
BLACR: TTP-Free Blacklistable Anonymous Credentials
with Reputation

Man Ho Au,† Apu Kapadia,‡ Willy Susilo†

†Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong
Wollongong, Australia

{aau, wsusilo}@uow.edu.au

‡School of Informatics and Computing
Indiana University Bloomington

Bloomington, IN, USA
kapadia@indiana.edu

Abstract
Anonymous authentication can give users the license to

misbehave since there is no fear of retribution. As a de-
terrent, or means to revocation, various schemes for ac-
countable anonymity feature some kind of (possibly dis-
tributed) trusted third party (TTP) with the power to iden-
tify or link misbehaving users. Recently, schemes such as
BLAC and PEREA showed how anonymous revocation can
be achieved without such TTPs—anonymous users can be
revoked if they misbehave, and yet nobody can identify or
link such users cryptographically. Despite being the state of
the art in anonymous revocation, these schemes allow only
a basic form of revocation amounting to ‘revoke anybody
with d or more misbehaviors’ or ‘revoke anybody whose
combined misbehavior score is too high’ (where misbehav-
iors are assigned a ‘severity’ score).

We present BLACR, which significantly advances anony-
mous revocation in three ways: 1) It constitutes a first
attempt to generalize reputation-based anonymous revoca-
tion, where negative or positive scores can be assigned to
anonymous sessions across multiple categories. Servers
can block users based on policies, which specify a boolean
combination of reputations in these categories; 2) We
present a weighted extension, which allows the total sever-
ity score to ramp up for multiple misbehaviors by the same
user; and, 3) We make a significant improvement in authen-
tication times through a technique we call express lane au-
thentication, which makes reputation-based anonymous re-
vocation practical.

1. Introduction

Anonymity can give some users the license to misbe-
have. For example, by using an anonymizing network like
Tor [16] a vandal may connect to Wikipedia and deface
a webpage, or may post copyrighted material to Youtube.
To tackle such misbehaving users several schemes have
been proposed that strike different tradeoffs between pri-
vacy and accountability. For example, anonymous cre-
dential schemes allow users to authenticate to a service
provider (SP) as ‘some anonymous member in a group’ to
prove they belong to some class of users (e.g., students at
University X). If a member within the group misbehaves,
many schemes allow the SP to complain to a trusted third
party (TTP) (or a distributed TTP) and either identify the
user, link the user’s accesses, or simply revoke the user’s
ability to authenticate in the future. Such schemes in-
clude those based on group signatures [1, 6, 15, 21], dy-
namic accumulators [2, 7, 10, 22, 25], and Nymble sys-
tems [20, 33, 19, 23, 27].

Having a TTP capable of deanonymizing or linking a
user’s accesses is dangerous. Such TTPs must be trusted
to handle complaints by the SP fairly, and users can
never be certain whether their accesses will remain private.
Such TTPs will thus discourage several legitimate uses of
anonymity such as activists posting material from coun-
tries with restricted freedoms, whistleblowers from post-
ing material to sites such as Wikileaks, and so on. Rec-
ognizing the need to eliminate such TTPs, a few schemes
have been proposed such as BLAC [30, 32], EPID [8], and



PEREA [31, 4]. These schemes allow anonymous revoca-
tion, where misbehaving users can be revoked without the
involvement of a TTP. BLAC, EPID, and PEREA allow
SPs to blacklist previous sessions so that offending users
cannot authenticate in the future if any of their previous ses-
sions has been blacklisted. Additionally, BLAC supports d-
strikes-out policies [32], e.g., d = 3 enacts a ‘three strikes
out policy’ where three (or more) misbehaviors from a user
results in revocation of that user. PEREA generalizes d-
strikes-out policies to a weighted version called naughti-
ness policies [4]. Each misbehavior is assigned a severity,
and users whose total severity (naughtiness) exceeds a cer-
tain naughtiness threshold are denied authentication. In all
cases, the SP learns only whether an authentication for the
anonymous user succeeds or not. Thus there is no entity
who can deanonymize or link a user’s anonymous authen-
tications, but yet SPs can prevent misbehaving users from
returning. Users are guaranteed strong privacy (they can
never be deanonymized), and SPs are spared from future
accesses by such users.

A major drawback of PEREA is that naughtiness can
be computed only over a short revocation window of the
most recent K authentications of a user, where typically
K ranges from 5–15. If a session is not blacklisted within
this short window, then that misbehavior is automatically
forgiven. In contrast, BLAC faces no such limitation and
can incorporate misbehaviors performed arbitrarily in the
past. In this paper we focus on improving BLAC given
the stronger revocation semantics of BLAC. We note that
BLAC lacks the naughtiness functionality of PEREA, and
we extend BLAC to support such functionality and much
more.

Our contributions We make the first significant effort
to extend TTP-free anonymous revocation with general
behavior-based policies, giving SPs a language to charac-
terize (un)acceptable uses of their services while support-
ing anonymous revocation. We make the following contri-
butions:

• We generalize the concept of anonymous revocation to
reputation-based anonymous revocation. SPs can score
positive and negative behaviors of users across various
categories (resulting in reputation scores for each cate-
gory), and then use a boolean policy language to express
acceptable behaviors across categories. We name our
construction BLACR (BLacklistable Anonymous Cre-
dentials with Reputation), which significantly extends
the original construction of BLAC.

• We detail a novel weighted extension to BLACR, which
allows SPs to penalize or reward repeated bad or good
behaviors from the same anonymous user through a
weighted function. For example, the severity of a mis-

behavior can be doubled if it is the third or more offense
by a user. Providing this functionality while maintain-
ing full anonymity during authentication is non trivial,
because the new reputation must be computed based on
the express lane token and the current blacklist with the
weighted factors applied appropriately in zero knowl-
edge. Thus this weighted extension is another major
contribution of our work.

• Improving on the linear time complexity (in the size
of the blacklist) for authentications in BLAC/EPID re-
mains an open and important problem and currently lim-
its the practicality of such approaches. We detail a novel
approach for express lane authentication, where users
obtain an express token to authenticate faster in the next
time period. This technique allows for greatly reduced
authentication times for active users, which for the first
time makes anonymous blacklisting highly practical in
systems where active users perform the majority of au-
thentications. Through a quantitative analysis we show
BLACR can indeed be used in practical settings to sup-
port reputation-based anonymous revocation.

Other schemes that reduce or eliminate TTPs One ma-
jor class of TTP-free schemes is based on the ‘double
spending’ of e-cash [14] (generalized to n-times spend-
ing [29]), where only if a user authenticates twice (or n
times) does the user’s identity get revealed or linked. Un-
fortunately, not all misbehaviors (such as defacing a web-
page or subtle astroturfing campaigns for spreading disin-
formation) can be reduced to ‘too many authentications.’
BLAC, EPID and PEREA thus support subjective blacklist-
ing, where SPs can revoke users based on human, subjective
assessments of misbehavior by simply blacklisting a user’s
session.

Recently, Schwartz et al. [27] proposed contractual
anonymity, where the TTP runs within trusted hardware.
Nevertheless, one must trust the hardware and the code,
and furthermore it is not feasible for the trusted pro-
gram/hardware to automatically decide whether a prespeci-
fied contract is broken in the case of astroturfing attacks or
cases of vandalism. In such cases, again it is necessary for
a human assessment of whether a misbehavior occurred.

Finally, as also discussed by the authors of BLAC [32],
techniques such as UST rely on whitelisting [28] and pro-
vide users with the ability to return if their behavior in the
previous authentication was deemed good. These schemes
require the SP to decide (subjectively) if each session was
free of misbehavior while the user is online and are imprac-
tical in scenarios where the user has long since logged off.
In a significant improvement, FAUST [24] removes the on-
line requirement by allowing users to retrieve their tokens
privately at a later time, but still does not provide an ade-
quate solution for reputation-based anonymous revocation.



Their suggestion to use multiple tokens does not offer the
important property of collusion resistance, and individual
revoked users can ‘pool in’ their available tokens to gain
authentication. Furthermore, FAUST does not implement
boolean revocation policies like BLACR, and the scoring
thresholds must be fixed before issuing credentials. Revo-
cation policies can be updated easily in BLACR.

