR
protocol P’ with communication complexity

(’Z) Cp(n/4, e)) . (6)

Remark 3.6 For all PIR protocols from the litera-
ture (including the current work)Cp(n*/4 ¢)
O(Cp(n /4 k")) for ¢ > k. Thus, the sum in Eq. (6)
is dominated by its first term.

k
Cpr(n, k) = Oy, (nl/d +y

=K’

A times inM, appears at least the same number of times in Example 3.7 We demonstrate how to get the first two im-

M, by definition of T'(M)). (i) §(M1) < 6(M) (any vari-
able that does not contribute 40)) does not contribute to
d(My) either).(iii) if V(My) = V(M) andd(M;) = §(M)
then, by definitionM; = M. (iv) if My = M; (with re-
spect to soméV) then M, must also be i’(M) (by (i),
W C V(M)). It follows that if My, = M, then, at any
time during the algorithm, they are either both(jhor both
are not inQ’. This is because it is true at the beginning (all
thek? monomials of the forny;, ; - -+ Y;, 4 are inQ’ = Q)
and wheneve®)’ is modified by subtracting' (M) for some
monomialM then if, say,M; isinT(M) then so isM> and
vice versa.

proved protocols from Figure 1. In the 3-server case, we
setA = k' = 2 andd = 7. By using a 2-server protocol
with complexityO(n'/?) (see Claim 3.2) the communica-
tion complexity isO(n'/7 4 (n*/")1/3) = O(n*/?'). In
the4-server case we can rely on the above protocol and use
A =2k = 3,andd = 9 to obtain communication com-
plexity of O(n'/? + (n8/9)4/21) = O(n®/93),

3.2. Analysis of the Protocol

The above discussion yields a recursive complexity anal-
ysis. Below we get a specific bound by choosing appro-

Using the above observations, we now argue the halt-priate parameters. This analysis is somewhat crude and is

ing of the algorithm. The idea is that, even though new
monomials may be added & when subtracting’ (M) in
Step 3, such monomialk!’ either have smalleV (M) or

mainly intended for large values bf(which are still viewed
as constants). For small values/gfone should be more
careful; e.g., the results specified in Figure 1 are derived by

smaller§(M') and hence we always make progress. This is choosing optimal values for the parameters.

because in each application of Step 3 we pi¢kthat max-
imizesV (M) and among those one that maximiz2¢3a/).
The monomials added tQ’, when subtracting’(M) sat-
isfy either (a)V(M’) C V(M) — in which case it will be
dealt in future application of Step 2 if it will still exist; or
(b) V(M) =V (M) buts(M'") < §(M) —in which case it
will be dealt in future application of Step 3 if it will still ex-
ist; or (c)V(M') = V(M) anddé(M’) = §(M) —in which

Lemma 3.8 For every positive integerthere is a PIR pro-
tocol P; such thatCp, (n, k) = Oy (n?/(*)) for every con-
stantk > (i — 1)!.

Proof: By induction. The first nontrivial case is =
3, in which the lemma follows from Claim 3.2. For the
induction step, suppose that> 3 and there exists a PIR



protocol P; such thatCp, (n, k) = O (n?/(*)) for every improves over the best previously knowimary protocols
k > (i — 1)!. Using Theorem 3.5 we construgt; such only for k& > 6, the following direct construction gives the
thatCp,,, (n, k) = Oy(n?/(+10)) for everyk > il. Let first improvement whek = 4.

K =% > (i—1), A= [4] (in particular,A > 2),and  Teorem 4.1 Su i i
il = ' = . ppose there is a PIR protodBlwith query
d=A+Dk=A-DF < A+Dk—(A-1F'+(A-2),as lengthQp(n, k) and answer lengtthp(n, k). Letd, A\, &’

required to apply Theorem 3.5. Note th@p, (n**/?, () = be positive integers (which may dependisuch thate’ <
Ok (n?} () for every( > k'. Thus, to complete the proof 1 andd < (A + 1)k — Ak’ + (A — 1). Then there is a PIR
it suffices to prove that\/(id) < 2/((i + 1)k): protocol P’ with query length
A < A = A 1/d - /d
id = O+ Dk—(A—Dk/i) kNt (- At 1) Qpr(n,k) = O | n'/+ 3 Qp(n*/4.0) | (7)
A 1 =K
ENi+ X)) k(@ +1) and answer lengtt;, (3°5_,, Ap(n%/4, ¢)). Furthermore,

o o ) if P is binary and linear then there is a binary line@ with
where the first inequality is by the choice éfand%’ and query length as above.

