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Abstract

A Private Information Retrieval (PIR) protocol enables a user to retrieve a data item from a database
while hiding the identity of the item being retrieved. In-arivate, k-serverPIR protocol the database is
replicated among servers, and the user’s privacy is protected from any collusion of tipd@overs. The
main cost-measure of such protocols is tbenmunication complexityf retrieving a single bit of data.

This work addresses thieformation-theoreticetting for PIR, in which the user’s privacy should be
unconditionally protected from collusions of servers. We present a unified general construction, whose
abstract components can be instantiated to yield both old and new families of PIR protocols. A main
ingredient in the new protocols is a generalization of a solution by Babai, Kimmel, and Lokam to a
communication complexity problem in the so-callthultaneous messagemdel.

Our construction strictly improves upon previous constructions and resolves some previous anoma-
lies. In particular, we obtain: (¥}privatek-server PIR protocols with communicati6rn'/L(2k=1)/t]),
wheren is the database size. For> 1, this is a substantial asymptotic improvement over the previous
state of the art; (2) a constant-factor improvement in the communication complexity of 1-private PIR,
providing the first improvement to thzserver case since PIR protocols were introduced; (3) efficient
PIR protocols with logarithmic query length. The latter protocols have applications to the construction
of efficient families oflocally decodable codesver large alphabets and to PIR protocols with reduced
work by the servers.
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1 Introduction

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of his choice from a
database, such that the server storing the database does not gain information on the identity of the item
being retrieved. For example, an investor might want to know the value of a certain stock in the stock-
market without revealing which stock she is interested in. The problem was introduced by Chor, Goldreich,
Kushilevitz, and Sudan [10], and has since then attracted a considerable amount of attention. In formalizing
the problem, it is convenient to model the database byt string z, where the user, holding some
retrieval indexi:, wishes to learn théth data bitz;. This default setting can be easily extended to handle
more general scenarios, e.g., of larger data items, several users, or several retrieved items per user.

A trivial solution to the PIR problem is to send the entire databatiee user. However, while being
perfectly private, theommunication complexityf this solution may be prohibitively large. Note that if
the privacy constraint is lifted, an optimal solution to the retrieval problem is to have the user explicitly
sendi to the server and receivg in return. This non-private solution requires orlpg, n] + 1 bits of
communication, whereas the trivial private solution mentioned above requaasmunication bits. Thus,
the most significant goal of PIR-related research has been to minimize the communication overhead imposed
by the privacy constraint.

Unfortunately, if the server is not allowed to gainyinformation about the identity of the retrieved bit,
then the linear communication complexity of the trivial solution is optimal [10]. To overcome this problem,
Chor et al. [10] suggested that the user accekseplicated copies of the database kept on different servers,
requiring that eacindividual server gets absolutely no information 6nPIR in this setting is referred to
asinformation-theoreti®®IR ! The above privacy requirement naturally generalizegspdvate PIR, which
keepsi private from any collusion of (at most)out of thek servers.

The best 1-private PIR protocols known to date are summarized below: X-Eeever protocol with
communication complexity a‘D(nl/3) bits [10]; (2) ak-server protocol with communication complexity of
O(n'/(k=1)) bits, for any constarit (Ambainis [1] improving on [10], see also Ishai and Kushilevitz [15]);
and (3) an0(log n)-server protocol with communication complexity ©flog? n log log n) bits ([10], and
implicitly in Beaver and Feigenbaum [4] and Beaver, Feigenbaum, Kilian, and Rogaway [5]). For the more
general case afprivate PIR, the best previous bounds were obtained in [15], improving on [10]. To present
these bounds, it is convenient to use the following alternative formulation of the question:

Given positive integerg andt, what is the smallest number of serveesfor which there exists
at-private PIR protocol with communication complexify(n'/)?

In [15] it was shown that = min (|dt — (d+t —3)/2] , dt —t+ 1 — (d mod2)) servers are sufficient.
If ¢ is fixed andd grows, the number of servers in this bound is rougly 3)d.

No strong general lower bounds on PIR are known. Mann [22] obtained a constant-factor improvement
over the triviallog, n bound, for any constari. In the 2-server case, much stronger lower bounds can
be shown under the restriction that the user reconstrycksy computing the exclusive-or of @onstant
number of answer bits, whose identity may depend @arloff and Schulman [18], see also Goldreich and
Trevisan [14]). These results still leave an exponential gap between known upper bounds and lower bounds.
For a list of other PIR-related works the reader can consult, e.g., [6].

A different approach for reducing the communication complexity of PIR is to settledimputational
privacy, i.e., privacy against computationally bounded servers. Following an initial 2-server solution by

YIn principle, the term “information-theoretic PIR” may also refer to protocols which leak a negligible amount of information
oni. However, there is still no evidence that such a relaxation is useful.



Chor and Gilboa [9], Kushilevitz and Ostrovsky [20] proved that in this setting one server suffices. Under a
standard number theoretic intractability assumption they construct, for every canstan@asingleserver
protocol with communication complexity ad(n) bits. Subsequently, Cachin, Micali, and Stadler [8]
constructed, based on a new number theoretic intractability assumption, a single-server protocol with poly-
logarithmic communicatioA.From a practical point of view, single-server solutions are preferable to multi-
server solutions for obvious reasons. However, they have sohsentlimitations which can only be
avoided in a multi-server setting. For instance, it is impossible for a (sublinear) single-server PIR protocol
to have very short queries (s&)(log n)-bit long) sent from the user to the server, or very short answers
(say, one bit long) sent in return. These two extreme types of PIR protocols, which can be realized in the
information-theoretic setting, have found different applications (Di-Crescenzo, Ishai, and Ostrovsky [11],
Beimel, Ishai, and Malkin [6]) and therefore serve as an additional motivation for studying information-
theoretic PIR. A different, coding-related, motivation is discussed in Section 1.2.

1.1 Our Results

We present a unified general framework for the construction of PIR protocols, whose abstract components
can be instantiated to meet or beat all previously known upper bounds. In particular we obtain:

e t-private k-server PIR protocols with communication complexityn'/L(2k=1)/t}) " In other words,
k > dt/2 is sufficient for the existence oftaprivatek-server PIR protocol withD(n'/¢) communi-
cation. Fort > 1, this is a substantial asymptotic improvement over the previous state of the art [15].
For example, fot = 2 the communication complexity of our protocoli¥n!/(*~1)) while the com-
munication complexity of the best previous protocol [150iér!/[2%/3]). Our bound is essentially
the best one could hope for without asymptotically improving the 1-private bounds.

e A constant-factor improvement in the communication complexity compared to the 2-server protocol
of [10] and its 1-privates-server generalizations from [1, 15]. In tBeserver case, this provides the
first improvement since the problem was introduced in [10].

o Efficient PIR protocols with logarithmic query length. Specifically, we construepravate k-server
PIR protocol withO(logn) query bits andD(n!/¥+€) answer bits, for every constaat> 0. The
1-private protocols from this family were used in [6] to save computation in PIR via preprocessing,
and have an interesting application, discussed in Section 1.2 below, to the construction of efficient
locally decodable codesver large alphabets.

