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Abstract

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of its choice from
a database, such that the servers storing the database do not gain information on the identity of the item
being retrieved. PIR protocols were studied in depth since the subject was introduced in Chor, Goldreich,
Kushilevitz, and Sudan 1995. The standard definition of PIR protocols raises a simple question – what
happens if some of the servers crash during the operation? How can we devise a protocol which still works
in the presence of crashing servers? Current systems do not guarantee availability of servers at all times
for many reasons, e.g., crash of server or communication problems. Our purpose is to design robust PIR
protocols, i.e., protocols which still work correctly even if onlyk out of ` servers are available during the
protocols’ operation (the user does not know in advance which servers are available).

We present various robust PIR protocols giving different tradeoffs between the different parameters.
These protocols are incomparable, i.e., for different values ofn andk we will get better results using differ-
ent protocols. We first present a generic transformation from regular PIR protocols to robust PIR protocols,
this transformation is important since any improvement in the communication complexity of regular PIR pro-
tocol will immediately implicate improvement in the robust PIR protocol communication. We also present
two specific robust PIR protocols. Finally, we present robust PIR protocols which can tolerate Byzantine
servers, i.e., robust PIR protocols which still work in the presence of malicious servers or servers with
corrupted or obsolete databases.

1 Introduction

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of his choice from a database,
such that the server storing the database does not gain information on the identity of the item being retrieved.
For example, an investor might want to know the value of a certain stock in the stock-market without revealing
which stock she is interested in. The problem was introduced by Chor, Goldreich, Kushilevitz, and Sudan [13],
and has attracted a considerable amount of attention. It is convenient to model the database by ann-bit string
x, where the user, holding someretrieval indexi, wishes to learn thei-th data bitxi. This default setting can be
easily extended to handle more general scenarios, e.g., of larger data items, several users, or several retrieved
items per user.

The definition of PIR protocols raises a simple question – what happens if one of the servers crashes
during the operation? How can we devise a protocol which still works in the presence of crashing servers?
Current systems do not guarantee availability of servers at all times for many reasons, e.g., crash of server
or communication problems. Our purpose is to design robust PIR protocols. Given a databasex which is
replicated amongst̀ servers, and a parameterk ≤ ` which specifies the minimal number of servers that are
available at any moment, the user in our protocol can retrievexi by using the answers of anyk servers. I.e.,
even if `-k severs are unreachable while the protocol is being performed (e.g., they have crashed or they are
disconnected), the user can still reconstructxi. The user does not need to know in advance which servers are
online and which servers will be online during the process.

A trivial solution to this problem is to execute an independent PIR protocol for each group ofk servers.
This yields a solution of whose complexity is

(`
k

)
times the complexity of the best known PIR protocol. Even
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for fairly small ` andk, the factor
(`
k

)
can be too expensive. Another trivial solution is that the user first checks

which servers are available and then executes a regular PIR protocol with these servers. The problem with this
solution is that we need two rounds of communication. Another problem is that servers can crash between
the first round and the second round. Our goal is to design robust protocols in which the dependency of the
communication complexity oǹandk is polynomial.

We next present two additional motivation examples. First, consider a database which is updated frequently.
In this case, the servers might hold different versions of the database. If the user and servers execute a robust
PIR protocol, and each server sends the version number of the database, then as long as a big enough subset of
the servers hold the latest version of the database, then the user can recover the desired bit. Second, consider
a system in which the servers do not have the same response time. Furthermore, the response time can vary
according to the server’s load at a specific moment. In this case, using a robust protocol, the user needs only
the firstk answers that it receives, i.e., it need not wait for slow servers.

Related Work. Before proceeding, we give a brief overview of some relevant results on PIR. The simplest
solution to the PIR problem is sending the entire database to the user. This solution is impractical for large
databases. However, if the server is not allowed to gainany information about the retrieved bit, then the linear
communication complexity of this solution is optimal [13]. To overcome this problem, [13] suggested that
the user accesses replicated copies of the database kept on different servers, requiring that each server gains
absolutely no information on the bit the user reads (thus, these protocols are calledinformation-theoreticPIR
protocols). The best information-theoretic PIR protocols known to date are summarized below: (1) a2-server
protocol with communication complexity ofO(n1/3) bits [13], (2) ak-server protocol, for any constantk > 1,
with communication complexity ofO(k3n1/(2k−1)) bits [17] (improving on [13, 3, 18], see also [7]), (3) a

k-server protocol, for any constantk > 1, with communication complexity ofO(2Õ(k) ·n
2 log log k
k log k ) bits [8], and

(4) a protocol withO(log n) servers and communication complexity ofO(log2 n log log n) bits [5, 6, 13] . In
all these protocols it is assumed that the servers do not communicate with each other.t-private protocols, in
which the user is protected against collisions of up tot servers, have been considered in [13, 17, 7]. Specifically,
the best communication complexity of such protocol isO(n1/b(2k−1)/tc) [7]. For a more extensive discussion
on PIR related work the reader can consult, e.g., [27].

One of the main tools we use isperfect hash familieswhich were introduced by [21]. These families were
first used in compiler design to prove lower bounds on the size of a computer program. In the last few years,
perfect hash families have been applied to circuit complexity problems [23], derandomization of probabilistic
algorithms [2], threshold cryptography [9, 11], and other tasks in cryptography [15, 28]. Perfect hash families
are also considered from a combinatorial point of view [1, 4, 10, 12, 16, 19, 29]. A comprehensive overview on
perfect hashing can be found in [14].

Our Results. We present several protocols with various features which address the robust PIR problem. These
protocols are incomparable, i.e., for different values ofn andk we get better results using different protocols.

Our first result is a generic transformation fromk-out-of-k PIR protocols tok-out-of-̀ PIR protocols: we
show that if there exists a perfect hash familyH`,k of sizew`,k (the definition of a perfect hash family appears
in Definition 3.3) and if there exists ak-out-of-k PIR protocol with communication complexityPIRk(n) per
server, then there exists ak-out-of-̀ PIR protocol with communication complexitywk,` · PIRk(n) per server.
Since this is a generic transformation, any improvement in the communication complexity ofk-out-of-k PIR
protocols (e.g., the recent result of [8]) directly translates to improved robust PIR protocols. We also present a
generic transformation fromt-privatek-out-of-k PIR protocols tot-privatek-out-of-̀ PIR protocols.