the last inequality is by the choice af a
For lack of space, we only sketch the proof. The condi-
Corollary 3.9 There exists a PIR protocdP such that  tiond < (A + 1)k — Ak’ + X — 1 guarantees that in every
Cp(n, k) = Op(n2loglogk/(klogk)) for everyk > 3. monomial M, eitherV (M) > k' or there is a server that
knowsall variables in the monomial. This allows to obtain
Proof:  Fork > 3 the protocofP executes the protocol g stronger variant of Claim 3.4 where the polynomiRls

P; promised by Lemma 3.8, whete= [logk/loglogk|.  are of degred. Thus, it suffices for each server to send
Then,(i — 1)! < (i — 1)""! < logk'losk/leglosk — k and  one bit to the user in addition to the answers in the recur-
Cp(n, k) = Cp,(n, k) = O (n?'oglogk/(klogk)) O sive calls. In the linear binary case, it suffices to send to the

. . user the exclusive-or of the additional bit and the answer
In the full version of the paper we will show that the bits from the recursive calls

above analysis is essentially optimal. This is not to say that

there are no other protocols that can do better; it only saysExample 4.2 We illustrate the use of Theorem 4.1 for ob-

that within the freedom that our protocol has in choosing taining the first two improvements over previous protocols.

the parametera and &/, the above choice, that achieves As a basis we can use the cake= 3, for which the

complexity ofnCUeglogk/(klogk)) 'is essentially the best. best known binary protocol has query lengiin'/?) (see
Claim 3.1). Fork = 4 weletA = 1,k = 3, and

4. PIR Protocols with Short Answers and Lo- d= 5,rand getra4—server binary protocol with query length

cally Decodable Codes O(n!/5 4 (n?/%)1/2) = O(n*/1%). In the5-server case we

let\ = 1,k = 4,d = 6 and get a binary protocol with

o o _ querylengthO(n'/?).

In this section we obtain efficient PIR protocols in which

the answer of each server consists of a single bit; we refer toApplication to locally decodable codes. A binary code

such protocols as “binary protocols.” We start by noting that C' : {0,1}" — {0,1}™ is said to be(k, §, p)-locally de-

the protocols from the previous section can be transformedcodableif every bitz; of 2 can be decoded from= C(x)

in agenericway to binary protocols with related complex- Wwith success probability 1/2 + p by readingk (randomly

ity. Specifically, given anyinear k-server PIR protocol in ~ chosen) bits ofy, even if up to aj-fraction of y was ad-

which the total communication with each servet(is), itis versarially corrupted. A-query binary locally-decodable

possible to construct2k-server binary protocol with query — codeis a family of (k, 6(n), p(n))-locally decodable codes

lengthc(n) [18].° Thus, there is a binarg-server PIR pro-  C,, : {0,1}" — {0,1}™() such thatj(n), p(n) are lower

tocol with query lengtm©@(loglogk/(klogk)) - Belowisadi-  bounded by some positive constant, independent of

rect construction which improves the constants in the above  Given a binaryk-server PIR protocol with query length

exponent. In particular, while the generic transformation ¢(n), it is possible to construct &-query binary locally-

5t is easy to verify that the protocols constructed in the previous sec- decodable C(-)de qf Iengkt?(_k2_c(”)) [23]' lf- the que_ry 0 .

tion are in fact linear. The transformation to a binary protocol may proceed each server is uniformly dIStrlbthd over its dpmam, aS_IS

as follows. The user generates queggs. . . , g as in the original pro- the case for the protocols we obtain, the encoding of a string

tocol and sends eaa}j to bothS; andS), 1 ;; each of them generatesthe 2z € {0,1}™ can be defined as the concatenation of the

corresponding answer; but does not send it back. Instead, the user pri- geryers’ answers to all possible queries, i4(k, 4,2, q)

vately retrieves the exclusive-or of the bits that it needs fegnusing the . ; .
following procedure. The user needs to learn the inner product ((i2)3F forall j [k] and all querieg. Thus, we have:

of a; with some vectob; it knows. To this end it sends a random veatpr .
of length|a | to.S; andr;.yj, = r; — b, t0.S;.4 .. Each of the two servers Corollary 4.3 There is a constant such that for every;

replies with the inner product af; and the received vector, allowing the  there is ak-query binary locally-decodable code of length
user to recovetb;, a;) by adding (in GF2)) the two received bits. O(2"C loglog k/(k log k) )




5. An Abstract Framework

In this section we describe an abstract framework which
generalizes the specific protocol from Section 3 and cap-
tures the scope of the underlying technique. We start by
formulating a general linear algebra problem that lies in the
core of Claim 3.4.