It is interesting to note that in contrast to previous PIR protocols, in which the user can regdyer
reading only aconstantnumber of answer bits (whose location depends only)pmost instances of our
construction require the user to reatlanswer bits and remember either the queries or the randomness used
to generate them. It is open whether the previous constructions of [15] (in particulaptivate protocols
for ¢ > 1) can be improved if one insists on the above “easy reconstruction” feature, which allows the user’s
algorithm to be implemented using logarithmic space.

1.2 Locally Decodable Codes

Recently, information-theoretic PIR protocols have found a different flavor of application, to the construction
of locally decodable code® locally decodable code allows to encode a datahaséo a stringy over an

2For practical sizes of databases and security parameter the communication complexity of the single-server protocols of [20, 8]
is inferior to that of known multi-server protocols, even in the 2-server case.



alphabetY, such that even if a large fraction gfis corrupted by an adversary, then each bitcatan

still be decodedvith high probabilityby probingfew (randomly selected) locations in More formally, a

codeC' : {0,1}" — ™ is said to bgk, 6, p)-locally decodable, if every bit; of x can be decoded from

y = C(x) with success probability /2 + p by probingk entries ofy, even if up to aj-fraction of the

m entries ofy are corrupted. Katz and Trevisan [19] have shown an intimate relation between such codes
and information-theoretic PIR. In particular, any information-theoretic PIR protocol can be converted into
a locally decodable code with related efficiency by concatenating the answers of all servers on all possible
queries. This motivates the construction of PIR protocols with short queries.

The short-query instantiations of our PIR construction have an interesting interpretation in terms of
locally decodable codes. The main focus in the works [19, 14] has been on the following question. Suppose
that p, § are restricted to be greater than some positive constant. Given a constant number ofqueries
and aconstant-siz€say, binary) alphabet, what is the minimal asymptotic growth of the code length?
Generalizing a PIR lower bound of [22], itis proved in [19] that for any constahe code length must be
super-linear. For the case of a linear code wkith 2 (non-adaptive) queries, an exponential lower bound on
m(n) has been obtained in [14]. While no super-polynomial lower bounds are known for the caggthe
best known upper bound (obtained from PIR protocols with a single answer bit per server, see Section 6.2)
ism(n) = 20 *=1) “\which is exponential im. Our construction answers the following dual question:
Suppose that we insist on the code bedfiicient namely of polynomial length. Then, how small can the
alphabet: be? More precisely, given a constdnthow small cary;(n) be such that the code lengti(n)
is polynomial and, as before(n),d(n) are kept constant? The short-query variants of our construction
imply the following upper bound: for any constarts> 2 ande > 0 it suffices to letS; (n) = {0, 1}5(),
wheres(n) = O(n!/F+9).

ORGANIZATION. In Section 2 we give an overview of our unified approach for constructing PIR protocols.

In Section 3 we provide some necessary definitions. In Section 4 we describe a meta-construction of PIR
protocols, in Section 5 we instantiate one of its crucial ingredients, and in Section 6 we derive new and old
families of PIR protocols as instances of the meta-construction from Section 4. Finally, in Section 7 we
obtain an optimization of previous protocols.

2 Overview of Techniques

At the heart of our constructions is a combination of two techniques. While neither of the two techniques is
new, it is only their proper combination which results in the new improved protdcols.

2.1 Reduction to Polynomial Evaluation

A first technique is a reduction of the retrieval problem to the problem of multivariate polynomial evaluation.
Specifically, the retrieval of;, where the servers hold and the user holds is reduced to an evaluation

of a multivariate polynomiap,, held by the servers, on a poiAti), which the user determines based on

i. We refer toE/(i) as theencodingof i. As observed in [5] and, more generally, in [10], the degree of
p. can be decreased by increasing the length of the encddifig Originating in [4], different variants of

3For constructing locally decodable codes, a relaxed information-theoretic notion of PIR is sufficient (allowing some limited
information leakage of). However, to date there is no evidence that this type of relaxation can significantly help, as all known
constructions of locally decodable codes directly correspond to known (perfect) PIR protocols.

A restricted use of the same approach has been made in the companion work [6].



this reduction have been (implicitly or explicitly) used in virtually every PIR-related construction. In fact,
even the seemingly “combinatorial” constructions from [10, 1] can be cast in this terminology. Interestingly,
encodings realizing the optimal length-degree tradeoff, which were utilized in [10, 11] to construct special
families of PIR protocols with short answer length, could not be used to realize the best known bounds on
thetotal communication complexity. In[10, 1, 15] it seemed necessary to use a more redundant encoding for
obtaining the best protocols. This situation is remedied in the current work, where the best communication-
efficient constructions are obtained using an optimal encoding. Consequently, we get at least a constant-
factor improvement to the communication complexity of all previous constructions, including in the 2-server
case.

2.2 Simultaneous Messages Protocols for Polynomial Evaluation

A main ingredient in our new protocols is a generalization of a solution by Babai, Kimmel, and Lokam [3]
to a communication complexity problem of computing generalized addressing functiamthe so-called
simultaneous messagéSM) model. Interestingly, this problem was motivated by circuit lower bounds
questions, completely unrelated to privacy or coding. Towards solving their problem, they consider the
following scenario. A degred-m-variate polynomiap is known tok players, and: pointsyy, v, ..., yx

(each being amn-tuple of field elements) are distributed among them such thaj-theplayer knows all

points excepy;. An external referee knowall k£ pointsy; but does not know. How efficiently can the
valuep(y1 + y2 + ... + yx) be communicated to the referee if the players are restricted to simultaneously
sending messages to the referee?

A naive solution to the above problem is to have one of the players send an entire descriptiortod
referee. Knowing all;, the referee can then easily compute the required output. A key observation made
in [3] is that it is in fact possible to do much better. By decomposifig + y2 + . . . + yx) into terms and
assigning each term to a player having the least number of unknown values, it is possible foasrttes
sum ofk lower degregpolynomials in the inputs, each known to one of the players. More preciselytthe
player can locally compute from its inputs a degtégk| polynomialp; in its unknowninputs, such that
py1+...+yn) =p1(y1) +p2(y2) + . . . + pr(yr)- Then, by letting thg-th player communicate the (much
shorter) description of;, the referee can compute the required output. The amount of savings obtained
by this degree reduction technique depends on the values of the paramegieendk. In [3, 2], due to
constraints imposed by the specific problem they consider, the degree-reduction technique is applied with
rather inconvenient choices of parameters. Thus, in their setting the full savings potential of the technique
has not been realized. It turns out that in the PIR context, where there is more freedom in the choice of
parameters, the full spectrum of possible tradeoffs is revealed.