Our second result is a robust PIR protocol using the polynomial interpolation based PIR protocol of [5, 6,
13]. This protocol is ak-out-of-̀ PIR protocol with communication complexity ofO(kn1/k` log `). That is,
the communication in this protocol is polynomial in` andk, however its dependency onn is worse than the
protocols that can be obtained via the generic transformation.

Our third protocol combines Shamir’s secret sharing scheme with the 2-server protocol of [13]. This results
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in a 2-out-of-̀ protocol with communication complexity ofO(n1/3 log `), that is, the same communication
complexity that can be achieved using the generic protocol. We present this protocol as it is a more direct
approach; we hope that this approach will be used in the future to construct more efficient protocols for larger
values ofk.

Finally, we extend our discussion to robust PIR protocols which can tolerate Byzantine servers. That is, we
require that the user can reconstruct the correct value ofxi even if the answers of some servers are maliciously
altered. We first show a generic transformation from robust PIR protocols to robust PIR protocols that tolerate
Byzantine servers. We next show that there exists a robustk-out-of-̀ PIR protocol where the user can recon-
struct the correct value ofxi as long as it receives at leastk answers of which at mostk/3 are corrupted. The
communication complexity in the protocol isO(kn1/bk/3c` log `).

Organization. In Section 2 we provide the necessary definitions, in Section 3 we show generic transforma-
tions from PIR protocols to robust PIR protocols, in Section 4 we show a specific construction of ak-out-of-̀
robust PIR protocol, and in Section 5 we construct a2-out-of-̀ robust PIR protocol using Shamir’s secret
sharing scheme. Finally, in Section 6 we present robust PIR protocols tolerating Byzantine servers.

2 Preliminaries

We start with some notation. By[k] we denote the set{1, . . . , k}. Let GF(q) denote the finite field withq
elements, whereq is a prime-power. Given a vector~V , we denoteV [j] as thej-th coordinate of~V .

2.1 PIR Protocols

We define 1-round information-theoretic PIR protocols. Ak-out-of-̀ PIR protocol involves̀ serversS1, . . . ,S`,
each holding the samen-bit stringx (the database), and a user who wants to retrieve a bitxi of the database.

Definition 2.1 (Robust PIR) A k-out-of-̀ PIR protocolP = (R,Q,A, C) consists of a probability distribu-
tion R and three algorithms: query algorithmQ(·, ·, ·), answering algorithmA(·, ·, ·), and a reconstruction
algorithm C(·, ·, . . . , ·) (C hask + 3 arguments). At the beginning of the protocol, the user picks a random
string r according to the distributionR. For j = 1, . . . , `, it computes a queryqj = Q(j, i, r) and sends it to
serverSj . Each server responds with an answeraj = A(j, qj , x) (the answer is a function of the query and
the database; without loss of generality, the servers are deterministic). Finally, the user, upon receiving any
k answersaj1 , . . . , ajk , computes the bitxi by applying the reconstruction algorithmC(i, r,K, aj1 , . . . , ajk),
whereK = {j1, . . . , jk}. A k-out-of-̀ protocol as above is at-private robust PIR protocol, if it satisfies the
following requirements:

Correctness. The user always computes the correct value ofxi from anyk answers. Formally, for every
i ∈ {1, ..., n}, every random stringr, every setK = {j1, . . . , jk} ⊆ {1, . . . , `} and every databasex ∈ {0, 1}n
it holds that,C(i, r,K,A(j1,Q(j1, i, r), x), . . . ,A(jk,Q(jk, i, r), x)) = xi.

t-Privacy. Each collusion of up tot servers has no information about the bit that the user tries to re-
trieve: For every two indicesi1, i2 ∈ {1, . . . , n} and for every{j1, . . . , jt} ⊆ {1, . . . , `}, the distributions
〈Q(j1, i1, r), . . . ,Q(jt, i1, r) : r ∈ R〉 and〈Q(j1, i2, r), . . . ,Q(jt, i2, r) : r ∈ R〉 are identical.

We denote1-privatek-out-of-̀ PIR protocol ask-out-of-̀ PIR protocols. The main difference between
the definition of PIR and robust PIR is in the correctness requirements. That is, the regular PIR protocols are
k-out-of-k robust PIR protocols.

Definition 2.2 (Communication Complexity) Given ak-out-of-̀ PIR protocol, thecommunication per server
is the number of bits communicated between the user and any single server on a database of sizen, maximized
over all choices ofx ∈ {0, 1}n, i ∈ [n], and all random inputs. Thetotal communicationin the protocol is the
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number of bits communicated between the user and the` servers.The query complexityis the maximal number
of bits sent from the user to any single server, and theanswer complexityis the maximal number of answer bits
sent by any server.

2.2 Shamir’s Secret-Sharing

Secret-sharing schemes are an important tool in the construction of several PIR protocols. See [7] for a discus-
sion on the role of secret sharing in PIR protocols. In general terms, a secret sharing scheme enables a user to
share a given secret amongst` users such that only subsets of at leastt users can reconstruct the secret, and
any subset of less thant users gets no information on the secret. We next describe Shamir’s secret sharing
scheme [25] which we use in our protocols.

Shamir’s scheme [25]. Let F be a finite field withq > ` elements, and letω1, . . . , ω` be distinct nonzero
elements ofF . In order to share a secrets ∈ F using at-out-of-̀ sharing scheme, the dealer choosest −
1 random elementsa1, . . . , at−1, which together with the secrets define a univariate polynomialp(Y ) def=
at−1Y

t−1 + at−2Y
t−2 + . . . + a1Y + s. Observe thatp(0) = s. The share of thej-th player isp(ωj).