Fix some fieldF (where FF = GF(2) by default), and
consider the linear space of polynomials o¥ein the dk
variablesY; 5, wherej € [k], h € [d]. In fact, we will only
be interested in the subspace spanned by:th@onomials
of the formY;, 1Y, 2---Yj, a, fOr ju,..., ja € [K].

We useZ;, as an abbreviation for the SUE§:1 Y h.
Following the terminology from [20], &lockis a polyno-
mial which can be expressed as a product of suinsand
variablesY; ;. For example, ever{ (M) from the proof
of Claim 3.4 is a block. Note that i is a block, then

Theorem 5.5 Suppose there is a PIR protocBlwith com-
munication complexit¥’p(n, k). Then, for anyl = d(k)

and a spanning block sé# = B(d, k) € Aqy thereis a
PIR protocolP’ with communication complexity

We note that Theorem 5.5 gives, in a sense, a closed-
form expression for the best communication complexity at-
tainable by the current approach. The main difficulty, how-
ever, is in finding appropriate choices for the spanning block
setB that optimize the overall complexity. We do not know
if, using Theorem 5.5, it is possible to construct a protocol
whose complexity is significantly better than the protocol
presented in Corollary 3.9. In the full version of the paper
we will show that, using Theorem 5.5, one cannot construct

n LN Cp(n® OV [V ()))
beB

Cp: (na k) = Ok (

its representation as such a product must be unique, anc protocol whose complexity is better th@{@nl/kz)_

must involve each indek € [d] exactly once. With each
block b, let 6(b) denote the number of sunis, in b, and
V' (b) denote the set of indices € [k] which do notoc-
cur (in variablesY; ) in the representation df. For in-
stance, ifd = 5,k = 5, andb = Z1Y;5 Y5 324Y5 5 then
d(b) = 2 (sinceZ;, Z4 are the sums occurring it) and
V(b) = {1,3,4}. In the context of the PIR application, the
block b will be used by the servers it (b) to construct a
polynomial of degreé(b) in the variablesZ,, ..., Z,,.

We now define a key property of sets of blocks, general-
izing a corresponding notion from [20].

Definition 5.1 Let B be a set of blocks with parameters
d, k. We say thaf3 is spanningif the blocks in3, viewed
as polynomials in thelk variablesY; ,, span the block
Z\Zy--- Zg. Denote byAy ;, the class of spanning block
sets5 with parametersl, k.

Example 5.2 Letd = k = 2. The block se{Y; ;Y1 o,
Z1Ys9,Y51Y1 2} is spanning. On the other hand, it is easy
to verify that block se8 = {Y112,21Y29,Y51Y1 2} is
not spanning, i.e3 does not span the block, Z,, although
each of the four monomials i#; Z5 is involved in some
block inB.

Example 5.31f d = 2k — 1, then the set of all blocks
such thaté(b) < 1 and |V (b)] > 1 is spanning. This set
of blocks is used in [20] to construct a PIR protocol with
communication complexit9 (k3n!/ (k1))

The following set of blocks corresponds to Claim 3.4.

Example 5.4 Letk, A\, k', d, be as in Claim 3.3. Then the
following setB is spanning.5 includes: (1) every block
such thaté(b) < 1 and|V(b)| > 1, (2) every block such
thatk’ < |V (b)|, 6(b) < A|[V(b)|, and eacty € [k] \ V(D)
occurs inb more than) times.