It is instructive to look at three useful choices of parameters: (X)) # 2k — 1, then the degree of
each polynomiap; is only | (2k — 1)/k| = 1. Whenm >> d, this2k — 1 savings factor in the degree
makes the description size of eaghroughly the(2k — 1)-th root of the description size qf. (2) If
d = k — 1, the degree of each; becomed), and consequently communicating eaghrequires sending a
single field element. (3) Finally, if» >> d andd >> k, then the cost of communicating is roughly the
k-th root of that of communicating. These three examples, respectively, turn out to imply the existence
of k-server PIR protocols with: (1) both queries and answers of lefgtH/(2*~1)); (2) queries of length
O(n'/(k=1)) and answers of lengtR(1); (3) queries of lengtiD (log n) and answers of lengi® (n!/5+¢),
for an arbitrarily small constaret > 0. The fact that a single compact explanation fits all these seemingly
unrelated expressions is quite remarkable.



2.3 Combining the Two Techniques

In the case of 1-private PIR, the two techniques can be combined in the following natural way. On input
i, the user computes an encodipg= E(i) and the servers compute a degrepelynomialp, such that

x; = p.(E(7)). To generate his queries, the user “secret-shargs) among the servers by first breaking it

into otherwise-random vectots, . . ., y, which add up tay, and then sending to each sen®rall vectors
excepty;. Using the SM communication protocol described in the previous section, the servers communicate
x; = px(y) to the user.

This simple combination of the two techniques is already sufficient to yield some of the improved con-
structions. In the remainder of this work we generalize and improve the above solution in several different
ways. First, we abstract its crucial components and formulate a generic “meta-construction” in these abstract
terms. Second, we instantiate the abstract components to accommodate more general scenarios, such as the
one required for dealing with-private PIR. Third, for both thé-private and the-private case, we attempt
at optimizing the amount of replication in the setting of [3] while maintaining the quality of the solution
(that is, we use a more efficient secret-sharing scheme for distribBYjf)y. These generalizations moti-
vate various extensions of the SM communication model as described above, which may be of independent
interest.

3 Definitions

Notation. By [k] we denote the sefl, ..., k}, and by([’ﬂ) all subsets ofk] of sizet. For ak-tuplev
and a sefl’ C [k], let vp denote the restriction of to its T-entries. That is, ifl’ = {i,...,i;} and
v = (v1,...,v) thenvy = (v;,...,v;). By Y; for somej we represent a variable, while by the lower
lettery; we represent an assignment to the former variable /Bye denote the binary entropy function;
thatis,H (p) = —plogp — (1 — p) log(1 — p), where in this paper all logarithms are taken to the base 2.

Polynomials. Let GHgq) denote the finite field of elements. By¥'[Y1, . .., Y;,] we denote the linear space
of all polynomials in the indeterminatés, . ..,Y,, over the fieldF, and byFy[Y1,...,Y,,] its subspace
consisting of all polynomials whodetal degree isat mostd, and whose degree in each indeterminate is at
most|F'| — 1. (The last restriction guarantees that each polynomi&l,iv;, . .., Y,,] represents a distinct
functionp : F™™ — F.) A natural basis for this linear space consists ofmatinic monomialsatisfying

the above degree restrictions. The case- GF(2) will be the most useful in this work. In this case, the
natural basis consists of all products of at méslistinct indeterminates. Hencéim (Fy[Y1,...,Yn]) =
>4 o (M) for F = GF(2). We denote this dimension by(m, d) £ ¢ _ (™). We will also be interested

in FyY1,.. ., Y] where|F| > d. In this case, the dimension of the spac€’ig?).

3.1 PIR Protocols

We define 1-round information-theoretic PIR protocbl k-server PIR protocol involvesserversSs, . . ., Sy,
each holding the samebit stringz (the database), and a user who wants to retrieves bitthe database.

Definition 3.1 (PIR) A k-server PIR protocoP = (R, Qy, ..., Q, A1,..., A, C) consists of a probabil-
ity distribution’R and three types of algorithms: query algorithi@s(-, -), answering algorithmsA; (-, -),

SAll the protocols constructed in this paper, as well as all previous information-theoretic PIR protocols, require a single round
of queries and answers. This definition may be extended to multi-round PIR in the natural way.



and a reconstruction algorithr@(-, -, ..., -) (C hask + 2 arguments). At the beginning of the protocol, the
user picks a random string from the distributioriR. For j = 1,...,k, it computes a query; = Q;(i,r)

and sends it to serve$;. Each server responds with an answgr= 4;(g;, z) (the answer is a function

of the query and the database; without loss of generality, the servers are deterministic). Finally, the user
computes the bit; by applying the reconstruction algorith@i, r, a1, ...,ax). A k-server protocol as
above is a&-privatePIR protocol, if it satisfies the following requirements:

Correctness. The user always computes the correct value,ofFormally, for everyi € {1,...,n}, every
random stringr, and every database € {0,1}", C(i,r, A1(Q1(i,7), z), ..., Ax(Qr(i, ), x)) = ;.

t-Privacy. Each collusion of up teé servers has no information about the bit that the user tries to retrieve:
For every two indices;, i € [n] and for everyl’ C [k], where|T'| < t, the distributionsQr(iy,-) and
Qr(iz, ) are identical.

A PIR protocol is calledinear over a fieldF' if, when viewingz as a vector inf™, the following
condition holds: for every € [k] and queryy; the answer functiot4;(-, ¢;) is a linear mapping front™
to F¥% for some integep;. All PIR protocols constructed in this work are linear.

3.2 Linear Secret-Sharing

A t-private secret-sharing schenaiows a dealer to distribute a seceeamongk players, such that any

set of at most players learns nothing os from their joint shares, and any set of at leaist 1 players

can completely recover from their shares. A secret-sharing scheme is said tinbar over a fieldF if

s € F, and the share received by each player consists of one or more linear combinations of the secret and
r independently random field-elements (where the same random field-elements are used for generating all
shares). A linear secret-sharing scheme is formally definedituple L = (L4, ..., Li) such that each

L; maps fromF” x F" to Fb, wherel; is thej-th player share length. Finally, given a linear secret sharing
scheme as above, a vectorAii* will be shared by independently sharing each ofitentries. We next

define two linear secret sharing schemes that will be useful in the paper.

Definition 3.2 [Shamir's scheme [23]]: Let F' = GF(q), whereq > k, and letw,...,w; be distinct
nonzero elements df. To¢-privately share a secrete F', the dealer chooseésandom elements,, . . ., a;,
which together with the secretdefine a univariate polynomialY") LYt +a Y 4+ +aY +s.
Observe thap(0) = s. The share of thg-th player isp(w;). This share is a linear combination of the
random inputs and the secret. Each set of at leadt players can recovenY') by interpolation, and hence
can also reconstruet= p(0). On the other hand, every settgflayers learns nothing anfrom their shares.

Definition 3.3 [The CNF scheme [17]]:This scheme may work over any finite field (in fact, over any finite
group), and proceeds as follows. fFprivately share a secrete F

« Additivelyshares into (%) shares, each labeled by a different set friéfy; that is,s = ZTG([’“]) rr,
t

where the sharesy are otherwise-random field elements. (Equivalentlyyalliexcept one may be
chosen uniformly at random, and the last is determined so that they all sunsyp to

e Distribute to each playef; all sharesr such thatj & T'.