2. Overview of Approach

Adding “severity” to BLAC BLAC and EPID use the
following idea: an anonymous authentication of a user
with secret key x results in a ticket τ = (b, t), where
t ← H(b||sid)x, for some collision-resistant hash func-
tion H and a unique identifier sid for the service provider.
The ticket τ is stored by the SP in association with the ses-
sion (e.g., a video posted by the anonymous user). Since
it is computationally hard for the SP to calculate the dis-
crete log x of t, the user’s identity remains anonymous to
the SP. When an SP wants to blacklist a user associated
with a session, it inserts the ticket τ for that session into the
blacklist L. Users authenticating to the SP must prove their
credential is not associated with any ticket on the black-
list. Users prove this in zero knowledge (x is not revealed
to the SP) and bound to their issued credentials (users can-
not forge their own credential x). It is possible to prove in
zero knowledge the “inequality of discrete log”, that is, the
user’s credential x′ does not correspond to the discrete log
x of each entry t on the blacklist.

BLACR adds a score parameter si to each entry in the
blacklist indicating the severity of the misbehavior. LetL be
a list of pairs (τi, si) for i = 1 to |L|. Here τi corresponds
to a particular ticket, and si corresponds to the score asso-
ciated with that ticket. SPs can require the overall list score
of an authenticating user satisfy a certain threshold. The list
score S(L, x) of a user with secret key x with respect to the
list L is the sum of all the scores on the list for tickets cor-
responding to that user: S : (L, x) 7→

∑
i∈[|L|],ti=T(bi,x) si

where [n] denotes the set {1, . . . , n} for any positive integer
n.

BLACR augments the proof technique used in BLAC in
the following way: For each entry (ti, bi, si) in the list, the
authenticating user creates a commitment Ci and proves to
the SP that either (1) ti 6= H(bi||sid)x and Ci is a commit-
ment of 0; or (2) (ti = H(bi||sid)x) and Ci is a commit-
ment of si. Finally, the user proves in zero knowledge to
the SP that the sum of the values committed in Ci is above
the required threshold.

Generalizing severity to reputation BLACR actually
features both positive and negative scores for good and
bad behaviors (in a meritlist L+ and blacklist L− respec-
tively), resulting in an overall reputation score for each

user Rep(L+,L−, x) 7→ S(L+, x)− S(L−, x), i.e., his/her
merit list score minus his/her blacklist score. Further-
more, servers can score reputation across different cate-
gories {c1, c2, . . . , cm} where m is the number of cate-
gories. The reputation of a user with secret key x in cat-
egory ci, denoted asRi, is thus Rep(L+

i ,L
−
i , x). For exam-

ple, a server may maintain categories for video content and
comments. Within the category of video content, egregious
copyright violations such as reposting a television episode
could be considered to be more severe (and scored appro-
priately) than a copyright violation by a home-made video
with an unlicensed soundtrack. Within the category of com-
ments, inappropriate language, racist or intimidating com-
ments could be considered to be more severe than puerile
posts containing offensive words. Likewise, content rated
highly by other users could result in a commensurate re-
ward (positive score), e.g., comments that have been rated
as “helpful” by users could be rewarded. The user’s reputa-
tion in each category could then be required to be above a
certain threshold for authentication to succeed.

Policy based revocation We further allow SPs to spec-
ify arbitrary boolean combinations of policies across cate-
gories, e.g., users can be allowed access only if their (video
content reputation is above a certain level) OR (tagging rep-
utation is above a certain level AND commenting reputa-
tion is above a certain level). Here the tagging category
refers to how well users tag their content with appropri-
ate descriptors. Note that negations are easily supported,
because the negation of an atom results in checking the
reputation is above a certain threshold instead of below a
certain threshold. In particular, policies are expressed as∨`
k=1(

∧m
i=1(¬)Pki), which is a combination of conjunctive

clause over m categories. Each Pki have the form (ci, nki)
which requires the authenticating user to have a reputation
equal or higher than a threshold nki in category ci. The pol-
icy can contain negations too. The negation ¬Pki requires
the authenticating user to have a reputation lower than the
threshold nki in category ci. Pji is⊥ if the j-th conjunctive
clause of the policy does not involve category ci. Each Pki
is called a sub-policy, and is a boolean function defined over
a pair of lists (L+

i ,L
−
i ) regarding category ci, a user secret

x and a threshold nki. Its truth value evaluates to 1 if the
user reputation Rep(L+

i ,L
−
i , x) ≥ nji and 0 otherwise.

If c1, c2, c3 represents respectively the categories for
video content, tagging and commenting, the requirement
above can be parsed as (R1 ≥ n1)∨ (R2 ≥ n2 ∧R3 ≥ n3)
where n1, n2, n3 are the required thresholds. In this case
P11 = (c1, n1), P22 = (c2, n2) and P23 = (c3, n3) and all
others Pij = ⊥. Note that we do not require full disjunctive
normal form, meaning that the same sub-policy may appear
more than once in different conjunctive clauses. As another
example, we can set P12 = P22 and the following policy



(P11 ∧ P12) ∨ (¬P22 ∧ P23) means that any user can en-
joy the service if his/her reputation in both categories video
content and tagging is high enough, or if his/her reputation
in video content is below the threshold, he/she has to have a
high reputation in commenting.

A “weighted” extension to BLACR Consider the case
where a user’s misbehaviors for a certain category have
been scored as 2, 3, and 2 as ordered by the time of the
user’s session (note the SP doesn’t know these correspond
to the same user). In some cases an SP may want to ramp
up the penalty for multiple misbehaviors with some mul-
tiplicative factor. For example, the SP may want to double
the score of the second misbehavior to 6, and triple the score
of the third misbehavior to 6, thus disincentivizing repeated
misbehaviors. We also note the SP can do the same for the
reputation lists, rewarding multiple good behaviors. The SP
may even choose to reward multiple good behaviors less to
provide users with diminishing returns, further incentiviz-
ing more good behaviors.

Thus in “BLACR-Weighted”, for each category the
SP can specify a set of adjusting factors D =
{∆1,∆2, . . . ,∆k} so that the weighted list score of a user
with respect to a list is the sum of the scores where the
score of the i-th instance when the authenticating user is
put on the list is multiplied by ∆i. For example, suppose
a blacklist of a category is {(τ1, s1), (τ2, s2), . . . , (τ8, s8)}
corresponding to 8 sessions. For a certain authenticating
user Alice, tickets τ1 and τ4 belong to her. Her score
with respect to the list in BLACR-Unweighted is thus
s1 +s4. Now suppose the SP publishes the adjusting factors
{∆1,∆2,∆3,∆4,∆5} for the list. In BLACR-Weighted,
the list score of Alice is ∆1s1 + ∆2s4 since Alice is put on
the blacklist for a second time in the entry (τ4, s4).

Formally, for a list L, a set of adjusting factors D and a
secret key x, the weighted score function is:

S′ : (L, x,D) 7→
∑

i∈[|L|],ti=T(bi,x)

∆|{j:j≤i∧T(bj ,x)=tj}|si

where ∆i is defined to be ∆k for all i > k. This function
states the weights must be applied to the tickets correspond-
ing to the user in correct order, and then the weighted scores
are added up to get the weighted list score for that list. For
notational convenience, we define the reputation function in
this scenario as Rep′(L+

i ,L
−
i , x) 7→ S′(L+

i , x)−S′(L−i , x)

This extension is non-trivial because a user must prove in
zero knowledge that all the tickets corresponding to him/her
have the correct factors applied in correct order. Thus this
extended construction of BLACR-Weighted is another sig-
nificant contribution of our work.

Express-lane authentication: a novel ∂-Approach The
construction of the above proof requires computation and
transmission linear in the size of the list. We outline a
scheme to reward active users, i.e., those users who visit the
site regularly (e.g., once a day, or once a week) with much
faster authentication times at both the SP and the user’s side.
For services where the number of active users dominates the
total authentications at the site, a large savings in computa-
tions costs is also seen at the SP, thus incentivizing SPs to
offer express-lane authentication.

Consider Alice who authenticates at time T with respect
to a particular list LT and authenticates again at time T + t
with respect to the list LT+t = LT ∪ ∂t, where ∂t is the set
of newly blacklisted entries between time T and T + t. If
∂t represents a small fraction of the list, a large amount of
work in the second authentication is repeated. Specifically,
the list score of Alice with respect to LT+t is the sum of
scores with respect to LT plus that to ∂t with appropriate
weighting factors applied. Based on this observation, we
can optimize the performance if a helper value tkT , called
express pass, is delivered to Alice after the first authenti-
cation. This express pass is a signature on the value s, the
list score of an anonymous authenticating user Alice with
respect to list LT . When Alice is going to authenticate in
time T + t based on list LT+t = LT ∪ ∂t, she produces
a commitment of s and proves that she is in possession of
the express pass on s. Additionally, she proves that her rep-
utation with respect to list ∂t is s∂ and that her reputation
is sTi+t = s + s∂ . To speed up her authentication in the
future, the SP issues a new express pass tkT+t after Alice
authentication. Note this approach would only work if the
list presented at a later time can always be represented in
the form of LT ∪ ∂t. This is true because we assume that
entries are not removed from the blacklist. In Section 6 we
discuss “unblacklisting” to forgive misbehaviors at larger
system epochs.