Each set of at leastt players can recoverp(Y ) by interpolation, and hence can also reconstructs = p(0).
More formally, for every set{j1, . . . , jt} there exist constantsαj1 , . . . , αjt (independent ofp(Y ) ands) where
αjh =

∏
d6=h

ωjd
ωjd−ωjh

such thats = p(0) =
∑t
h=1 αjhp(ωjh). On the other hand, every set oft − 1 players

learns nothing ons from their shares.
In the previous scheme we shared one element of the field; we extend this notion in the natural way to a

scheme for sharing of a vector of elements in the field. Given a vector~V of lengthm, i.e., ~V ∈ Fm we define
the shares of the vector, denoted by〈~V1, . . . , ~V`〉, where each~Vj is a vector inFm as follows: For each element
V [a], where1 ≤ a ≤ m, the user executes Shamir’st-out-of-̀ secret sharing scheme independently over the
field F producing` sharessa1, . . . , s

a
` . We then define the vector~Vj as〈s1

j , . . . , s
m
j 〉, i.e., thej-th share out of

each set of shares.

3 Generic Transformations

In this section we present several generic transformations from PIR protocols to Robust PIR protocols.

3.1 A Replication Solution for 2-out-of-` Robust PIR

We start with a generic transformation from 2-out-of-2 PIR protocols to 2-out-of-` PIR protocols proving the
next theorem:

Theorem 3.1 If there is a 2-out-of-2 PIR protocol with communicationPIR2(n) per server, then there is a
2-out-of-̀ PIR protocol with communicationPIR2(n) log ` per server.

Proof: Let P be a 2-out-of-2 PIR protocol. Given the retrieval indexi, the user executes the given PIR
protocolP to producelog ` independent pairs of queries{Q1, . . . , Qlog `} for the retrieval ofxi, each pair
comprises of 2 queries, i.e.,Qj = 〈Qj [0], Qj [1]〉 whereQj [a] is the query for servera. Each serverS1, . . . ,S`
receives one query out of each pair of queries and answers this query. (We will describe the algorithm that
chooses one query out of each pair later.) The queries received by each server guarantees that if the user
receives correct answers from at least 2 servers then there exists an indexm such that the user receives an
answer for the queriesQm[0] andQm[1] and thus he can reconstruct the bitxi (this is done independently of
the answers that the user receives or does not receive for the other queries).

We next explain which queries each server receives. Given a serverSj , we look at the representation
bj1b

j
2 . . . b

j
log ` of j as a binary number. The user sends the followinglog ` queries toSj – for each1 ≤ a ≤ log `

send the queryQa[bja] to Sj , i.e., if bja = 0 sendQa[0] and if bja = 1 sendQa[1]. Each server, upon receiving
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the queries, replies independently to each query according to the PIR protocol. Since we assume that at least
2 servers are reachable, the user will receive answers from at least 2 servers, say serverSj1 and serverSj2
(j1 6= j2). The binary representations ofj1 andj2 differ in at least one bit; letm be the index of the first bit
that differs betweenj1 andj2, and without loss of generality,bj1m = 0 andbj2m = 1. The user takes the answer
received from serverSj1 for the queryQm[0] and the answer received from serverSj2 for the queryQm[1] and
reconstruct the desired bitxi.

This scheme is secure since each server receives only one query out of each pair of queries and these pairs of
queries are independent. In this protocol each server receiveslog ` queries and answers each one of them, thus
the complexity of the protocol is the number of queries multiplied byPIR2(n), i.e., the total communication is
O(PIR2(n)` log `). 2

Plugging the PIR protocol of [13] we get:

Corollary 3.2 There exists a2-out-of-̀ PIR protocol with total communication ofO(n
1
3 ` log `).

3.2 A Generick-out-of-` Replication Solution

In this section we will generalize the solution presented in the previous section, and show a generic trans-
formation fromk-out-of-k PIR protocols tok-out-of-̀ PIR protocols. The idea is similar to the 2-out-of-`
PIR protocol; however we need to be more careful in partitioning the queries. For this purpose we recall the
following definition:

Definition 3.3 (Perfect hashing [21])A perfect hash familyH`,k =
{
h1, . . . , hw`,k

}
is a family of functions

of the form:ha : {1, . . . , `} → {1, . . . , k} such that for each subsetA ⊆ {1, . . . , `} , |A| = k, there exists an
indexa such that|ha(A)| = k (that is,ha restricted toA is one-to-one and on-to). The size of the family is the
number of functions in the family, denoted byw`,k.

We have 3 parameters for a perfect hash family –k, `, andwk,`. The parametersk and` are part of the
specification of the problem. On the other hand, we would likew`,k – the number of functions in the perfect
hash family – to be as small as possible, sincew`,k will directly affect our protocol’s complexity.

Theorem 3.4 If there exists a perfect hash familyH`,k of sizew`,k and if there exists ak-out-of-k PIR protocol
with communicationPIRk(n) per server, then there exists ak-out-of-̀ PIR protocol with communicationw`,k ·
PIRk(n) per server, thus total communication` · w`,k · PIRk(n).

Proof: Given ak-out-of-k PIR protocolP we do the following. Giveni, the retrieval index, the user usesP
to producew`,k independent vectors of queries

{
Q1, . . . , Qw`,k

}
for the retrieval ofxi, each vector comprises

of k queries, i.e.,Qj = 〈Qj [1], . . . , Qj [k]〉, that is, the user executesw`,k times the protocolP independently
and the user holds thew`,k query vectors. Each server receives from the user one query out of each vector of
queries and answers this query. Since each server receivesw`,k PIR queries, which are completely independent,
the server gains no knowledge oni. We show below how the user chooses which queries to send to each server.
This choice of queries received by each server guarantees that if the user receives answers from at leastk servers
then it can reconstructxi.