The t-privacy of the above scheme follows from the fact that eveplayers miss exactly one additive
sharer; (namely, the one labeled by their index set). Every set-pfl players views all shares, thus, can
reconstruct the secret. The share of each party consi$’f§‘ bffield elements.

4 The Meta-Construction

In this section we describe our construction in terms of its abstract general components, and specify some
useful instantiations for each of these components. In the next section several combinations of these instan-
tiations will be used for obtaining different families of PIR protocols.

4.1 Building Blocks

Three parameters which are common to all of our constructions are: (1) difidté’, (2) adegreeparam-
eterd, and (3) arencoding lengtiparametern. The database will always be viewed as a vector A",
Some variants of our construction will use an additidslatk lengthparametet.

All variants of our construction (as well as previous PIR protocols) can be cast in terms of the following
abstract building blocks:

Linear space of polynomials. LetV C Fy[Yy,...,Y,,] be alinear space of degrden-variate polyno-
mials such thatlim(V') > n. The three most useful special cases are:

V1: The spacey[Yi,...,Y,,| whereF = GF(2); in this casem andd must satisfyA(m, d) > n.
V2: The spacd,[Y1,...,Y,,] where|F| > d; in this casem andd must satisfy(mjd) > n.

V3: The linear subspace df,[Y1,...,Y,,] such thatF' = GK2) andV is spanned by the following
basis of monomials. Lef be an additionablock lengthparameter, and letn = ¢d. We label
the m indeterminate by, ;, whereg € [d] andh € [¢]. The basis ofl” will include all monic
monomials containing exactly one indeterminate from each block, i.e., all monomials of the form
Y10 Yoh, - Yan, Since the number of such monomialgfs the restriction on the parameters in
this case ig? > n.

Low-degree encoding. A low-degree encodingwith respect to the polynomial spadé is a mapping
E : [n] — F™ satisfying the following requirement: There existvariate polynomial®1, ps,...,p, € V
such that/i, j € [n], p;(E(j))is 1ifi = j and is O otherwise. By elementary linear algeldia; (V') > n is
a necessary and sufficient condition for the existence of such an encoding. Given a low-degree dncoding
and polynomial®, po, . . ., p, as above, we will associate with each databasel™ the polynomiap,. €
V defined byp,(Y1,...,Y,) = >iL, ;p;. In the abover is fixed, andzy, . .., z, are fixed coefficients
(and not variables). Note that (E(i)) = z; for everyi € [n] andx € F™,
With each of the above linear spaces we associate a natural low-degree ericBgeuifically, we use:

This scheme has also been referred toepdication-basedsecret-sharing [15, 13]. It may be viewed as a special case of the
formula-based secret-sharing construction from [7], obtained by using the canonic CNF representation of the threshold function.

’Since theexistencef an appropriate encoding is implied by dimension arguments [11, Lemma 6], the specific encoding being
employed will usually not matter. In some cases, however, the encoding can make a difference. Such a case is discussed in
Section 5.3.



El: Let E(i) be thei-th vector in GK2)™ of Hamming weightat mostd. A proof of validity of this
encoding, that is, the existence of appropriate polynomials. . , p,,, appears in Appendix B.

E2: Letwy,...,wq be distinct field elements. TheR() is thei-th vector of the form{wy, , ..., wy,,) such
that~7, f; < d. A proof of the validity of this encoding may be found in [11, Lemma 6].

E3: Let (i1,...,iq) be thed-digit base¢ representation of (that is,i = 329, i;¢/~1). Then,E(i) is a
concatenation of the lengthunit vectorse;, , e;,, . .., e;,. The validity of this encoding follows by
Iettingpi = Yl,i1 e Yd,id-

Linear secret-sharing scheme. Denoted byL. The followingt-private schemes will be useful.

L1 : Thet-private CNF construction from Definition 3.3.

L2 : Thet-private Shamir construction from Definition 3.2.

L3 : A slight optimization of the CNF construction, whose details will be discussed in Section 7.
Simultaneous messages communication protocol (abbreviated SM protocol) The fourth and most cru-

cial building block is a protocol for the following promise problem, defined by the instantiations of the pre-

vious component¥, F, andL. The problem generalizes the scenario described in Section 2. The protocol,
denotedP, involves a uset! andk serversSy, ..., Sk.

e User'sinputs:Valid L-shareg/', ..., y"* of a pointy € F™. (That s, thek vectorsy’ can be obtained
by applying L to each entry ofy, and collecting the shares of each player.) Moreover, it may be
useful to rely on the following additional promisg:= E(i) for some: € [n]. Most of the protocols
constructed in this paper do not make use of this additional promise.

e Servers’ inputsAll k£ servers hold a polynomial € V. In addition, eacls; holds the share vector
Y.

e Communication patternEach serves; sends a single messageidased on its inputs, /. We let
B; denote a bound on the length of the message seSt by

e Output: ¢/ should outpup(y).
In Section 5 we will describe our constructions of SM protocBIsorresponding to some choices of the

space of polynomial¥’, the low degree encoding, and the linear secret sharing scheime

4.2 Putting the Pieces Together

Ad-tuple(V, E, L, P) instantiating the above 4 primitives uniquely defines a PIR pro®tR(V, E, L, P).
The protocol proceeds as follows.

o Uletsy = E(i).
e U shareg according tol. among the: servers. Let’ denote the vector of shares received%y

e Each serves; letsp = p,, and sends a messagéetas specified by protocd? on inputs(p, y7).



e U reconstructs;; = p(y) by applying the reconstruction function specifieddo ', . .., y* and the
k messages it received.

The following lemma summarizes some easily verifiable properties of the above protocol.

Lemma 4.1 PIR(V, E, L, P) is a (linear) t-private k-server PIR protocol, in which the user senasg;
field elements to each serv€y and receivegs; bits in return from each server (whefe is the share size
defined byl andg; is the length of message sent&yin P).

Note that the only information that a server gets is a share of the encédingthe ¢-privacy of the
secret sharing scheme ensures that a collusidgrsefvers learns nothing an For the query complexity,
recall thaty = E(i) € F™ and the user shares each of theoordinates off independently. Thus, the share
size of servetS; is m/;, where/; is the share size defined lyfor sharing one coordinate (field element).

Some perspective concerning a typical choice of parameters is in place. In the typical casé ishere
viewed as a constant, dl} are also constant, and so the query complexitY Bt(V, £, L, P) is O(m). If
d is constant then, for any of the three vector spa¢esVv2, V3, lettingm = O(nl/d) suffices to meet the
dimension requirements. Thus, when bdtt are constants, the length of the querie®IR(V, E, L, P)
is O(n'/4) and the length of the answers is determined’by

In principle, the SM component in our construction could be replaced by a more general interactive
protocol. However, there is yet no evidence that such an additional interaction may be helpful. Moreover,
in defining an interactive variant of the fourth primitive one would have to take special care that the pri-
vacy requirement is not violated by the interaction. In the current non-interactive framework, the privacy
requirement is automatically taken care of.

5 Simultaneous Messages Protocols

We next describe SM protocols corresponding to useful combinatiovis Bf andL. These may be viewed
as the core of the PIR protocol. Some extensions are described in Section 7.