If the express lane scheme is implemented as described,
Alice would have to reveal the list LT with respect to her
express pass tkT . This gives additional information to the
SP about when Alice’s last authentication was made. To
address this issue, we assume the time is divided into time
periods T1, T2, . . . corresponding to the authentication rates
from active users. The length of this time period will de-
pend on the particular system, but we expect this length to
be a “few days,” i.e., it is likely that most active users will
authenticate every time period.

Let Ti be the current time period. At the start of period
Ti, the SP announces the list Li, which is the list current up
to the end of Ti−1. Recall that an express pass tki−1 is the
certification of a user’s reputation with respect to list Li−1.
It is required that Li = Li−1 ∪ ∂i−1. At any time within
time period Ti, an authenticating user will be given a list
of the form L = Li−1 ∪ ∂i−1 ∪ ∂?i , where ∂?i is the set of



new entries in Ti as of the time when the user is authenti-
cating. Any user who has obtained an express pass tki−1 in
period Ti−1 can choose to authenticate in the express lane
or the normal lane. On the other hand, users who have not
authenticated in time period Ti−1 will not be in possession
of tki−1 and thus must authenticate in the normal lane. In
case user Alice chooses to authenticate in the express lane,
she computes the commitment of si−1, s′i−1 and s′i which is
her reputation with respect to list Li−1, ∂i−1 and ∂?i respec-
tively. She can prove si−1 is correctly formed using tki−1.
If the authentication is successful, the SP issues a new ex-
press pass tki which certifies the value si−1 + s′i−1, Alice’s
reputation with respect to listLi. On the other hand, if Alice
authenticates in the normal lane, she computes commitment
of si and s′i, which is her reputation with respect to list Li
and ∂?i respectively. Next, she proves that si and s′i are cor-
rectly formed. A new express pass tki is issued with respect
to si upon successful authentication. Figure 1 shows a con-
crete example of a user u authenticating first in the normal
lane in time period T9 with ZK-proofs for the entries L9 and
∂?9 and then in the express lane in time period T10 using tk9

and ZK-proofs for the entries ∂9 and ∂?10.

3. Security Goals and Syntax

Security goals We give informal definitions of the secu-
rity properties that a construction of the BLACR system
must possess. It is similar to that of BLAC. The appendix
formalizes these definitions.

Authenticity In a BLACR system with authenticity, SPs
are assured to accept authentication only from users who
satisfy the authentication policy.

Anonymity In a BLACR system with anonymity, all that
SPs can infer about the identity of an authenticating user
is whether the user satisfies the policy at the time of proto-
col execution, regardless of whatever the SPs do afterwards.
With express lane authentication, the SP can infer addition-
ally that an authenticating user has conducted an update pro-
tocol with the SP for the time period.

Note that express pass tki is issued whenever Alice au-
thenticates in period Ti, regardless of the number of times
Alice authenticates in the period. Note also tki is always
with respect to list Li in time period Ti. Thus, for any-
one who chooses to authenticate in time period Ti using the
express lane, all that the SP can infer is that the authenticat-
ing user has made at least one authentication in time period
Ti−1.

Non-frameability A user Alice is framed if she satisfies
the authentication policy, but is unable to successfully au-
thenticate herself to an honest SP. In a BLACR system with
non-frameability, users satisfying the authentication policy
can always successfully authenticate to honest SPs.

Mis-authentication Resistance Mis-authentication oc-
curs when an unregistered user successfully authenti-
cates herself to an SP. In a BLACR system with mis-
authentication resistance, SPs are assured to accept authen-
tications only from registered users.

Syntax The entities in the BLACR system are the Group
Manager (GM), a set of Service Providers (SPs) and a set of
users. We note the GM cannot deanonymize or link users.
The GM simply issues a credential to users and ensures each
user gets exactly one credential (see Section 6 for a discus-
sion on Sybil attacks). The GM is thus trusted to issue sin-
gle credentials to users and is not trusted with the privacy
of the users. The BLACR system consists of the following
protocols:

Setup. This algorithm is executed by the GM to set up the
system. On input of one or more security parameters, the al-
gorithm outputs a group public key gpk and a group private
key gsk. The GM keeps gsk private and publishes gpk to
the public. gpk is an implicit input to all the algorithms de-
scribed below. SP Setup This algorithm is executed by the
SP to set up its public parameters. In particular, it initial-
izes several lists L+

1 ,L
−
1 , . . . ,L+

m,L−m, where L+
i , L−i are

the meritlist and blacklist for category ci respectively. The
algorithm also outputs an identity string that uniquely iden-
tifies the SP.

Registration This protocol is executed between the GM
and a legitimate user to register the user into the system.
Upon successful completion of the protocol, the user ob-
tains a credential usk, which she keeps private, and is
thereby enrolled as a member in the group of registered
users. We stress that this credential is known only to the
user, i.e., the GM issues this credential in a blind way. In
particular, a secret value x, which is part of the user’s cre-
dential usk, is unknown to the GM.

Authentication This protocol is executed between a user
Alice and an SP Bob. The input of Alice is her credential
usk (with secret value x being part of usk). The input to Bob
is a set of meritlists/blacklists {L+

i ,L
−
i }`i=1 and a policy∨`

k=1(
∧m
i=1(¬)Pki).

When an execution of the protocol terminates, Bob out-
puts a binary value of success or failure. If the SP out-
puts success in an execution of the protocol, we call the
execution a successful authentication and say that the au-
thenticating user has succeeded in authenticating herself;
otherwise the authentication is unsuccessful and the user
has failed. Only upon a successful authentication does
the SP establish an authenticated session with the authen-
ticating user during which the user can access the ser-
vice provided by the SP. Note that the protocol transcript
of a successful authentication as seen by the SP contains
(b, T (b, usk)) where b is some randomness specified by the
user.



User u authenticates in 

express lane based on 

ZK-proofs on 

tk9,      and       .

T
8

T
9

T
10

SP releases list 

L8 L9 L10 L11
User u authenticates in 

normal lane based on 

ZK-proofs on 

 L9 and      .

SP issues

express pass tk9

     ∂9 ∂10         new entries ∂8

SP issues

express pass tk10

∂⋆
10∂⋆

9

∂⋆
9

∂9 ∂⋆
10

Figure 1. Timeline demonstrating the authentication process in normal and express lanes.

It is required that Alice is able to successfully authenti-
cate herself to Bob with overwhelming probability if Pol
evaluates to 1 on input of Alice’s credential usk. When we
say a user Alice with credential usk is revoked by an SP Bob
with respect to policy Pol, we mean Pol evaluates to 0 on
input of usk.

List management This is a suite of two algorithms:
Extract and Add, which are executed by SPs for managing
their lists. On input of an authentication protocol transcript,
Extract($) returns a ticket τ = (b, t) from an authentica-
tion transcript $. Add((τ, s),L) appends a new entry (τ, s)
to the list.

4. Our Construction

4.1. Parameters

Let λ be a sufficiently large security parameter. Let ê :
G1 × G2 → GT be a bilinear pairing such that |G1| =
|G2| = |GT | = p for a λ-bit prime p. Let ψ : G2 → G1

be an efficiently computable isomorphism. Also let G be a
group of order p where DDH is intractable. Let g0, g1, g2 ∈
G1 and h0 ∈ G2 be generators of G1 and G2 respectively
such that g0 = ψ(h0) and the relative discrete logarithm of
the generators are unknown.1 Let H0 : {0, 1}∗ → G and
H : {0, 1}∗ → Zp be collision-resistant hash functions.
Throughout this section these parameters will be available
to all parties.

4.2. Building blocks

Proofs of Knowledge In a Zero-Knowledge Proof of
Knowledge (ZKPoK) protocol [17], a prover convinces a

1This can be done by setting the generators to the output of a crypto-
graphic hash function of some publicly known seeds.

verifier that some statement is true while the verifier learns
nothing except the validity of the statement. Σ-protocols
are a type of ZKPoK protocol, which can be converted
into non-interactive Signature Proof of Knowledge (SPK)
schemes, or simply signature schemes [18], that are secure
under the Random Oracle (RO) Model [5]. We follow the
notation introduced by Camenisch and Stadler [13]. For ex-
ample, PK {(x) : y = gx} denotes a ZKPoK protocol that
proves the knowledge of an integer x such that y = gx

holds. Symbols appearing on the left of the colon denote
values whose knowledge are being proved while symbols
appearing on the right, but not the left, of the colon de-
note public values. The corresponding SPK on message M
will be denoted as SPK {(x) : y = gx} (M). BLACR uti-
lizes the ZKPoK that x does not equal logb t, denoted as
PK {(x) : y = CMT(x) ∧ t 6= bx} due to Camenisch and
Shoup [12].