Given a perfect hash familyH`,k, for each serverSj the user sends the followingw`,k queries – for each
1 ≤ a ≤ w`,k, let ∆ = ha(j), then the user sendsQa[∆] to Sj , i.e., the user sends the∆-th query out of the
vectorQa. In other words, the perfect hash family determines which queries we need to take from each vector
of queriesQa. LetSj1 , . . . ,Sjk bek servers from which the user receives answers. By the definition of perfect
hashing, there is an indexa such that|ha({j1, . . . , jk})| = k, i.e., the set{ha(j1), . . . , ha(jk)} is a permutation.
We consider the answers{Qa[ha(j1)], . . . , Qa[ha(jk)]} received from these servers to the following queries.
Since these queries are distinct, we havek answers in ak-out-of-k PIR protocol, and the user can reconstruct
xi from the answers received for these queries. 2
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The communication complexity of the above protocol depends on the size of the perfect hash family. The
explicit hash family of [26] has sizelog ` · 2O(k) (this is basically optimal [21]). Using the protocol of [13] and
the hash family of [26] we get:

Corollary 3.5 There is ak-out-of-̀ protocol with total communication2O(k)n
1

2k−1 ` log `.

Applying the protocol of [8] and the hash family of [26] we get:

Corollary 3.6 There is ak-out-of-̀ protocol with total communication2Õ(k)n
2 log log k
k log k ` log `.

We use the same approach taken in Theorem 3.4, only this time, instead of using “regular”k-out-of-k PIR
protocol, we use at-privatek-out-of-k PIR protocol to produce thew`,k independent query vectors.

Theorem 3.7 If there is a perfect hash familyH`,k of sizew`,k and if there is at-privatek-out-of-k PIR protocol
with communicationPIRk,t(n) per server, then there is at-privatek-out-of-̀ PIR protocol with communication
w`,k · PIRk,t(n) per server, thus total communication` · w`,k · PIRk,t(n).

Applying the protocol of [7] and the hash family of [26] we get:

Corollary 3.8 There is at-privatek-out-of-̀ protocol with total communicationO(`·log `·2O(k)·n1/b(2k−1)/tc).

3.3 A Generalized Transformation

We now show a generalization of the previous transformation, where our goal is to reduce the dependency on
k. As seen in [21] the size of every perfect hash familyH`,k is at least2k, thus, we first generalize the notion
of perfect hashing.

Definition 3.9 An α-perfect hash familyH`,k,α =
{
h1, . . . , hw`,k,α

}
(whereα ≤ 1) is a family of functions

ha : {1, . . . , `} → {1, . . . , bαkc} such that for each subsetA ⊆ {1, . . . , `} , |A| = k, there exists an indexa
such that|ha(A)| = bαkc.

Note that whenα = 1 we get the standard definition of a perfect hash family. We now show how to use the
α-perfect hash family in the construction ofk-out-of-̀ PIR protocols.

Theorem 3.10 If there is anα-perfect hash familyHk,`,α of sizew`,k,α and if there is anbαkc-out-of-bαkc
PIR protocol with communicationPIRbαkc(n) per server, then there exists ak-out-of-̀ PIR protocol with
communicationw`,k,α · PIRbαkc(n) per server, thus total communication` · w`,k,α · PIRbαkc(n).

Proof: This proof is similar to the one shown in Theorem 3.4, only this time we use anbαkc-out-of-bαkc
PIR protocol and anα-perfect hash family. LetSj1 , . . . ,Sjk bek servers from which the user receives answers.
Using theα-perfect hash property, leta be an index such that|ha({j1, . . . , jk})| = bαkc. This means that the
user hasbαkc distinct answers of anbαkc-out-of-bαkc PIR protocol, and the user can reconstructxi from the
answers received for these queries. 2

In the last proof we used, as our building block to construct ak-out-of-̀ PIR protocol, anbαkc-out-of-bαkc
PIR protocol (as opposed to Theorem 3.4 where we used ak-out-of-k PIR protocol). Since the communication
complexity of PIR protocols decrease ask gets bigger and since we are usingα < 1 then we will get a less
efficient PIR protocol in its dependency onn; our hope is thatw`,k,α is considerably smaller thus the dependency
onk will be better. Forα = 1/ln k we get a family whose size is small.

Claim 3.11 There exists an1
ln k -perfect hash family of sizeO( k log `

log log k ).
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Proof: We will prove the claim using a probabilistic proof. As a first step lets consider a specific subset
A ⊆ {1, . . . , `} , |A| = k, one hash functionh chosen at random from the space of functions from{1, . . . , `}
to {1, . . . , bαkc}, and one indexc ∈ {1, . . . , bαkc}. We now look at the probability

Pr[∀j∈Ah(j) 6= c] =
(bαkc − 1
bαkc

)k
≤
((

1− 1
αk

)αk) 1
α

< e
−1
α =

1
k
.

The last equality is true sinceα = 1
ln k . By the union bound we conclude that

Pr[ |h(A)| < bαkc ] = Pr[ ∃c∀j∈A h(j) 6= c ] < bαkc 1
k
≤ α =

1
ln k

. (1)

As the next step we choosew`,k,α hash functions independently from the space of functions from{1, . . . , `} to
{1, . . . , bαkc}. Thus for a fixed setA we get

Pr[∀1≤a≤w`,k,α |ha(A)| < bαkc ] <
(

1
ln k

)w`,k,α
.

Therefore,

Pr[ ∃A; |A|=k ∀1≤a≤w`,k,α |ha(A)| < bαkc ] <

(
`

k

)(
1

ln k

)w`,k,α
≤ `k

(
1

ln k

)w`,k,α
.

If `k( 1
ln k )w`,k,α < 1, then choosing at randomw`,k,α hash functions, the probability that this family of hash

functions is not anα-perfect hash family is smaller then 1, i.e., there exists anα-perfect hash family of size
w`,k,α. Thus, it suffices that̀k < (ln k)w`,k,α , i.e.,w`,k,α >

k log `
log log k . 2

In the above analysis, Inequality (1) could have been derived from the so-called coupon collector problem,
see, e.g., [22, pages 57–63]. The analysis of the coupon collector problem implies that if we try to takeα ≥ 2

ln k
then for a givenA of sizek the probability that|h(A)| = bαkc would be exponentially small, thus the size of
family we would construct using the above proof would be exponential ink.