5.1 ProtocolP1

ProtocolP1 will serve as our default protocol. It may be viewed as a natural generalization of the protocol
from [3]. The ingredients of this protocols are the polynomial spdde= Fy[Y1,...,Y,,] whereF' =
GF(2), the encodingg1 which encodes as a vector in GR2)™ of Hamming weightat mostd, and the
linear secret sharing1 which is the CNF sharing.

Lemmab5.1 ForV = V1, E = E1, andL = L1, there exists an SM protocBi1 with message complexity
_1\ Ldt/k]
Bj = Alm, |dt/k]) (=)

Proof:  Before describing the protocol with the specified complexity we will need some notation. Let

y = > yr be an additive sharing gfinduced by the CNF sharing, such that the inpuof S; is (yr)jer-

k—1y Ldt/k]
1)

i com-

The servers’ goal is to communicatéy) = p(>; yr) to U using at most\(m, |dt/k|)(
munication bits per server.

Define a(’t“)m—variate polynomiad (YT,b :T e (Vﬂ), be [m}) £ (ZTe([’;J) Yri,... 7ZTe(“§]) YT7m>.
The degree of is the same as the degreepfWe consider the explicit representationqoés the sum of
monomials. We claim that for every monomigl, », Y7, 5, - - - Y7, 5, Of degreed’ < d there exist some
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J € [k] such that at mostdt/k| variablesYr, with j € T appear in the monomial. Consider the multi-set
Ty UTyU...UTy. This multi-set containd’t < dt elements, thus there must be some [k] that appears
at most|dt/k | times in the multi-set.

We partition the monomials aof to k& polynomialsgy, . . . , g, such thalg; contains only monomials in
which the number of the variabl&g, with j € T' is at most|dt/k|. Each monomial of is in exactly one
polynomialg;, thereforeg (YTJ, :Te (™ be [m}) =k g (YT,b T e (M),be [m]) .

We are now ready to describe the protoBdl. Each servesS; substitutes the values of the variables

that it knows ing; to obtain the polynomial:

g (YTJ] = <U;]>,j eT be [m])
& q(yT7b:T€ (@),jg{T,be m], Yrp: T € <[IZ]>,jeT,be [m]).

The message of serve; is the list of all coefficients ofj;. The user, who knows the assignments to all

variables, computeg; (yr : T' € (V;]),j € T,b € [m]) and sums theske values to obtain

k k
N (yT,b:TE C?)J €T,be [m]) = >4 (yT,b:T € (“ﬂ)be [m])
j=1 Jj=1

= q (yT,b T e <[lt€]>,b € [m]) = p(y1,...,ym)-

Thus, the user reconstructs the desired value.

We next analyze the message complexity of the protocol. Recaljfligia degreg-dt/k| multivariate
polynomial withm(t’jl) variables. By the definition af, not all monomials are possible: no monomial con-
tains two variable$, , andYr, ;, for someb € [m]| andT; # T». Thus, to describe a possible monomial we

need, for somev € {0,..., |[dt/k|}, to choosev indices in[m] andw sets of size& that contain;. There-
fore, the number of possible monomialsgfis at mosty>L4/* (™M E=H” < A(m, Ldt/kJ)('jjll)Ldt/kJ.
Since each coefficient is from GB), the communication is as promised. &

Remark 5.2 To define the protocoP1 precisely, one should specify how to partition the polynomial

to the polynomialsyy, .. ., g, (that is, what to do with monomials that can be assigned to more than one
polynomial). More generally, instead pértitioning the monomials, one may breako anyk polynomials
which add up toy and satisfy the requirement utilized above. However, a partition of the monomials as
described above is sufficient for our purposes.

Remark 5.3 An important question is whether the communication complexity of the profBaois op-

timal. Using a similar lower bound technique to the one used in [3], it is possible to show that under the
promise of the particular (low-weight) encodil, the communication complexity @1 is indeed opti-

mal up to a constant factor [16]. A similar statement holds for the the enc®8ndf is not clear, however,
whether this is true for an arbitrary encoding.

5.2 ProtocolP2

ProtocolP2 will be mainly useful for the construction of efficient PIR protocols with short answers (see
Section 6.2). Unlike protocdP1, which can be used with any combination of the parameitetist, the
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applicability of P2 will be restricted to the case> dt. Thatis,k = dt+ 1 is the minimal sufficient number
of servers. The first part of the following lemma is implicit in [4, 5, 10] and a special case of the second part
is implicitin [11, 12].

Lemma5.4 For V = V2, E = E2, and L = L2, and assuming that > dt and |F’| > k, there exists
an SM protocolP2 in which each server sends a single field element. Moreover, given the promise that
p(y) € F' for some subfield” of F, it suffices for each server to send a single eleme#it of

Proof:  Recall thatt > dt and|F| > k. All servers hold a degreé-m-variate polynomiap(Y") over F,
and each serves; holds a Shamir-sharg ¢ F™ of a vectory = (y1,...,ym) € F™. Recall that in the
definition of Shamir's scheme, a field elemeris shared by evaluating a degrepelynomial, whose free
coefficient iss, on k distinct pointsw;, wherej € [k]. That is, the user chooses univariate polynomials
p1,--.,pm €ach one of degreesuch thaty = (p1(0),...,pm(0)) andy’ = (p1(wj),...,pm(w;)) for
Jj € [k]. The goal of the servers is to communicate the valge to U/ using a single field element per server
(or a single element of a subfield given the promise that(y) € F’).

We first describe the protocol in which each server sends a dfieffieelement the message sent by
S; in ProtocolP2 is m; = p(y’). Thus, the pointgw;,m;) lie on the degree# univariate polynomial
«(Z) € p(p1(2),...,pm(Z)). Furthermoreq(0) = p(y). Sincek > dt, the user can reconstrugtZ) by
interpolation and evaluatg0) = p(y), that is, there exist “interpolation coefficientsy, ..., ¢, such that
p(y) can be reconstructed from the messages. . . , m;, by applying the fixed linear combination c;m;.

We now describe how to reduce the messages to be elements of a sabfglen the promise that
p(y) € F'. Suppose first that each server modifies its messagéj te= ¢;m;. Then,l{ may reconstruct
p(y) by addingthe & messagem;- it receives. To reduce the answers to a single bitHet FF — F’ be
a homomorphism such thaf(«) = a for all « € F’. SinceH is a homomorphism, for any,b € F, it
holds thatfl (a + b) = H(a) + H(b). Now, instead of sendingy, the j-th server will send thé”-element
H(m7). From the properties ol and from the promise that(y) € F’ we may conclude that by adding
the k answers (oveF”) the correct valug(y) is obtained. &

A special case of interest is whéfi = GF(2) and F is a sufficiently large extension field &f'. In this
case, each message in the SM protocol consists of a single bit. Note thatwhéehthe messages dt1
are also one-bit long. However, for this choice of parameR2ss superior toP1 in that it relies on the
(ideal) Shamir secret-sharing scheme, whekhselies on the highly redundant CNF-scheme.