Commitment scheme Our construction uses the well
known non-interactive commitment scheme due to Peder-
sen [26], which is briefly reviewed below. Let G be a cyclic
group of prime order p and g, h be independent generators
of G. On input a value x ∈ Zp, the committer randomly
chooses r ∈ Zp, computes and outputs C = gxhr as a com-
mitment of value x. To reveal the value committed in C, the
committer outputs (x, r). Everyone can test if C = gxhr.

Pedersen Commitment is perfect hiding and compu-
tationally binding. That is, even a computationally un-
bounded receiver cannot learn anything about the value
committed from the commitment. On the hand hand, a PPT
sender can only reveal the commitment with one value un-
der the discrete log assumption.

We use CMT(x) to denote a Pedersen Commitment of a
value x. Note that Pedersen Commitment is homomorphic
in the sense that on input CMT(a) and CMT(b), CMT(a) ∗
CMT(b) gives a commitment of a+ b.



Credential signature scheme We employ the signature
scheme proposed by Au et al. [3], which is based on the
schemes of Camenisch and Lysyanskaya [11] and of Boneh
et al. [6], to certify enrolled users in our system. Their
scheme, called BBS+ signature, is briefly reviewed here.
Let g, g0, g1, g2, . . . , gk ∈ G1 and h ∈ G2 be generators of
G1 and G2 respectively such that g = ψ(h), where ψ is a
computable isomorphism and (G1,G2) is a pair of groups
of prime order p. Let ê be a pairing defined over the pair of
groups.

The signer’s secret is a value γ ∈ Zp and the pub-
lic key is w = hγ . To create a signature over a tuple
of messages (m0,m1, . . . ,mk), the signer randomly picks
e, y ∈R Zp, computes A = (ggm0

0 gm1
1 · · · gmkk gyk+1)

1
γ+e .

The signer outputs (A, e, y) as the signature on message
(m0, . . . ,mk).

They also derive two useful protocols.

Protocol SIss(C0, C1, . . . , Ck): SIss allows a user to ob-
tains a credential signature from the signer on a block of val-
ues (x0, . . . , xk) committed in C0, . . . , Cm. Let the user’s
additional input be x0, r0, . . . , xk, rk such that Ci = gxi1 g

ri
2

for i = 0 to k.

• The user computes CM = gx0
0 gx1

1 · · · g
xk
k gy

′′

k+1 for some
randomly generated y′ ∈R Zp, sends CM to the signer
along with the following proof:

PK


({xi, ri}, y′) :

CM = gx0
0 gx1

1 · · · g
xk
k gy

′

k+1

k∧
i=0

(Ci = gxi1 g
ri
2 )


• The signer returns failure if verification of the

proof fails. Otherwise the signer randomly generates
e, y′′ ∈R Zp, computes A = (gCMg

y′′

k+1)
1
e+γ and re-

turns (A, e, y′′) to the user.
• The user computes y = y′ + y′′. She returns failure

if ê(A,whe) 6= ê(ggx0
0 gx1

1 · · · g
y
k+1, h). Otherwise she

outputs σ as (A, e, y).

Protocol SSig(C0, C1, . . . , Ck): SSig allows a prover to
convince a verifier he/she knows a credential signature σ on
a block of messages (x0, . . . , xk) committed inC0, . . . , Ck.
Let the prover’s additional input be x0, r0, . . . , xk, rk such
that Ci = gxi1 g

ri
2 for i = 0 to k and the credential signature

(A, e, y) such that the verification equation holds:

ê(A,whe) = ê(ggx0
0 gx1

1 · · · g
y
k+1, h)

• Let M be the random challenge. The prover randomly
generates k1, k2 ∈R Zp, computes A1 = gk11 gk22 , A2 =

Agk12 and the following SPK Π.

SPK



({xi, ri}, e, y, k1, k2, β1, β2) :

k∧
i=0

(Ci = gxi1 g
ri
2 ) ∧

A1 = gk11 gk22 ∧

1 = A−e1 gβ1

1 gβ2

2 ∧
ê(A2, w)

ê(g, h)
= ê(g0, h)x0 · · · ê(gk, h)xk

ê(gk+1, h)y ê(g2, w)k1

ê(g2, h)β1/ê(A2, h)e



(M)

where M ′ = M ||A1||A2 and β1 = k1e, β2 = k2e.
• The prover outputs pSig as (Π, A1, A2).
• Upon receiving (pSig,M), the verifier parses pSig as

(Π, A1, A2) and outputs accept if Π is a valid proof.

Signature-based range proof To demonstrate the reputa-
tion of a user is greater than a certain value, we employ the
signature-based range proof due to Camenisch et al. [9]. In
a nutshell, the verifier provides a set of “digital signatures”
on the elements of the required range under a verification
key. We consider this set of digital signatures as the public
parameter. In order for the prover to demonstrate that a cer-
tain value committed in a commitment is within the range,
the prover proves, in zero-knowledge, that he/she knows a
signature under the verification key for the element com-
mitted. This proof is of constant size and is useful when the
range is small.

4.3. Useful Protocols

Based on the above building blocks, we construct the fol-
lowing zero-knowledge proof-of-knowledge protocols that
are useful in BLACR.

Protocol Sx(Cx, t, g): Sx allows a prover to assure the
verifier the value logg t is committed inCx. Verifier’s input:
Cx, t, g. Prover’s input x, r such that Cx = g1

xg2
r and t =

gx. Let M be the random challenge. The prover computes

px := SPK {(x, r) : Cx = gx1g
r
2 ∧ t = gx} (M).

The output of the prover is px.
Upon receiving px,M , the verifier outputs accept if px is

a valid proof.

Protocol SWS-Adj(Cx, Cs, Cn, Cc/ ⊥,L,D): Let L be a
list which maybe the sub-sequence of any longer list Li =
Li−1 ∪ L. The weighted score of a user with secret value x



with respect to this sub-sequence L depends on both L, the
set of adjusting factors D and the value n = Cnt(Li−1, x),
where

Cnt(L, x) 7→ |{b :
(
(b,T(b, x)), ·

)
∈ L}|,

the number of times this user has been put on Li−1.
Protocol SWS-Adj allows a user to convince any verifier

that the value s committed in Cs is the weighted score of
the user with secret value x committed in Cx with respect
to the list L, a set of adjusting factor D, given a value
n = Cnt(L, x) committed in Cn. If Cc 6=⊥, the proof also
convinces the verifier that Cc is a commitment of the value
Cnt(L, x).

The provers has additional inputs x, rx, s, rs, n, rn such
that Cx = gx1g

rx
2 , Cs = gs1g

rs
2 , Cn = gn1 g

rn
2 and in case

Cc 6=⊥, the prover also knows c, rc such that Cc = gc1g
rc
2

respectively.
Parse D as (i,∆i, σi)

D
i=1. Let I : {ι|(bι, tι, sι) ∈

L, H(bι||sid)x = tι} be an index set. For all ι ∈ I, let
kι = |{j : 1 ≤ j ≤ ι ∧ tι = b̂xι }|+ n. Note the role of n in
the definition of kι. It can be seen that for any ι ∈ I, ∆kι is
the appropriate adjusting factor for the score sι. Let M be
the random challenge.
• Produce auxiliary commitments for each score on the

list L
aux = (Cs1 , C

n
1 , . . . , C

s
L, C

n
L)

as follows. Randomly generates aι, bι ∈R Zp for ι = 1
to L and computes:

(Csι , C
n
ι ) =

{
(g

∆kιsι
1 gaι2 , g1g

bι
2 ) for ι ∈ I

(gaι2 , g
bι
2 ) for ι ∈ [L]\I

Note that Csι is a commitment of the adjusted score on
list L with respect to secret value x. Cnι is a commit-
ment of 0 or 1 which indicates if the entry is on the list.
The superscript s and n here does not represent expo-
nentiation.