With the current state of the art of PIR protocols we cannot describe a more efficient transformation to robust
PIR protocol using the1

ln k -perfect hash family. If, for example, there exists a PIR protocol with communication

poly(k)·nO( 1
k log k

) then we will get a robust protocol with communication complexity of poly(k, `)·n
1
2k . Notice

that the recent PIR protocols [8] are close to these requirements (however, they are not polynomial ink).

4 A k-out-of-` Polynomial Interpolation based PIR Protocol

In this section we construct ak-out-of-̀ PIR protocol which uses the polynomial interpolation based PIR
Protocol of [5, 6, 13]. We start with a technical lemma, and then present the protocol.

Lemma 4.1 Letd andm be integers such thatm = Ω(d ·n
1
d ). There is a functionE : {1, . . . , n} −→ {0, 1}m

and anm-variant degreed polynomialPx such that in every fieldPx(E(i)) = xi for each1 ≤ i ≤ n.

Proof: LetE(1), . . . , E(n) ben distinct binary vectors of lengthm and weightd, letE(i)a be thea-th bit
of E(i) and definePx(Z1, . . . , Zm) def=

∑n
i=1 xi

∏
E(i)a=1 Za. 2

Lemma 4.2 There exists ak-out-of-̀ PIR protocol with query complexityO(kn
1

k−1 log `) and answer com-
plexityO(log `) per server.
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Proof: Let d = k − 1 andPx andE be as promised in Lemma 4.1. Given the retrieval indexi, the user
does the following: Calculates the vectorE(i) = 〈y1, . . . ym〉, whereyj is thej-th bit of E(i). Now the user
uses Shamir’s 2-out-of-` scheme [25], over a finite field withO(`) elements, to shareE(i). That is, it chooses
at randomm polynomials{p1, . . . , pm} (each of degree 1) such thatpa(0) = ya for each1 ≤ a ≤ m. Let
ω1, . . . , ω` be distinct nonzero elements of the field, the user sends to serverSj the shares〈p1(ωj), . . . , pm(ωj)〉.

We now consider the following univariate polynomial:R(Y ) = Px(p1(Y ), . . . , pm(Y )); the degree of this
polynomial isd sinceR is constructed from the polynomialPx, whose degree isd, by replacing each variableYj
with a degree1 polynomial. Given these definitions,R(0) = Px(p1(0), . . . , pm(0)) = Px(y1, . . . , ym) = xi.
Furthermore, the serverSj can computeR(ωj) without knowingR sinceR(ωj) = Px(p1(ωj), . . . , pm(ωj))
and since〈p1(ωj), . . . , pm(ωj)〉 are the shares that serverSj receives from the user. Thus,Sj computesR(ωj)
and sends it to the user.

The user upon receiving anyk answersR(ωj1), . . . , R(ωjk) (from k different servers) reconstructs the
polynomialR by interpolation (since the user hask points on a polynomial of degreed = k− 1) and computes
R(0) = xi.

ServerSj does not gain any information oni sinceSj receives one share of the secretE(i) in a 2-out-of-̀
secret sharing scheme. Thus, the protocol is private. The user sendsm shares to each server, each share is of size
O(log `). Each server sends an answer of lengthO(log `) and thus the total communication isO(m` log `) =
O(kn

1
k−1 ` log `). 2

In the above protocol, the answer complexity is larger than the query complexity. We will balance these
complexities using the balancing technique of [13], yielding the following theorem:

Theorem 4.3 There exists ak-out-of-̀ PIR protocol with total communicationO(kn
1
k ` log `).

Proof: This communication complexity is achieved by balancing the complexities of the queries and answers
of the protocol described in Lemma 4.2, i.e., reducing the query complexity and increasing the answer com-
plexity. This is done by looking at the database as a matrix of sizeα(n)× n

α(n) whereα(n) will be determined
later. We consider each indexi as a cell(i1, i2) wherei1, i2 is the natural mapping ofi according to the size
of the matrix. To achieve the balancing, the user executes the above PIR protocol with retrieval indexi2 and
database of sizeα(n). Each server considers each row of the matrix as a database of sizeα(n), and sends the
answer to the query it gets for each row. The user then takes the answers that it got for the rowi1 and recon-
structsxi1,i2 . The user sends one query to each server with database of sizeα(n), thus the query complexity

is O(log ` · kα(n)
1

k−1 ) per server. Each server sends one answer per row, each answer is of lengthO(log `);
thus, the answer complexity islog ` · n

α(n) per server. To minimize the total communication complexity we

require: log ` · n
α(n) = log `kα(n)

1
k−1 . Takingα(n) = O(n

k−1
k ), yields a protocol with total communication

O(kn
1
k ` log `). 2

A similar construction works fort-private robust protocols.

Lemma 4.4 There exists at-privatek-out-of-̀ PIR protocol with query complexityO(kt n
1

b(k−1)/tc log `) and
answer complexity ofO(log `) per server.

Proof: Let d =
⌊
k−1
t

⌋
, m = Θ(dn

1
d ), andPx andE be as promised in Lemma 4.1. The protocol we

construct is similar to the protocol described in the proof of Lemma 4.2 with the following differences: In
the t-private protocol the user uses Shamir’s(t + 1)-out-of-̀ scheme, that is, the degree of the polynomials
p1, . . . , pm is t. Thus, the degree ofR is dt = bk−1

t c · t ≤ k − 1. The user, upon receivingk answers
R(ωj1), . . . , R(ωjk) (from k different servers), reconstructs the polynomialR by interpolation (since the user
hask points on a polynomial of degreek − 1) and computesR(0) = xi.