Generalizing Theorem 3.5, it is possible to use any span-
ning block setB for reducingk-server PIR to instances of
PIR with a smaller number of servers. This is formalized by
the following theorem.
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A. A High-Level View: Replication vs. Degree

In this appendix we try to explain where the improve-

A key technique in previous solutions, as well as in ours,
is anarithmetizationof the PIR problem. Using a polyno-
mial representation for the databasehe user’s goal is re-

duced to evaluating a multivariate polynoml%ﬂZ), known

to all k£ servers, on some poiatdetermined by its retrieval
indexi.5 This task should be achieved while hidifgrom
each server. There are three parameters associated with the
above problem: (1) thaumber of variablesn P, denoted

by m; (2) thedegreeof P, denoted byi; and (3) therepli-
cation amountk, i.e., the number of servers to which the
polynomial P is known. The first two parameters deter-
mine thedescription sizef P, which is©(m<) whend is
constant. Using an appropriate polynomial representation,
the database sizeis roughly equal to the description size
of P,i.e.n = O(m?).

A first observation is that if we manage to reduce the de-
gree of P by a factor ofc (without changing the number
of variablesm by much), the new description size will be
roughly thec-th root of the original one. The new pol)/no-
mial can be communicated to the user using anly.!/¢)
communication bits. We therefore try to reduce the degree
of P, possibly updating the evaluation poitjtwithout re-
vealingZ'to any server. In what follows we first describe the
previous approach for achieving this goal, following [2, 5],
and then explain where we depart from this approach.

A degree reduction as above is achieved as follows. The
user picks random pointg, ...,y € ™ subject to the
conditiony; + ... + ¢, = Z, and sends each servgy a
query consisting of alk pointsexcepty;. The intuition for
this step is that it provides maximal redundancy subject to
the requirement of hiding. Note that the cost of this step
is dominated byn = O(n'/?). Thus, for the total commu-
nication complexity to be small, the initial representation
degreel must be large.

The next step is to express the desired vdl(€) as the
value of the polynomia)(Ys, ..., Yy,) & P(Yy +...+Yy)
atthe point(#1, . . ., 4i). The advantage of switching to this
new representation is that the value assigned to each of its
variables is known t@lmost allservers (in contrast to the
original ponnomiaIP(Z), whose valueg are completely
unknown to the servers and should remain so).

To make use of this advantage, we wiipeas a sum of
monomials. Every such monomial is a productdo¥ari-
ables. Each variable is missed by exactly one out oftthe
servers; hence, for thevariables involved in a given mono-
mial there must bat least oneserver which missest most
d/k values of these variables. We now assign each mono-
mial to one of the servers corresponding to this monomial,
and let each server substitute specific values for all of the

ment over previous protocols comes from. The recursive variables it knows in each of the monomials assigned to it.

formulation of our protocol, as well as the various techni-
calities involved in its implementation and analysis, make
it somewhat difficult to trace the actual source for improve-
ment. The following overview of our approach attempts to
give a fairly accurate intuition as teowandwhy it works,
while ignoring some details or difficulties that are dealt with
in the technical sections.

After this step, each server holds a polynonitalin its un-
knownvariablesY;, such that the degree d¥; is at most
d/k andez1 P;(y;) = P(%). Thus, we can complete the
protocol by letting each servgrsend to the user @escrip-

SHere and in the following all polynomials are assumed to be over a
finite field, which is taken to be GE) by default.



tion of its lower degree polynomiaP; (e.g., using a list of ~ monomial. This allows us to write the desired valbBéz)
its coefficients), which allows the user to compute the de- as the sum of valueQv (), where eaclQ)y is a polyno-
sired valueP(Z). mial known to a se¥’ of at leastt’ servers. Note that the

We now take a more quantitative look at the type of sav- maximal degree o)y increases as’ grows, and in any
ings obtained by the above degree reduction technique. Ascase is no more thaplk’/k|.
discussed above, reducing the representation degree by a We return to the previous question: can we gain by re-
factor of k induces al /k-th power reduction in its size. By ~ ducing the degree (along with the replication) in multiple
picking a “high” degreel, the queries sent to each server steps? Intuitively, there is no advantage in applying the
will be short, and the answers will be of lengit{n'/%). At above “local” degree reduction process in multiple steps,
afirst glance, this seems to be the end of the road. Howeveras the final representation could have been directly attained
acrucial (and easy to overlook) observation is that the abovein one step. The additional key idea that makes such a
degree analysis involvestegers Thus, the reduced degree multi-step process useful is to use additional interaction
is actually guaranteed to be bounded|byk |. While such with the user for adjusting the degree between each two re-
integer truncation operations are typically viewed as a nui- duction steps. In such degree conversiostep, both the
sance, in this case they turn out to make make a big differ-number of variables and the degree are changed, but the
ence. In a sense, in an “integer-less world” a PIR protocol description size remains the same. For instance, suppose
with O(n'/*) communication is the best we would have.  that some set o’ servers holds a degreepolynomial Q"