We do not know (and view it as an interesting problem) to prove nontrivial upper or lower bounds
on the SM complexity of th@2 setting whenk < dt. The lower bound proof technique of [3] and its
generalizations from [22, 19] do not seem to imply good bounds in this setting. Good upper bounds will
enable to eIiminat(é’t“) factors in ourt-private constructions.

5.3 ProtocolP3

Special cases of the protocBI3 are implicit in the 2-server PIR construction from [10] andAtserver
generalization from [15]. A useful feature of this protocol is that it allows the user to compute his output by
probing a small number of bits from the received messages. We will only formulate this protocol for the 1-
private case. Restricted generalizations-fivacy may be obtained, using the approach of [15]. However,
unlike the previous protocols, we do not know a “smooth” generalizatiorptivacy.

Lemma5.5 ForV = V3, E = E3, andL = L1, there exists an SM protocB!3 with message complexity
B = LL/R (5, |) such that the user needs to read ofly/, ) bits from each message.
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Proof:  We first specify the inputs to the protocol. Lebe a polynomial inV3, and lety € {0, l}ed be

an encoding of some indéxunder theE3 encoding, that isy = w0 . .. cwg, Whereo denote concatenation
andw, is some unit vector from the spa¢®, 1}* for eachg € [d]. Furthermore, lety, = Zle Wi g

be an additive sharing ab, induced by thel-private CNF sharing. The inpuf of S; is (way : a €
[kI\{j},9g € [d]). The servers’ goal is to communicat@uio . .. ow;) = p((XF_; wa1)o. .. o(Xk_  waa))
to U efficiently such that the user needs to read only few bits from each answer in order to recgrigiruct

The fact thatp € V3, that is, each monomial ip contains one variable from each block, implies the

following fact:

-----

We partition the responsibility for evaluating each of théevalues to the servers, such that sergels
responsible for evaluating the valup&u;, 10...ow;, 4) for vectors in whichj, = j for at most|d/k|
indicesg. The server does not know the values of at maSt: | coordinates of such a vector, and it tries
to guess them in a clever way. This is done using the knowledge thatugaishunit vector. Therefore,
Wjg = € — Y ack\{j} Wa,g fOr SOMe unit vectoe; € {0, 1}¢, and hence there afepossible values ob; 4
for eachy € [d]. This already implies a protocol where each server séfd§/*! bits: There aré? values
of p that need to be evaluated. For each such valug, i-...ow;, 4), the server that is responsible for it,
evaluate® using the coordinates that it knows and each of the guesses for the coordinates it does know;
there are at mogt¢/*! such guesses. The server sends this list of values to the user. The user, who knows
all the values of the shares, sums the valug efaluated at th&é? true values.

We next optimize this protocol. Instead of sending a list of lert¢fti*) for every one of the:“ values
of p, each server sends on()(d?kj) lists, one for each sed € (Ld[;l]kj). This is done by assigning each

valuep(wj, 1o...ow;, 4) which is under the responsibility &; to some setd € (Ld[?}kj) such that{g :

jg = j} € A. Now, each of thel¥/*] possible “guesses” dfw;, 4)gca allowsS; to uniquely determine

all valuesp(wj, 10...ow;, 4) which are assigned td, and therefore also their sum. Thi,can send, for
each of thel%/*] guesses and each séta single bit containing this sum. Finally, note that the user needs
to read only one bit from each list (correspond to the correct guess), giving a t‘@{éﬁ?b bits. O

In the protocolP3 we heavily rely on the promise thatis an encoding undd.3 of some index. This
should be contrasted with the protoc®13 andP2 where we did not rely on any properties of the encoding.

6 Families of PIR Protocols Obtained via the Meta-Construction

We next describe and analyze several families of PIR protocols which are special cases of the meta-construction.

6.1 Main Family

Our main family of PIR protocols us&é1, E1, L1, andP1. Protocols from this family yield our main im-
provements to the known upper bounds. We start with the general result, and then consider some interesting
special cases.

Theorem 6.1 Let m and d be positive integers such that(m,d) > n. Then, for anyk and¢, where
k> 2and1 < t < k, there exists a-private k-server PIR protocol With(kzl)m query bits and

A(m, Ldt/l<:J)(’§:11)Ldt/kJ answer bits per server.
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Proof:  The conditionA(m,d) > n is sufficient (and necessary) to guarantee the existence of an en-
codingE1 as required. We use tHel secret sharing scheme, and the length of each share, i.e., the query
complexity, is(’“;l)m. Finally, we useP1, and by Lemma 5.1 the length of the answer of each server is

A(m, dt/k]) (51"

The first interesting case, in which we solve an open problem of [15], minimizes the total communica-
tion.

. Thus, by Lemma 4.1, the communication complexity is as promised. <

Corollary 6.2 Letk andt, wherek > 2 and1 < ¢ < k, be integers. There existstaprivate k-server PIR
protocol with total communicatioﬁ)(% (Fynt/LRk=1)/2]),

Proof:  To guarantee thak(m, d) > n it suffices to letm = O(dn'/%). Fix d = |(2k — 1)/t], so that
|dt/k| = 1. Now we can apply Theorem 6.1 to obtain a protocol whose query Ieng’f@ﬁm per server

and the answer length is(m, 1) (1;:11

1 . . . .
) per server. Therefore, the total communication is as promisesl.
The next corollaries contain an exact analysis for the 2-server case, and a somewhat cruder analysis for

the 1-privatek-server case.
Corollary 6.3 There is al-private2-server PIR protocol with total communicatid(6n)'/3+2 ~ 7.27n/3.

Proof:  Fix m = (6n)'/% andd = 3. First notice that\ (i, 3) > m?/6 = n. Thus, we can apply Theo-
rem 6.1 to obtain a protocol whose query lengthibits per server and the answer lengtiAisn, |3/2]) =
m + 1 bits per server. Therefore, the total communicatiofvis+ 2 = 4(6n)'/3 + 2 ~ 7.27n/3, o

In comparison, the communication in the best previously kn@wserver protocol [10] is roughly
12n1/3,

Corollary 6.4 For everyk > 2 there exists a-private k-server PIR protocol with total communication
complexity of?((2k — 1)!In)V/ k=1 4 k 4 k3 = O(k3n!/ k1),

Proof:  Fix m = ((2k — 1)!n)/(3*=1 4 k andd = 2k — 1. By Eq. (1) (appearing in Appendix A),
A(m,d) > n. Thus, we can apply Theorem 6.1 to obtain a protocol whose query length-isl )m per
server and the answer lengthA$m, | (2k — 1)/k]) = A(m,1) = m + 1 per server. Therefore, the total
communication is?m + k = k2((2k — 1)! n)V/ k=1 4 k3 4 | = O(k3n!/(2k=1), o

This protocol should be compared to the protocol of [15] whose communication complekiti2is —
1)n'/k=1 Thus, whenk is large, our protocol improves over the protocol of [15] by the constant factor
1/aq (Whereay is the constant defined after Eq. (1)), which tends &sk grows.