Next we analyze the properties of the protocol. A coalition oft servers does not gain any information oni,
since the user uses Shamir’s(t + 1)-out-of-̀ secret sharing scheme. Thus, the protocol ist-private. As for the
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communication, the user sendsm shares to each server, each share is of sizeO(log `). Each server sends an

answer of lengthO(log `) thus the query complexity isO(m log `) = O(kt n
1

b(k−1)/tc log `) per server. 2

Theorem 4.5 There is at-privatek-out-of-̀ PIR protocol with total communication

O

(
k

t
n

1
b(k−1)/tc+1 ` log `

)
= O

(
k

t
nt/k` log `

)
.

Proof: We use here the same technique described in Theorem 4.3. The query complexity isO(kt log ` ·
α(n)

1
b(k−1)/tc ) per server. Each server sendsn/α(n) answers each of lengthlog `, thus in order to mini-

mize the total communication complexity we require:log ` · n
α(n) = k

t log ` · α(n)
1

b(k−1)/tc . Takingα(n) =

O(nb
k−1
t c/(b k−1

t
+1c)), yields a protocol with the desired communication complexity. 2

5 A Robust PIR Protocols Using Shamir’s Secret Sharing

In this section we show how one can use Shamir’s secret sharing in order to produce robust PIR protocols. We
first construct ak-out-of-̀ PIR protocol with total communication complexity ofO(n` log `). This protocol
is just a “warmup” (because the result is trivial), however, the ideas of this protocol are used to construct a
2-out-of-̀ protocol whose complexity isO(n1/3` log `).

Given the retrieval indexi, the user computes the vectors〈~V1, . . . , ~V`〉 – the shares of Shamir’s scheme (as
described in Section 2.2) over GF(2dlog `e) of the unit vector~ei of lengthn, and sends~Vj to serverSj for each

1 ≤ j ≤ `. ServerSj , upon receiving~Vj , sends back to the user the following scalar multiplication:aj
def= ~Vj ·~x,

i.e., the server computes the scalar product of the database and the vector~Vj and sends the result to the user.
The user upon receivingk answersaj1 , . . . , ajk uses the appropriate constantsαj1 , . . . , αjk (see Section 2.2)

to perform the following computation (in the following proof all additions and multiplications are done in the
GF(2dlog `e)):

k∑
h=1

αjhajh =
k∑

h=1

αjh(~Vjh · ~x) = (
k∑

h=1

αjh
~Vjh) · ~x = ~ei · ~x = xi.

Thus, the user can reconstructxi from anyk answers.

We now present a more efficient protocol that uses the above ideas combined with the 2-server protocol
of [13]. This2-out-of-̀ protocol works with total communication ofO(n1/3` log `). Lets first recall the proto-
cols presented by [13]:

ORIGINAL PROTOCOL (VARIANT OF [13]). Let n = m3 for somem, and consider the database as a3-
dimensional cube, i.e., everyi ∈ [n] is represented as〈i1, i2, i3〉 whereir ∈ [n1/3] for r = 1, 2, 3. This is
done using the natural mapping from{0, 1}n to ({0, 1}n1/3

)3. In Figure 1 we describe the protocol. It can be
checked that each bit, except forxi1,i2,i3 , appears an even number of times in the exclusive-or the user computes
in Step 3, thus cancels itself. Therefore, the user outputsxi1,i2,i3 as required. Furthermore, the communication
isO(n1/3).

We can look at~A2
r = ~A1

r ⊕ ~eir and ~A1
r as two shares in a 2-out-of-2 sharing scheme of the unit vector~eir .

We use a similar approach to construct a robust protocol. There is one difference – we will use Shamir’s 2-out-
of-` secret sharing scheme in order to share the unit vector~eir ; these shares are used to generate the queries for
the protocol.

We next define some notation concerning cubes. This notation is helpful in describing the next protocols.
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The Two Server Protocol of [13]

1. The user selects three random vectors~A1
1,
~A1

2,
~A1

3 ∈ {0, 1}m, and computes
~A2
r = ~A1

r ⊕ ~eir for r = 1, 2, 3.

The user sends~Aj1, ~A
j
2,
~Aj3 to Sj for j = 1, 2.

2. ServerSj computes for everyb ∈ [n1/3]

aj1,b
def= ~Aj2 · xb,∗,∗ · ~A

j
3, aj2,b

def= ~Aj1 · x∗,b,∗ · ~A
j
3 and

aj3,b
def= ~Aj1 · x∗,∗,b · ~A

j
2,

and sends the3n1/3 bits
{
ajr,b : r ∈ {1, 2, 3} , b ∈ [n1/3]

}
to the user.

3. The user outputs
⊕

r=1,2,3(a1
r,ir ⊕ a

2
r,ir).

Figure 1: The two server protocol of [13] with communicationO(n1/3).

Definition 5.1 Letx = ({0, 1}m)3 be a three dimensional cube. We denotexj1,∗,∗ as the matrix of all the ele-
ments ofx where the first index of this element isj1. Formally, we definexj1,∗,∗ as the matrixA whereAi1,i2 =
xj1,i1,i2 . We definex∗,j1,∗ andx∗,∗,j1 similarly. We denotexj1,j2,∗ as the vector obtained from the 3-dimensional
cubex by taking all the elements ofx where the first index of this element isj1 and the second isj2. Formally,
we definexj1,j2,∗ as the vector~A where ~Ai1 = xj1,j2,i1 . We definex∗,j1,j2 andxj1,∗,j2 similarly.

Theorem 5.2 There exists a2-out-of-̀ PIR protocol with total communication ofO(n1/3` log `).

Proof: In this proof we consider the databasex as a 3-dimensional cube and use Shamir’s 2-out-of-` secret
sharing scheme to construct our queries:

Given ` and the retrieval indexi = 〈i1, i2, i3〉, the user computes the vector〈~U1, . . . , ~U`〉, the vector
〈~V1, . . . , ~V`〉, and the vector〈 ~W1, . . . , ~W`〉 as the shares in a Shamir’s 2-out-of-` scheme of the unit vector~ei1 ,
the unit vector~ei2 , and the unit vector~ei3 respectively. The user sends the query~Uj , ~Vj , ~Wj to serverSj for
each1 ≤ j ≤ `.