• Generate a proof Π1 to demonstrate the correctness of
aux. We give the intuition of how Π1 shows Csι is a
commitment of the weighted score of the authenticat-
ing user. Firstly, Cnι acts as a boolean flag, hidden from
the verifier, indicating if τι is a ticket from the authen-
ticating user. Thus, for all ι ∈ [L]\I, Csι , C

n
ι should

be commitment of 0. On the other hand, when ι ∈ I,
Cnι is a commitment of 1. Due to the homomorphic
property of the commitment scheme, Cn

∏ι
j=1 C

n
ι is a

commitment of the value kι, which is the number of
times the user with secret x has been put on the list up
to the ι-th entry (note that Cn is applied to the prod-
uct to increase the number of times by n). Thus, the
correct adjusting factor for the of this entry is ∆kι . Re-
call that σι is the signature from the SP on the tuple

(∆ι, ι). Thus, the proof that Verify(σkι , kι,∆kι) = 1
binds the value of kι to the appropriate adjusting fac-
tor ∆kι . Finally, the proof demonstrates that the correct
weighted score of this entry, ∆kιsι is committed in Csι
(here βι =

∑ι
j=1 bι + rn).

Π1 =

SPK



(x, rx, {σkι ,∆kι , kι, βι, aι, bι}Lι=1) :


Cx = g1

xg2
rx ∧

tι 6= b̂xι ∧
Csι = gaι2 ∧
Cnι = gbι2

 ∨


Cx = g1
xg2

rx ∧
tι = b̂xι ∧

Cnι = g1g
bι
2 ∧

Cn ·
∏ι
j=1 C

n
ι = gkι1 g

βι
2 ∧

1 = Verify(σkι , kι,∆kι) ∧
Csι = g

∆kιsι
1 gaι2





L

ι=1



(M)

• The prover computes C ′s =
∏L
i=1 C

s
i , r′s =

∑L
i=1 ai.

If Cc 6=⊥, the prover also computes C ′c =
∏L
i=1 C

n
i ,

r′c =
∑L
i=1 bi and produces the following proof.

Π2 =



SPK



(s, rs, r
′
s, c, rc, r

′
c) :

Cs = gs1g
rs
2 ∧

C ′s = gs1g
r′s
2 ∧

Cc = gc1g
rc
2 ∧

C ′c = gc1g
r′c
2


(M) if Cc 6=⊥

SPK


(s, rs, r

′
s) :

Cs = gs1g
rs
2 ∧

C ′s = gs1g
r′s
2

 (M) otherwise.

• The prover outputs pWS-Adj as (Π1,Π2,aux).
• Upon receiving (pWS-Adj,M), the verifier parses pWS-Adj

as (Π1,Π2,aux), computes locally C ′s =
∏L
i=1 C

s
i ,

C ′c =
∏L
i=1 C

n
i and outputs accept if Π1 and Π2 are

both valid proofs.

Protocol SPol(Pol, C1, . . . , Cm): SPol allows a prover
to convince a verifier the set of values committed in Ci
would satisfy the authentication policy Pol should they
represent reputation of a user in the m categories. Let M
be the random challenge. The prover has additional inputs
Ri, ri such that Ci = gRi1 gri2 .
• The prover parse Pol as the statement∨`

k=1(
∧m
i=1(¬)Pki).

• The prover produces the following proof Π:

SPK

{
({Ri, ri}mi=1) :∨`
k=1(

∧m
i=1 Ci = gRi1 gri2 ∧Ri �ki nki)

}
(M)



where �ki ∈ {≥, <} depending on whether the policy
is Pki or ¬Pki.

• The prover outputs pPol as Π.
• Upon receiving (pScore,M), the verifier outputs accept

if Π is a valid proof.

4.4. Our construction of BLACR

4.4.1 Setup

The GM randomly chooses γ ∈R Zp and computes w =
hγ0 . The group secret key is gsk = (γ) and the group public
key is gpk = (w).

4.4.2 SP Setup

Let m be the number of categories. Each SP pub-
lishes a unique identity string sid and a set of genera-
tors gsid,, gsid,0, . . . , gsid,m ∈R G1, hsid ∈R G2 such
that ψ(hsid) = gsid,. It chooses γsid ∈R Zp, computes
wsid = hsid

γsid and publishes wsid as well. Note that they
are in fact the verification key of the credential signature
scheme with signing key γsid. SP also initializes meritlist
and blacklist of each category. A meritlist L+

i and blacklist
L−i for category ci is a list of tuples ({0, 1}λ,G, [smax])
were smax is the maximum score associated with a mis-
behavior or good behavior. The SP also publishes the set
of adjusting factors D+

i and D−i for each category ci. For
every ∆+

i ∈ D
+
k (resp. ∆−i ∈ D

−
k ), the SP further pub-

lishes a signature σ+
i (resp. σ−i ) on the values (i,∆+

i ) (resp.
(i,∆−i )). For each D, the signatures should be generated
using a different key pairs.

4.4.3 Registration

Alice randomly picks a secret number x ∈R Zp and com-
putes Cx = CMT(x). She engages with the GM in protocol
Siss(Cx) and obtains a tuple (A, e, y) such that (A, e, y)
is a credential signature on x. She stores her credential
usk = (A, e, y, x). We note that x is known only to Al-
ice (i.e., and not the GM).

4.4.4 Normal Lane Authentication

Let pd be the current time period. Recalled that any list
presented in this period by the SP will have the form: L�i,pd∪
∂�,?i,pd where � ∈ {+,−} for category ci. The set of lists
Li,pd for i = 1 to m at the beginning of period pd and the
adjusting factors are assumed to be known. So the SP would
simply transmit the set ∂�,?i,pd to the user.

During an execution of this protocol between a user
Alice and the SP, Alice’s private input is her credential
usk = (A, e, x, y).

When the protocol terminates, the SP outputs success
or failure, indicating whether the SP should consider the
authentication attempt successful. If SP outputs success,
Alice’s output is tkpd, which is the express pass token for
her to authenticate in the express lane for period pd + 1.

1. (Challenge.) The SP sends to Alice the lists for each
category, the adjusting factors and a random challenge
(∂+,?

1,pd, ∂
−,?
1,pd, . . . , ∂

+,?
m,pd, ∂

−,?
m,pd,M) as well as the pol-

icy Pol.

2. (Inspection.) Alice parses each list as L�i = L�i,pd ∪
∂�,?i,pd for i = 1 to m and � ∈ {+,−}. She computes
s�i,pd, s�i,∂?pd which is her weighted-score with respect
to list L�i,pd and ∂�,?i,pd respectively. She computes her
reputationRi = s+

i,pd+s+
i,∂?pd
−s−i,pd−s

−
i,∂?pd

and checks
if she satisfies the policy Pol. If not, she returns as
failure, indicating she is revoked.

3. (Proof Generation.) If Alice is not revoked, she com-
putes the following commitments, for i = 1 to m:

Cx = CMT(x), Cs
+

i,pd = CMT(s+
i,pd),

Cs
+

i,∂?pd
= CMT(s+

i,∂?pd
), Cn

+

i,pd = CMT(n+
i,pd),

Cs
−

i,pd = CMT(s−i,pd), Cn
−

i,pd = CMT(n−i,pd)

Cs
−

i,∂?pd
= CMT(s−i,∂?pd

)

where n+
i,pd = Cnt(x,L+

i,pd) and n−i,pd =

Cnt(x,L−i,pd. She also computes a value
τ = (b, t := H(b||sid)x). Here b ∈R {0, 1}λ
is a random value chosen by Alice. She sends
(Cx, {Cs

+

i,pd, C
n+

i,pd, C
s+

i,∂?pd
, Cs

−

i,pd, C
n−

i,pd, C
s−

i,∂?pd
}mi=1, τ),

along with a proof Π such that these values are
correctly formed and that Pol evaluates to 1. Define

Ci for i = 1 to m as
Cs

+

i,pdC
s+

i,∂?pd

Cs
−
i,pdC

s−
i,∂?pd

. Note that both party

can compute Ci locally. The proof Π is carried out
through executions of the following protocols.

• Execute protocol SSig(Cx) to assure the SP that
Alice is in possession of a credential signature
(A, e, y) on a secret value x, which is committed
in Cx.
• Execute Sx(Cx, t,H(b||sid)) to assure the SP

logH(b||sid) t = x and x is committed in Cx.
• Execute SWS-Adj(Cx, C

s�

i,pd, C
n�

i,pd, 1,L�i,pd,D�i )
for i = 1 to m, � ∈ {+,−} to assure the SP all
Cs
�

i,pd, Cn
�

i,pd are correctly formed. Note that 1
represents a commitment of 0.

• Execute SWS-Adj(Cx, C
s�

i,∂?pd
,⊥, Cn�i,pd, ∂

�,?
i,pd,D�i )

for i = 1 to m, � ∈ {+,−} to assure the SP
all Cs

�

i,∂?pd
is correctly formed.