How far can the advantage of truncation be pushed?in 7 variables, and the user holds a pointvhose addi-
Two useful examples are the following. First, assume that tiVe sharesi, ..., g, are replicated among the servers as
d = k — 1. In this case, we get the most evident benefit: @bove. Moreover, suppose that it is possible for the servers
ld/k| = 0, instead oft — 1/k in the fractional case, imply- 10 locally compute a degree-2 polynomiglin O(m®/?)
ing that that each polynomid; will have degree-0 (i.e., be ~Variables and for tbeq/user to locally compute a paint
a constant) and therefore can be described by one bit. How-Such thatl(z) = Q'(z"). (Note that such a conversion is
ever, a disadvantage of this choice of parameters isdhat Presumably plausible, sin¢e:*/?)? = m, and so we have
is rather small, and therefore the length of the queries will not decreased the description size.) Then, by re-sharing the
be rather large@(n'/?) = O(n!/(*=1)). Still, a useful pointz”’ among the servers, the user can adjust the degree to
feature of of the corresponding protocol is that it requires 2 Without reducing the amount of replication or increasing
only one answer bit from each server. Indeed, the latterthe description size. Such a degree conversion procedure
protocol was prior to this work essentially the best proto- would allow to obtain additional savings by interleaving re-
col of this type. A second useful choice of parameters is duction steps with degree conversion steps.

d = 2k — 1. In this case the answers are longer than be-  We illustrate this by a 4-server example. Suppose that
fore: since|d/k| = 1 the degree is reduced by a factor of d = 5. Dispensing with all the replication in one step
d = 2k—1, and consequently the description lengttipis ~ (i.e., by lettingk’ = 1), reduces the degree t6/4] = 1.
O<n1/d) _ O(nl/(Qk—l))_ However, since the queries now Instead, we Ieﬂs" = 3. This brings the degreg down to
are also shorter, namely of length(n!/(?*=1)) we get a [5-3/4] = 3, since for any monomial there is a set of
protocol of a smaller total communication complexity. The 3 SEIVers which jointly miss at most 3 vanable; from this
above protocol was the best known protocol (in terms of the monomial. Now, we adjust the:SQegree to 2.115h|3$/2|ncreases
total communication complexity) prior to this work. the g/ul[)nber of variables tO(m?/=) = O((n'/°)*%) =

In light of the above surprising effect of integer trunca- O(r*""), and requires the user to send additional queries

tion on the complexity of PIR, it is natural to ask whether of comparable size. Finally, we can apply the reduction step

the savings can be pushed even further. We start with the?9ain to reduce the replication from 3 to 1. This brings

following observation. The degree reduction process we € degree down to 0, and allows the servers to commu-
used may be thought of as a way faading replication for mcateP(_z) to the user t_>y sending a S'”g'i/'ﬁ’:} each. Thus,
degree We started with a polynomidP of degree which W€ obtain a protocol with query length(n* ") and an-

is replicated among servers, and ended up with polyno- SWer /lgﬂglgh 1 — improving the protocol with query length
mials P; of degree|d/k |, each known to onlpneserver. O ) described above. _

Thus, we have given away all of the original replication, and W& do not wheter the above degree conversion problem
in return obtained the biggest possible gain in the degree.can be solved in generalinstead, we get around this prob-
However, it is not clear a-priori that this greedy approach €M by relying on a specifipromiseon the value of the

is optimal. An alternative approach that comes to mind is POt = held by the user. The abstract linear algebra prob-
to apply severapartial degree reduction steps, hoping to lem that underlies our solution is described in Section 5.

benefit multiple times from the integer truncation effect. The recursive invocations of PIR in our protocol achieve, in

To this end, we generalize the above degree reduction.GﬁeCt’ the degree-conversions which result in the efficiency

procedure as follows. Suppose that we are willing to re- Improvement.

duce the replication front to £’ (rather thanl). Then, "Speficically, it is open if foeveryd’ < ditis possibvle to convettn-
we may assign each monomial to somegaif k' servers variavte degret polynomials tom’-variavte degre# polynomials where
which jointly miss the least number of variables from this m’ = o(m/¢').