ServerSj upon receiving~Uj , ~Vj , ~Wj sends back to the user the following3n1/3 numbers: For each1 ≤
a ≤ n1/3 the server sends to the user: The set of numbers –~Vj ·xa,∗,∗ · ~Wj , the set of numbers –~Uj ·x∗,a,∗ · ~Wj ,
and the set of numbers~Uj · x∗,∗,a · ~Vj , i.e., each number the server sends is a result of multiplications of a
two-dimensional matrix produced from the cube with the vectors sent by the user. As in the regular 2-out-of-2
scheme the user takes one element out of each set of answers: The user upon receiving answers from 2 servers
r andq considers the following 6 numbers:

~Vr · xi1,∗,∗ · ~Wr, ~Ur · x∗,i2,∗ · ~Wr, ~Ur · x∗,∗,i3 · ~Vr, ~Vq · xi1,∗,∗ · ~Wq, ~Uq · x∗,i2,∗ · ~Wq, ~Uq · x∗,∗,i3 · ~Vq.

The following claim is similar to the fact that in the protocol of [13] the user reconstructs the correct bitxi.

Claim 5.3 There exists a linear combination of these 6 numbers that computes to the desired bitxi1,i2,i3 .

Proof: In our proof we use the constants from Shamir’s schemeαr andαq (see Section 2.2), these two

constants are independent of the answers received from the servers.1 Denote~̇U def= αr ~Ur and ~̈U def= αq ~Uq. We

1The constantsαr andαq depend both onr andq, which means that the servers themselves cannot compute them since the servers
do not know in advance which of the servers will send an answer to the user.
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denote~̇W , ~̈W and ~̇V , ~̈V similarly. Thus,

~̈U + ~̇U = ~ei1 ,
~̈V + ~̇V = ~ei2 , and ~̈W + ~̇W = ~ei3 . (2)

Notice that~̇V · xi1,∗,∗ ·
~̇W = (αr)2(~Vr · xi1,∗,∗ · ~Wr). In our computation we multiply each of the first three

numbers byα2
r and each of the last three numbers byα2

q and consider the following combination:

S
def= ~̇V · xi1,∗,∗ ·

~̇W + ~̇U · x∗,i2,∗ ·
~̇W + ~̇U · x∗,∗,i3 ·

~̇V

+ ~̈V · xi1,∗,∗ ·
~̈W + ~̈U · x∗,i2,∗ ·

~̈W + ~̈U · x∗,∗,i3 ·
~̈V .

We use the fact that in GF(2dlog `e) the sum of every number with itself is zero, so we add the number
~̈V · xi1,∗,∗ ·

~̇W twice, the number~̇U · x∗,i2,∗ ·
~̈W twice, and the number~̈U · x∗,∗,i3 ·

~̇V twice and get:

S = ~̇V · xi1,∗,∗ ·
~̇W + ~̈V · xi1,∗,∗ ·

~̇W + ~̇U · x∗,i2,∗ ·
~̇W + ~̇U · x∗,i2,∗ ·

~̈W

+ ~̇U · x∗,∗,i3 ·
~̇V + ~̈U · x∗,∗,i3 ·

~̇V + ~̈V · xi1,∗,∗ ·
~̈W + ~̈V · xi1,∗,∗ ·

~̇W

+ ~̈U · x∗,i2,∗ ·
~̈W + ~̇U · x∗,i2,∗ ·

~̈W + ~̈U · x∗,∗,i3 ·
~̈V + ~̈U · x∗,∗,i3 ·

~̇V

= ( ~̇V + ~̈V ) · xi1,∗,∗ ·
~̇W + ~̇U · x∗,i2,∗ · (

~̇W + ~̈W )

+ (~̇U + ~̈U) · x∗,∗,i3 ·
~̇V + ~̈V · xi1,∗,∗ · (

~̈W + ~̇W )

+ (~̈U + ~̇U) · x∗,i2,∗ ·
~̈W + ~̈U · x∗,∗,i3 · (

~̈V + ~̇V )

= ~ei2 · xi1,∗,∗ ·
~̇W + ~̇U · x∗,i2,∗ · ~ei3

+ ~ei1 · x∗,∗,i3 ·
~̇V + ~̈V · xi1,∗,∗ · ~ei3

+ ~ei1 · x∗,i2,∗ ·
~̈W + ~̈U · x∗,∗,i3 · ~ei2 .

The last equality follows (2). Notice that~ei2 · xi1,∗,∗ = ~ei1 · x∗,i2,∗ = xi1,i2,∗ and similarlyx∗,i2,∗ · ~ei3 =
x∗,∗,i3 ·~ei2 = x∗,i2,i3 andxi1,∗,∗ ·~ei3 = ~ei1 ·x∗,∗,i3 = xi1,∗,i3 (multiplication from the right replaces the rightmost
∗ and multiplication from the left replaces the leftmost∗), thus we get:

S = xi1,i2,∗ · (
~̇W + ~̈W ) + (~̇U + ~̈U) · x∗,i2,i3 + xi1,∗,i3 · (

~̇V + ~̈V )
= xi1,i2,∗ · ~ei3 + ~ei1 · x∗,i2,i3 + xi1,∗,i3 · ~ei2 = xi1,i2,i3 + xi1,i2,i3 + xi1,i2,i3 = xi1,i2,i3 .

2

We now provide the proof of the protocol’s privacy and its communication complexity analysis. Each server
gets one share of Shamir’s 2-out-of-` scheme. Since Shamir’s scheme is secure each server cannot gain any
information abouti from the share it received, and the protocol is secure. Each server sends and receives3n1/3

elements of GF(2dlog `e) and thus the total communication isO(n1/3` log `). 2

6 Dealing with Byzantine Servers

In previous sections we assumed that servers can crash, however they cannot reply with wrong answers. We
next show solutions for the robust PIR problem tolerating some Byzantine servers, that is, some servers might
be malicious servers or have a corrupted or obsolete database, these servers can return any answer to the user’s
query. The user needs to be prepared for wrong answers from the servers and still reconstruct the right value of
the desired bitxi.