• Execute SPol(Pol, C1, . . . , Cm) to ensure that
the set of reputations of each category committed
in Ci satisfies the policy Pol.

The SP outputs success if and only if the proof Π
is a valid proof. The SP stores ticket τ extracted from
the transcript, along with information logging Alice’s ac-
tivity within the authenticated session. If the SP outputs
success, the SP issues the express pass tkpd for the user by
executing protocol SIss(Cx, Cs

+

1,pd, Cn
+

1,pd, Cs
−

1,pd, Cn
−

1,pd, . . .,
Cs

+

m,pd, Cn
+

m,pd, Cs
−

m,pd, Cn
−

m,pd) with Alice to issue a signature
σx on values (x, s+

1,pd, n+
1,pd, s−1,pd, n−1,pd, . . ., s+

m,pd, n+
m,pd,

s−m,pd, n−m,pd). Alice stores (σx, s+
1,pd, n+

1,pd, s−1,pd, n−1,pd,
. . ., s+

m,pd, n+
m,pd, s−m,pd, n−m,pd) as her express pass tkpd.

4.4.5 Express Lane Authentication

We describe the difference with normal lane authentica-
tion. Let pd be the current time period. Suppose Al-
ice has an express pass tkpd−1. Let the current list be
L�i,pd = L�i,pd−1 ∪ ∂�i,pd−1 ∪ ∂

�,?
i,pd.

1. (Challenge.) Same as normal lane.

2. (Inspection.) Alice parses each list as L�i = L�i,pd−1 ∪
∂�i,pd−1 ∪ ∂

�,?
i,pd for i = 1 to m and � ∈ {+,−}. Again,

she returns failure if she is revoked.

3. (Proof Generation.) If Alice is not revoked, she com-
putes the following commitments, for i = 1 to m,
� ∈ {+,−}:

Cx = CMT(x), Cs
�

i,pd−1 = CMT(s�i,pd−1)

Cs
�

i,∂pd−1
= CMT(s�i,∂pd−1

), Cs
�

i,∂?pd
= CMT(s�i,∂?pd)

Cn
�

i,pd−1 = CMT(n�i,pd−1), Cn
�

i,pd = CMT(n�i,pd)

where n�i,· = Cnt(x,L�i,·). She also computes a value
τ = (b, t := H(b||sid)x). Here b ∈R {0, 1}λ is a
random value chosen by Alice. She sends all the com-
mitments and τ , along with a proof Π such that these
values are correctly formed and that Pol evaluates to

1. Define Ci for i = 1 to m as
Cs

+

i,pd−1C
s+

i,∂pd−1
Cs

+

i,∂?pd

Cs
−
i,pdC

s−
i,∂pd−1

Cs
−
i,∂?pd

.

Note that both party can compute Ci locally.

The proof Π is carried out through executions of the
following protocols.

• Execute protocol SSig(Cx) to assure the SP that
Alice is in possession of a credential signature
(A, e, y) on a secret value x, which is committed
in Cx.

• Execute protocol SSig(Cx, Cs
+

1,pd−1, Cn
+

1,pd−1,
Cs
−

1,pd−1, Cn
−

1,pd−1, . . ., Cs
+

m,pd−1, Cn
+

m,pd−1,
Cs
−

m,pd−1, Cn
−

m,pd−1) to assure the SP that Alice is
in possession of an express pas tkpd−1.

• Execute Sx(Cx, t,H(b||sid)) to assure the SP
logH(b||sid) t = x and x is committed in Cx.

• Execute SWS-Adj(Cx, Cs
�

i,∂pd−1
, Cn

�

i,∂pd−1
, 1, ∂�i,pd−1,

D�i ) for i = 1 tom, � ∈ {+,−} to assure the SP all
Cs
�

i,∂pd−1
, Cn

�

i,∂pd−1
are correctly formed. Note that 1

represents a commitment of 0.
• Execute SWS-Adj(Cx, Cs

�

i,∂?pd
, ⊥, Cn

�

i,pd, ∂�,?i,pd, D�i )

for i = 1 to m, � ∈ {+,−} to assure the SP all
Cs
�

i,∂?pd
is correctly formed.

• Execute SPol(Pol, C1, . . ., Cm) to ensure that the
set of reputations of each category committed inCi
satisfies the policy Pol.

Again, the SP outputs success if and only if the proof
Π is a valid proof. The express pass tkpd is issued for
the user by executing protocol SIss. Both party can com-
putes locally the commitment Cs

�

i,pd as Cs
�

i,pd−1C
s�

i,∂pd−1
and

Cn
�

i,pd = Cn
�

i,pd−1C
n�

i,∂pd−1
.

4.4.6 List management

These algorithms are all very simple and efficient.
Extract($) returns ticket τ in the input transcript $.
Add(L, (τ, s)) returns list L′, which is the same as the input
list L, except with the input tuple (τ, s) appended to it.

4.5. Security analysis

BLACR possesses mis-authentication resistance, au-
thenticity, anonymity and non-frameability. As mentioned
earlier, we describe the formal security model and the proof
of security of BLACR in the appendix.

5. Performance Evaluation

We demonstrate the practicality of BLACR and compare
it to both BLAC and PEREA. First we compare the asymp-
totic complexities, and then provide a detailed quantitative
analysis of the schemes.

5.1. Complexity analysis

As summarized in Table 1, the asymptotic complexity
of BLACR-Normal is the same as BLAC. Generating the
proofs takes O(L) time for the user in BLAC and BLACR-
Normal, and O(K∆L) in PEREA as each witness must be
updated ∆L times. K is the size of the revocation window



Schemes Communication Computation
Downlink Uplink User (Check+Prove) Server

BLAC/EPID O(L) O(L) O(L) + O(L) O(L)
PEREA O(L) O(K) O(L) + O(K∆L) O(K)
BLACR-Normal O(L) O(L) O(L) + O(L) O(L)
BLACR-Express O(|∂?pd|) O(|∂pd−1|+ |∂?pd|) O(|∂pd−1|+ |∂?pd|) + O(|∂pd−1|+ |∂?pd|) O(|∂pd−1|+ |∂?pd|)

Table 1. Asymptotic Complexities of Authentication

(the number of authentications before which a misbehav-
ior must be caught to result in a revocation), and ∆L is the
number of new entries on the blacklist since the user’s pre-
vious authentication. Verifying the proofs also takes O(L)
at the SP for BLAC/EPID and BLACR-Normal, whereas
PEREA requires only O(K) computation at the server. For
BLACR-Express, the complexities depend on the number
of new entries in the previous time period (∂pd−1) and the
current time period (∂?pd).

The downlink communications complexity is linear in
the size of the list in all schemes. The uplink commu-
nication complexities are the same as the computational
complexities at the server: O(K) for PEREA, O(L) for
BLAC/EPID/BLACR-Normal and O(|∂pd−1 + ∂pd|) for
BLACR-Express.

5.2. Quantitative analysis

Data transfer The various communication costs for
BLACR are given in Table 2. For our analysis we make
the following assumptions: the score of each entry is rep-
resented with 5 bits, the threshold with 10 bits, and we as-
sume the adjusting factors are treated as a public parameter.
Following the suggested parameters [4] to give a security
level of 112 bits for BLAC, we set the security parameter
to 249, i.e., we assume p is a 249-bit prime. Under opti-
mal conditions, elements in Zp and |G1| would be 249 and
250 bits respectively. Currently we use 281 bits for |G1|
because that is the closest matching curve in the PBC li-
brary. The constant ` is the number of conjunctive clauses
in the policy in BLACR. Further, we assume each of these
clauses involves all m categories and thus each policy con-
sists of `m sub-policies. We assume ` = 10, m = 10 in
our analysis, and that the lists for each category are equal
in size. Downloading a list of 5,000 entries is under 325KB
and a full normal lane authentication requires uploading a
proof of size less than 4MB. Assuming that only 2% of the
5,000 entries are new, express lane authentication requires
a download and upload of size less than 6.5KB and 123KB
respectively, which is a considerable savings. Nevertheless,
since the transfer sizes for normal lane authentication are
similar to uploading standard JPEG images (and cost on the
order of millicents based on current Amazon EC2 pricing),
we deem the data transfer sizes to be acceptable.

Computation Table 4 outlines the number of multi-based
exponentiations (EXPs) as a measure of time complexity of
BLAC, PEREA and BLACR, with and without precompu-
tation, i.e., the pre-processing that can be done by the user
before seeing the lists. Fortunately, in BLACR a significant
amount of work can be pre-computed by the user and that
results in low latencies at the user as we show in Figure 2.
Let L be the size of the blacklist in BLAC and PEREA. As-
sume A is the number of tickets that do not belong to the
user. For our evaluation of BLACR, we assume there are `
sub-policies and that both the meritlist and blacklist in each
sub-policy are of size L/(2`). Assume ζ is the fraction of
tickets that belong to the user and that they are distributed
evenly across all the meritlist or blacklist. ∆L represents the
change of the list from the last time the user authenticates.
Both BLAC and BLACR show significant improvement in
performance if the XDH assumption is made, and thus we
make this assumption in our performance analysis.