Another interesting case, discussed and used in [6], is when queries are short, i.e., oblgngth);
in this case we use denser assignments in whichetliéve weightd/m is fixed as some constafitwhere
0 < 6 < 1/2. Substitutingn = (1/H(6) + o(1)) logn andd = |#m | in Theorem 6.1 we obtain:

Corollary 6.5 For any integersk, t, wherek > 2 and1 < ¢ < k, and any constart < 6 < 1/2, there
exists at-private k-server PIR protocol witr(kzl) (1/H(0) + o(1)) logn query bits and

n(H(@t/k)—i—G% log (¥~1))/H(0)+0(1)

answer bits per server. Wher= 1, we get(k — 1)(1/H (6) + o(1)) log n query bits and(¢/%)/H(@)+o(1)
answer bits.

H(0t/k)
H(0)

Sincelimy_. = t/k andlimg_,q % = 0 we get:
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Corollary 6.6 For any constant integerk, t, wherek > 2 and1 < ¢ < k, and any constart > 0, there
exists at-private k-server PIR protocol withD (log n) query bits andD(n*/*+¢) answer bits.

As shown by [19], a 1-privatg-server PIR protocol with query lengthand answer length can be turned
into a locally decodable code of length2* over the alphabet = {0,1}°: Astringz € {0, 1} is encoded
by concatenating the answers of all servers on all possible queries, wiergewed as the database. If
a = O(log n), then the code length is polynomial. Thus, by substitutirgl in Corollary 6.6 and applying
the above transformation we get:

Corollary 6.7 For any constantinteger > 2 and constant > 0, there exists a familg’'(n) of polynomial-
length (k, 05, px)-locally decodable codes ovéi(n) = {0,1}%(™), where(n) = O(n!/*+¢), for some
positive constantsy, p.

6.2 Boolean Family

In this section we derive the construction of the most efficient known PIR protocols with a single answer
bit per server using2, E2, L2, andP2. These protocols, appearing in [11] (see also [12]) optimize
similar protocols from [4, 5, 10] in which each answer consists of a single element from a moderately sized
field. While the asymptotic communication complexity of protocols from this family is worse than that of
the best unrestricted protocols, these protocols have found various applications. In particular they imply:
(1) the most efficient constructions of binary locally decodable codes known to date; (2) very efficient PIR
protocols for retrieving large records or “streams” of data; (3) PIR protocols with optimal amount of total
on-line communication (see [11]); (4) PIR protocols with poly-logarithmic amourdrefine work by the
servers (see [6]).

Theorem 6.8 (Implicitin [11]) Letm andd be positive integers such théf‘jd) > n. Then, forany > 1,
there exists a-private k-server PIR protocol witlk = dt + 1 servers,[log(k + 1)]m query bits per server,
and asingleanswer bit per server.

Proof: A PIR protocol as required is obtained by lettihg= E2,V = V2 L = L2, andP = P2,
whereF is GH2oe(k+1)1) _ the smallest Gf2)-extension with at leagt + 1 elements, and the subfield
used byP2 is GH?2). &

Corollary 6.9 For any constant, t > 1 there is at-private PIR protocol with: = dt + 1 serversO(n'/?)
query bits, and a single answer bit per server.

6.3 Cube Family

Our last family of protocols generalizes the 2-server protocol from [10] anél-#srver generalization

from [15]. It relies onV 3, E3, L1, andP3 as building blocks. The communication in these protocols is

not optimal, but it has the property that the user needs to read fewer bits from the answers. These protocols
have the interpretation of utilizing the “combinatorial cubes” geometry which was first used in [10]. Again,
we start with the general result, and then consider interesting special cases.

Theorem 6.10 (Generalizing [10, 15])Let d and ¢ be positive integers such th&t > n. Then, for any
k > 2 there exists d-private k-server PIR protocol witl{k — 1)d¢ query bits per server anél®/*] (Ld;lkj)

answer bits per server, in which the user needs to read QQ%) bits from each answer.
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Proof:  The condition/ > n guarantees the existence of an encodii®jas required. We use the 1-
private CNF secret-sharing scheme, thus the length of each share, i.e., the query compléxitylig?.

Finally, we uséP3, therefore, by Lemma 5.5, the length of the answer of each server and the number of bits
the user needs to read from each answer is as promised. O

The first corollary, which already appears in [10, 15], minimizes the total communication.

Corollary 6.11 ([10, 15]) Letk > 2 be an integer. There existslaprivate k-server PIR protocol with total
communication complexity 6¥(k3n!/(2%=1)) such that the user reads ority — 1 bits from each answer.

Proof:  Fixd = 2k — 1 and¢ = n'/%. First notice thatd/k| = 1. By Theorem 6.10, we obtain a protocol
whose query length i€k — 1)d¢ = O(k2n'/(2*=1)) per server, the answer lengthdé = O(kn'/(2=1))
per server, and the user needs to réad 2k — 1 bits from each answer. &

The second corollary, which is utilized in [6], considers the case where the query length is logarithmic.

Corollary 6.12 Letk > 2 be an integer and < 1. There exists d-private k-server PIR protocol with
query complexityD(k2'/95logn) and answer complexitg) (n!/5+H(1/k)3) in which the user reads only
O(nH(1/k)9) pits from each answer.

Proof:  Fix d = dlogn, and¢ = n'/¢ = 21/4, By Theorem 6.10, we obtain a protocol whose query
length is(k — 1)d¢ = O(k2'/951og n) per server, the answer lengthii$¥A(d, [d/k|) = O(n!/F+H/R)?)
per server (this follows from Eq. (1) appearing in Appendix A), and the user needs td (éadi/k|) =
O (nH(1/k)9) pits from each answer. O

7 Optimized CNF Secret Sharing

In the families of PIR protocols we described up to now we used two secret-sharing schemes: Shamir's
scheme and the CNF scheme. Shamir's scheme has the smallest shares possible — the size of each share
is the maximum of the secret size and the logarithm of the number of players. In contrast, the size of the
each share in the CNF scheme(’fg‘l) times the size of the secret. In some sense, the CNF sharing gives
more redundancy to the share-holders. The protocols of [15] and our main family of protocols (described in
Section 6.1) exploit this redundancy to improve the communication complexity with respect to the protocols
of [10]. This raises the question if we can maintain the better communication complexity without paying the
penalty of the redundancy, i.e., with shorter queries. This penalty can be quite bigiprikiate protocols.

We indicate that some savings are possible. Specifically, we construct a secret-sharing E8heme
whose share complexity improves on that of the CNF scheme by roughly a fac¢teriofvhenk > ¢; yet,
an SM protocol with identical communication to thatI®fi (and significantly better computation) can be
based orlL3. This results in a similar improvement to the query length of our main family. An additional
feature of the optimized construction is a significant reduction irctiraputatiorrequired by the servers.
For instance, in the 1-private case its dependendeisneduced fronk2*~! to roughlyk!. Our construction
generalizes an optimization which was suggested in [15] for the 1-private case, and significantly improves
its computational complexity (the dependencekois reduced from2©(**) | which is even worse than the
k*=1 dependence of our main family, to roughy).