Definition 6.1 (Byzantine-Robust PIR) A b Byzantine-robustk-out-of-̀ PIR protocolP = (R,Q,A, C) is
defined as in Definition 2.1 where the correctness requirement is replaced by the following requirement:
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Correctness. The user always computes the correct value ofxi from anyk answers, of which at leastk−b are
correct. Formally, for everyi ∈ {1, ..., n}, every random stringr, every setK = {j1, . . . , jk} ⊆ {1, . . . , `}, ev-
ery databasex ∈ {0, 1}n, and everyk answers{a1, . . . , ak} such that| {aw : aw = A(jw,Q(jw, i, r), x)} | ≥
k − b, we get that:C(i, r,K, a1, . . . , ak) = xi.

The correctness holds even if the Byzantine servers cooperate. For the privacy we assume that the Byzantine
servers do not cooperate. (Later on we will show what can be done when we discard this assumption.) Note
that since we are talking about one-round PIR protocols then the definition is simple. For example, Byzantine
servers will not learn any new information as a result of sending wrong answers.

The first observation is that if the server receives answers fromk servers, then, to enable the user to recon-
struct the correct value ofxi, more than half of the answers must be correct. This condition is also sufficient as
shown by the following trivial protocol: Each server sends the entire database to the user. Givenk answers, out
of which less thank/2 are Byzantine, the user takes the value ofxi which appears at leastk/2 times.

Next we show a generic transformation from robust protocols to robust protocols that tolerate Byzantine
servers.

Theorem 6.2 Let a be a parameter where0 < a ≤ k, and assume there is ana-out-of-̀ robust PIR protocol
with total communicationPIR`

a(n), then there exists a(k − a)/2 Byzantine-robustk-out-of-̀ PIR protocol with
total communicationPIR`

a(n).

Proof: The user and the servers execute ana-out-of-̀ robust PIR protocol. Assume that the user receives
answers from a setB of servers of size at leastk. Now, for each subset of sizea of B, the user reconstructsxi
(recall that the user can reconstructxi from anya answers). The user finds a maximal subsetA ⊆ B such that
for every subset ofA of sizea the user reconstructs the same value ofxi, and outputs this value asxi.

We next prove that the user reconstructs the correct value ofxi. Since there are at most(k − a)/2 Byzantine
servers and the size ofB is at leastk, there are at leastk−(k − a)/2 = (k+a)/2 honest servers inB; for every
subset of the honest servers of sizea the user reconstructs the correct value ofxi. Hence,|A| ≥ (k + a)/2.
Since there are at most(k − a)/2 Byzantine servers, the setA contains at least(k + a)/2 − (k − a)/2 = a
honest servers, therefore the value ofxi reconstructed for this set (and any other subset ofA) is the correct
value ofxi. 2

In the previous protocol the user is required to reconstructxi for
(k
a

)
sets. We now show a construction which

overcomes this problem, this is ak-out-of-̀ robust PIR protocol in which at mostk/3 servers are Byzantine.
Note that in the following protocol the communication complexity is worse than in the generic protocol.

Theorem 6.3 There is ak3 Byzantine-robustk-out-of-̀ PIR protocol with total communicationO(kn1/bk/3c` log `).

Proof: We use thebk/3c-out-of-̀ protocol described in Section 4. In this protocol, the answers of the honest
servers are points on a univariate polynomialR whose degreebk/3c − 1. The user needs to interpolate the
polynomialR from the answers of the servers. Since some of the servers are Byzantine, not all of the answers
are points onR. Nevertheless, we now show that the user can still reconstructR as it is the only polynomial on
which at least23 of the points (answers) reside.

We know that at leastd2k/3e of the servers are not Byzantine, thus all of these servers send points on
R. Next, we show that at most2 bk/3c − 1 points from the answers lie on a polynomialB of degree at most
bk/3c − 1 which is notR: SinceB andR are different polynomials of degree at mostbk/3c − 1, they can
have at mostbk/3c − 1 common points. Since the honest servers send points onR, they can contribute at most
bk/3c − 1 points onB. Furthermore, the Byzantine parties can contribute at mostbk/3c points onB, thus we
get at most2 bk/3c − 1 < d2k/3e points that lie onB.

The user has to findd2k/3e points which reside on a polynomial of degree at mostbk/3c − 1 (i.e., onR)
and use this polynomial to reconstructxi. The user does this task using the decoding algorithm of the Reed-
Solomon error correcting codes [24]. (For more information on error-correcting codes the reader can refer
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to, e.g., [20].) The communication complexity of the above protocol is the communication complexity of the
bk/3c-out-of-̀ protocol described in Section 4, i.e.,O(kn1/bk/3c` log `). 2

Since we consider Byzantine servers, the assumption that they do not cooperate is questionable, thus it
might be more reasonable to considerb-private robust PIR protocols in the presence ofb Byzantine servers.
That is, robust PIR protocol where the privacy holds even ifb Byzantine servers cooperate. We next show two
corollaries where we allow the Byzantine servers to cooperate.

Corollary 6.4 Let a be a parameter wherek/3 < a ≤ k, and defineb = (k − a)/2. Assume there is a
b-private a-out-of-̀ robust PIR protocol with total communicationPIR`

a,b(n), then there exists ab-private b

Byzantine-robustk-out-of-̀ PIR protocol with total communicationPIR`
a,b(n).

The idea is to use the same approach seen in Theorem 6.2, but with ab-privatea-out-of-̀ PIR protocol.
Notice thatb-privatea-out-of-̀ PIR protocol with sub-linear communication exists only ifa ≥ b, thus we get
a ≥ k/3.

Corollary 6.5 There is at-private t Byzantine-robustk-out-of-̀ PIR protocol (wheret < k/3) with total

communicationO( k3tn
1

b(k−1)/3tc ` log `).

The idea is to use thet-private bk/3c-out-of-̀ protocol described in Lemma 4.4 in the same way as in
Theorem 6.3.

Acknowledgements. We thank Eyal Kushilevitz for helpful discussions.
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