The benchmarks shown in Table 3 are obtained on a
Lenovo X200s with an Intel Core 2 Duo CPU L9400 and
4GB RAM running Windows Vista as the host. We used Or-
acle VirtualBox 4.0.4 to emulate a guest machine of 512MB
RAM running Ubuntu 10.10. Timings of E1, ET , EG, and
P are obtained using test code based on the Pairing-Based
Cryptography (PBC) library2 (version 0.5.11) based on the
type D pairing parameter, with |p| = 249, bundled with the
PBC library. The following table summarizes our experi-
mental results. For EN1 and EN2 the test code is written
in C based on the MIRACL library3 (version 5.4.2). The
modulus N is taken to be 4593 bits. The small exponent is
taken to be 224 bits. The computation for an authentication
in BLACR is highly parallelizable. In fact, all the work with
respect to each entry in the list can be done independently.
Thus, the system scales well with the increase in the number
of cores in the CPU and our subsequent analysis assumes
this scalability. Since 8-core server configurations are stan-
dard today, we assume such servers at the SPs. Likewise,
4-core desktops and laptops are becoming more common-
place, and we assume such configurations at the user.

What is practical? For a heavily loaded SP such as
Wikipedia, the English webpages are updated at the rate of
about 120 edits/minute.4 Absent any clear guideline, we
assume 20% of these edits may come from users desiring

2http://crypto.stanford.edu/pbc/
3http://www.shamus.ie/
4http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm

http://crypto.stanford.edu/pbc/
http://www.shamus.ie/


Schemes Protocol Downlink Uplink
BLACR-Weighted Authentication-Normal (504(|L|) + 1994)bits (6479(|L|) + 2741`m+ 5484m+ 3740)bits
BLACR-Weighted Authentication-Express (504(|∂pd−1|+ |∂?pd|) + 1994)bits (6479(|∂pd−1|+ |∂?pd|) + 2741`m+ 7476m+ 5983)bits

Table 2. Space Complexities of BLACR

Operations Legend Mode Time
G1-EXP E1 Multi-based EXP 5.891ms

EP1 With/Pre-Processing (fixed single base) 0.784ms
G2-EXP E2 Multi-based EXP 44.433ms

EP2 With/Pre-Processing (fixed single base) 6.278ms
GT -EXP ET Multi-based EXP 12.035ms

EPT With/Pre-Processing (fixed single base) 2.015ms
Pairing P Normal 40.373ms

PP With/Pre-Processing (one input fixed) 32.892ms
EXP moduloN EN1 Small Exponent (Without/Pre-Processing) 40.64ms

EN2 With/Pre-Processing (fixed base) 89.63ms

Table 3. Benchmark of different operations

strong anonymity, and our main goal is to support authen-
tications at the rate of about 25 authentications/minute at
the SP for active users and about 1 authentication/minute
for inactive users. A secondary goal is to keep authentica-
tion latencies low at the user. We deem tens of seconds of
computation per authentication is reasonable for users.

In our analysis we show that around 5,000 entries on
the blacklist is a reasonable tradeoff because normal-lane
users can be authenticated in about a minute, and most au-
thentications take place in the express lane in a couple of
seconds (assuming only 2% of the entries have changed
since the last authentication). Given this tradeoff, we expect
servers to trim their blacklists and meritlists to noteworthy
bad and good behaviors. Larger sites (e.g., Wikipedia) will
need to focus on egregious violations or particularly reward-
ing behaviors, while smaller sites (e.g., organizations such
as a large university) can penalize/reward many more be-
haviors. Scalability is maintained by tuning what degrees
of good/bad behaviors make it on the list and how many
servers the provider is willing to purchase (costs scale as
O(L)). As discussed in Section 6, we can assume that most
users are in the express lane, and that the SP can limit the
number of authentications accepted in the normal lane to
maintain a high throughput of authentications.

Performance at the SP. As we can see in Figure 2(a),
for 3,000–5,000 entries on the blacklist/meritlist, authenti-
cation in BLACR-Normal takes 51–84 seconds using an 8-
core server (to give a baseline idea of cost, a fully-reserved
instance of such a server on Amazon EC2 would cost
around $2,500/year including data transfer costs). Authen-
tication in BLACR-Express would on the other hand sup-
port about 26–38 anonymous authentications/minute. For
comparison, BLAC can support about 16–26 authentica-
tions/minute. We also see that PEREA-Naughtiness (the
closest analog to BLACR) has authentication times inde-
pendent of the size of the blacklist but linear in the revo-
cation window K. For K = 10, the authentication rate

is about 23 authentications/minute. Thus BLACR-Express
actually outperforms all existing schemes, with the tradeoff
that users in the normal lane take about a minute to authen-
ticate.

Performance at the user. For the computation at the user
we show the costs are reasonable because users can precom-
pute several values before authentication. In Figure 2(b) we
can see that in BLACR-Normal with precomputation users
would expect only a 13.3–22.1 second delay per authenti-
cation, and a 4.5–7.4 second delay in BLAC with 3,000–
5,000 blacklist/meritlist entries. BLACR-Express on the
other hand would take only 0.3–0.48 seconds. In com-
parison, PEREA takes much longer at the user (PEREA
trades off efficient verification at the SP for more work
at the user). For K = 10, and with 3,000–5,000 black-
list/meritlist entries, authentication takes around 22.4–26.9
seconds. Thus BLACR performs well on the user side, and
BLACR-Express vastly outperforms all other schemes.

Practical considerations. If server costs must be kept
low, and if the SP desires to have much larger blacklists,
then PEREA with naughtiness offers a reasonable alterna-
tive at the cost of some accountability—misbehaving users
must be identified within the revocation window, otherwise
they get away with the misbehavior. Importantly, PEREA
can apply reputation only to the last K authentications of
a user. On the other hand, with BLACR we demonstrate
that the costs are reasonable for several thousand entries
in total on the meritlists and blacklists and the revocation
guarantees are much stronger (a user’s misbehavior can be
identified at any time, days or months later, and the user
can still be revoked). Also, the reputation-based anony-
mous revocation of BLACR offers a much richer language
for revocation than PEREA with naughtiness. Finally, SPs
willing to spend say $10,000/year on four 8-core servers
and data transfer costs would be able to support 20,000
blacklist/meritlist entries, which we posit is large enough
for most settings.



Schemes Parties Computation
BLAC User (2L+ 8)E1+ 2ET + 1P
(XDH Assumption made) User (w/pre-computation) 2LE1

SP (L+ 5)E1 + 2ET + 2P
BLACR Normal User

(
(3− ζ)L

)
E1 +

(
(27− ζ)L+ 11`m+ 22m+ 18

)
EP1 +(

(5− 4ζ)L+ `m+ 4m+ 1
)

EPT + 1P
(
L+ `m+ 1

)
PP

User (w/pre-computation)
(
(3− ζ)L

)
E1 + 1EPT + 1P

SP
(
12L+ 3`m+ 8m+ 5

)
E1 + 4m EP1+

(
5L+ 5`m+ 5

)
EPT +(

L+ `m+ 1)P +
(
2L+ 2`m+ 2

)
EP2

BLACR Express User
(
(3− ζ)∆L

)
E1 +

(
(27− ζ)∆L + 11`m+ 40m+ 30

)
EP1 +(

(5− 4ζ)∆L + `m+ 4m+ 2
)

EPT + 1P
(
∆L + `m+ 2

)
PP

User (w/pre-computation)
(
(3− ζ)L

)
E1 + 1EPT + 1P

SP
(
12∆L + 3`m+ 12m+ 7

)
E1 + 4m EP1+

(
5∆L + 5`m+ 4m+ 9

)
EPT +(

∆L + `m+ 2)P +
(
2∆L + 2`m+ 4

)
EP2

PEREA (w/ Naughtiness) User [(A+ 1)∆L]EN1 + [16K + dK−1
3 e+ 12]EN2

SP [15K + dK3 e+ 8]EN2

Table 4. Complexities analysis for BLAC, PEREA, and BLACR (ζ is the fraction of entries belongs to
the user in the list) ∆L = ∂pd−1 ∪ ∂?pd
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Figure 2. Estimated authentication times at the SP and User and the cost for the SP.