Definition 7.1 [1-Private optimized CNF scheme]This scheme may work over any finite field (in fact,
over any finite group), and proceeds as follows.19rivately share a secrete F:
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e Additivelyshares into k£ shares, ..., r; that is,s = Zf‘zl r;, where the shares are otherwise-
random field elements.

o Definez; = 320, 7).
¢ Distribute to each playeP; the sharesy,...,r;_1, ;.

The 1-privacy of the above scheme follows from the fact that each share contains less information than the
share of the same party in Scheiine. On the other hand, every pair of parties, $3y, P;, wherej; < jo,

can reconstruct the secreby computinngz1 rj + zj, (ther;’s in the sum are held by’;,). The total

share size summed over all parties in this schenfg is 2)(k — 1)/2 field elements. Asymptotically, this
improves the total share size by a factoRofith respect td.1, where the total share sizekgk — 1) field
elements.

Lemma 7.2 For V = V1, F = E1, and the 1-private optimized CNF sharidg3, there exists an SM
protocol P4 with message complexity = A(m, |d/k]).

Proof:  We present an SM protoc®4 as required. The description uses the notation of ProtBdol
presented in the proof of Lemma 5.1; we consider only the case wheh, and denoté’;;, , by Y; ;. In
ProtocolP1 the servers hold am-variate polynomiap, which defines a&m-variate polynomial;. The
monomials ofg are partitioned td: polynomialsg, . .., g, such thaig; contains only monomials in which
the number of the variablés; 1, ..., Y] », in each monomial is at mostl/k|. As discussed in Remark 5.2,
in P1 we did not specify the exact partition, that is, how to assign monomials that could be assigned to more
than one polynomiag;. For our next construction it is essential to require that a monomial is assigned to
the polynomialg;, wherej is the smallest index such that the number of the variaBles. ..,Y ,, in the
monomial is at mostd/k].

Fix anyj and consider the servey. In the ProtocoP1 ServerS; substitutes the values of the variables
that it knows ing; to obtain the polynomiad; £ ¢(y1.1, -, ¥j—1m> Yits- - Yim, Yjs1ds- - > Ybm)- We
claim that the new shares b3 suffice forS; to compute his original answer. Recall that every monomial
in ¢ is multi-linear, and furthermore, if a variabl§ , appears in some monomial @then for every;’ # j
the variableY , does not appear in that monomial. We define an equivalence relation between multi-
linear monomials over the variablé$ 1,...,Yim,...,Ye1,..., Yim. (For everyj we define a different
equivalence relation.) We say that two monomials and M, are in the relation if:

1. Foreveryl € [m]andh € {1,...,j} the variableY}, , appears inV/; if and only if it appears inV/,,
and

2. For everyl! € [m], there is some indek; € {j +1,...,k} such that the variabl¥,, , appears in
M, if and only if there is somés € {j + 1, ..., k} such that the variabl¥,, , appears in\/», and

3. For everyh € {1,...,5 — 1} the monomial}M; contains more thand/k| variables from the set
Yii,--, Yom- (By Item (1) this is also true fok/,.)

Also, if the condition in Item (3) does not hold for two monomials then they are in the relation. Notice that

if a monomial)M is assigned tg; then all the monomials in its equivalent class appearand are assigned

to ¢;. By the multi-linearity, the sum of the monomials in each equivalence class can be expressed as a
new monomial is the variables, 1,...,Y1 m,...,Y1,...,Y;» and new variableg 1, . .., Z; ,, Where

Zjy e z’g:jﬂ Y}, ¢. Furthermore, the polynomiag} is the sum of the new monomials. By the definition of
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L3, serverS; knows the values; i, ..., z;,, to be assignedto of; 1, ..., Z; ,,,. Thus,S; can compute the
coefficients ofj; and send them to the user as in Protdeal &

We can generalize the optimized CNF scheme for arbitrary thresholds of privacy. We only describe the
secret sharing scheme; the details of the appropriate SM protocol are the same as in the above described
ProtocolP4.

Definition 7.3 [The t-private optimized CNF scheme]This scheme may work over any finite field (in
fact, over any finite group), and proceeds as followst-poivately share a secrete F"

« Additivelyshares into (%) shares, each labeled by a different set fréfy; that is,s = ZTG(W) T,
t
where the sharesr are otherwise-random field elements.

e Foreveryj € [k] and everyA C [j — 1] such thafA| < ¢t and|A| > ¢t + j — k define

Zj,A = Z rT.

T:j¢T, TN[j—1]=A

e Distribute to each playeP; all shares; 4 suchthatd C [j—1] suchthatA| < tand|A| > t+j—k.

Thet-privacy of the above scheme follows from therivacy of theL.1 scheme. (While not necessary for
our purposes, it can also be verified that any(8e&t [k] such thaiC| > ¢ can reconstruct the secret.)

Whenk > t, this scheme improves the total share size by a factortof compared td.1.

Acknowledgments. We thank Eyal Kushilevitz, Tal Malkin, Mike Saks, Yoav Stahl, and Xiaodong Sun
for helpful related discussions.
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A Approximations of A(m,d)
We next want to give bounds at(m, d). For an integetl we can use the following approximation:

(m — d)?

T (1)

A(m,d) >
In particular, forA(m, d) > n to hold, it is sufficient to lein = (d!n)"/? + d = aydn'/¢ + d, whereay is
a constant depending ah It holds thataz = (6)'/3/3 ~ 0.61, a5 = (120)'/5/5 ~ 0.52, anday < 0.5 for
d > 7 (by the Stirling approximatiotimg_,~, g = 1/€).
If d = |#m] for some constarit < 0.5 we will use the following approximation.

oHO)=o()m < A (m, |§m]) < 28 O™ 2)

(cf. [21, Theorem 1.4.5]). In particular, fdr(m, [#m]) > n to hold, it is sufficient to letn = (1/H (0) +
o(1))logn.

B Low-Degree Encoding

In this section we prove the validity of the low-degree encodiBgdefined in Section 4.1. That is, far
distinct vector!, ... v™ in GF(2)™ with Hamming weight at most, we defineE1(i) = v*. We need to
show the existence of degréepolynomialsp; such thap;(v7) is 1 if i = j and is zero otherwise. Assume,
without loss of generality, that if < i then the weight of’ is greater or equal to the weight of. Denote
by S; the subset ofin] containing the positions in whictt is 1. We define the polynomiajs one after the
other, starting wittp; and ending ap,,: Let

pi £ [ > ») )

hESi j:SiCSj

If S; C S; then the weight of’ is greater than the weight of and thus all the polynomials in the right
hand side of (3) are already defined. Clearly, the degree of the polyngmialat most degreé. We prove
by induction oni thatp;(v?) equals 1 iffi = j. First, by the induction hypothesis;(v*) = [T)cg, v}, = 1.
Second, ifj # i thenp;(v/) = [Tjes, vi, it Si ¢ Sj andp;(v?) = [Tjes, v), — p;(v7) otherwise (again, by
the induction hypothesis). In both cagge&’) = 0.
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