6. Discussion

The authors of BLAC and PEREA already discuss the
issues of rate-limiting authentications (all schemes need a
standard rate-limiting scheme to limit the number of mis-
behaviors a user can perform before getting caught), con-
current sessions (standard techniques that can be used to
limit users to one session at a time), timing attacks (as with
other schemes, all users should wait for a standard amount
of time to authenticate to avoid fingerprinting attacks), and
Sybil attacks (all schemes must ensure users get only one
credential). Here we discuss the following pertinent issues:

Express lane We assume there exists a subset of active
users who can benefit from express lane authentication. In
practical deployments, however, one could assume that all

users are active by requiring them to refresh their credential
for every time period. This refreshing can be accomplished
by client software, much like an “auto update” check per-
formed by popular software applications and operating sys-
tems. In this case the slow lane can still be used as a fallback
mechanism, but the expected mode of operation is of much
higher performance at the SP.

Unblacklisting Forgiving misbehaviors means that en-
tries need to be removed from the blacklist. Removing en-
tries invalidates the reputation proofs of express lane tokens,
and thus all users must authenticate via the normal lane fol-
lowing unblacklisting. We assume such unblacklisting is
performed at much larger epochs compared to the granu-
larity of time periods. We also note that our policy-based
approach allows users to perform other good actions at the



site to increase their reputation in order to gain access the
SP again.

Efficient authentication We have already argued that
BLACR is efficient enough for real-world deploy-
ments. Nevertheless, recent TTP-based schemes such as
Nymble [20, 33], Nymbler [19], and Jack [23] aim to make
the authentications as fast as possible (to the order of micro
and milliseconds) at the SP. While BLACR cannot compete
to be faster than such schemes, BLACR (and BLAC, EPID,
and PEREA) offer the benefit of being TTP-free. Thus
certain applications may require an extremely low impact
on the SP, and the users may be willing to use TTP-based
schemes given no other choice.

7. Conclusions

Several anonymous authentication schemes with varying
degrees of accountable anonymity have been proposed in
the past. In our work we focus on the paradigm of TTP-free
schemes that offer both subjective blacklisting (where mis-
behaviors need to be flagged by humans) and anonymous
revocation (where users can be blocked without knowing
who they are). In this paradigm, more research is needed on
the policy side, where service providers can articulate var-
ious forms of misbehaviors (or good behaviors) of anony-
mous users and thus deny access not on simple count-based
policies but with a richer language. We make a step in
this direction by generalizing TTP-free “reputation-based
anonymous revocation”, and open several possibilities for
future improvements in this line of research.
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A. Formal Security Analysis

We use a simulation-based approach to define the secu-
rity notions, in a similar sense as the model adopted by [4].
Due to page limitations, we present a simplified version of
the analysis and full details will be made available in a sep-
arate technical report.

In the real world there are a number of players who
communicate via cryptographic protocols while in the ideal
world the same players communicate via a trusted party T ,
who is responsible for handling all the inputs and outputs
for the players. The adversary A controls the same play-
ers in the real world and the ideal world. All the inputs
and the scheduling of the players’ interaction are decided
by another PPT algorithm, the environment, E . A can com-
municate arbitrarily with E . Informally speaking, BLACR
is secure if for any PPT algorithmsA and E , there exists an-
other algorithm S controlling the same players in the ideal
world as A does in the real world such that E cannot tell if
it is interacting with A in the real world or S in the ideal
world. S has black-box access to A.

BLACR supports the following functionalities. An invo-
cation of a functionality is called an event and all events are
scheduled according to E’s wish. We use a static model and
assume the number of players and whether they are honest
or not are fixed before the system starts. We remark that all
communications with T are not anonymous, meaning that
T knows the identity of the communicating party. It is also
assumed that communication between honest parties is not
observed by A and that when A receives a message, it does
not learn its origin.

• INIT. The system begins when E specifies the number of
honest and dishonest users and SPs in the system.

◦ Real World. The GM generates a key pair
(gpk, gsk). All the SPs also generates their key pairs
(pkSP, skSP). gpk, pkSP are made available to all
players in the system.

◦ Ideal World. The trusted party T initializes a
database U which stores the registration status and
authentication history of all the users.

• REG(i). E instructs user i to register with the GM. Note
that this procedure is not anonymous in the view of the
GM.

◦ Real World. User i sends a request for registration
to the GM. The user, as well as the GM, outputs in-
dividually the outcome of this transaction to E . If
user i has obtained a credential in previous registra-
tion event, an honest GM would reject the request.
Likewise, an honest user would discard the second
credential it obtains from the GM if it has success-
fully registered in a previous registration event.

◦ Ideal World. User i sends a registration request to
T , who informs the GM user i would like to register
and whether user i has obtained a credential before.
GM returns its decision to T , who forwards it back
to the user. If the GM accepts the request and that
user i has not registered before, T stores the regis-
tration status of user i in its database. The user, as



well as the GM, output individually the outcome of
this transaction to E .

• NP(j). E instructs an SP j to announce a new pe-
riod.

◦ Real World. SP j published the lists for period pd.
◦ Ideal World. SP j sends a request to T to indicate

the current period becomes pd, along with the set of
lists for this period. If the list for period pd is not
a superset of the list for pd − 1, T returns reject.
Otherwise, T stores this set of lists.

• AUTH(i, j)(Express/Normal). E instructs user i to au-
thenticate with SP j in the express/normal lane.

◦ Real World. User i conducts the authentication pro-
tocol with SP j using the express/normal lane.

◦ Ideal World. User i sends a request to T , who in-
forms SP j some anonymous user requests an au-
thentication using the express/normal lane. SP j
replies with the lists ∂pd−1, ∂?pd. T forwards the lists
back to user i and that whether i satisfy the authen-
tication policy or not. User i then decide if he/she
would continue. If yes, T informs SP j whether the
anonymous user satisfies the authentication policy
or not. SP j replies with accept or reject to T , who
forwards the reply to user i. Note that if user i has
not authenticate in period pd− 1, T would inform i
that he does not satisfy the policy if E’s instruction
is to authenticate in the express lane. T stores all au-
thentication history of all the users in his database.

• ADD(j,L�i ). E instructs the SP j to alter the list L�i with
an authentication event.

◦ Real World. SP j adds the tickets corresponds to
that authentication event if SP j outputs accept in
that event.

◦ Ideal World. T checks if SP j outputs accept in that
authentication event and informs SP j the results of
the check, who replies with accept or reject.

Ideal world BLACR provides all the desired security
properties. Firstly, all the transactions, in the view of the
SP, are anonymous. T only informs the SP some anony-
mous user would like to authenticate and thus anonymity
is guaranteed. Secondly, T verifies if the authenticating
user satisfies the authentication policy and thus authentic-
ity, mis-authentication resistance and non-frameability are
assured. Real world BLACR is secure if its behavior is the
same as the ideal world BLACR. Thus, assuming negl(λ) is
a negligible function in security parameter λ, we have the
following definition of security for our system.

Definition 1 (Security) Let RealE,A(λ) (resp.
IdealE,S(λ) ) be the probability that E outputs 1 when
run in the real world (resp. ideal world) with adversary A
(resp. S having black-box access to A). BLACR is secure
if for all PPT algorithms E , A, the following expression
holds:

|RealE,A(λ)− IdealE,S(λ)| = negl(λ)

We analyze the security of our construction for BLACR
by proving indistinguishability between an adversary’s ac-
tions in the real world and the ideal world.

The idea of the proof is that given a real world adversary
A, we show how to construct an ideal world adversary S
such that no PPT environment E can distinguish whether it
is interacting with A or S.

The proof is divided into two cases according to the sub-
set of players controlled by A. In the first case, A controls
the GM and a subset of SPs and users while in the second
case, only a subset of SPs and users are dishonest. Note that
the later is not a special case for the former as the capabil-
ity of A does not necessarily aid or prevent E from distin-
guishing whether it is interacting withA or not. Indeed, the
former case covers the security requirements of anonymity
while the latter covers the requirement of authenticity, mis-
authentication resistance and non-frameability. We sketch
the strategy of how S can be constructed in this two cases.
Firstly, S will be maintaining a list of “current” credentials
issued to A during the lifespan of the system. At the same
time, S acts as an ideal world adversary to the trusted party
T . S simply forwards any messages between E and A.
Next, we specify how S responds to each possible event
in the two different cases.

Case 1: GM is honest
• INIT.

◦ Representing Honest GM/SP to A.
S generates the key pairs (gpk, gsk), (pkSP, skSP)
and gives gpk, pkSP to A.

• REG(i).

◦ Representing dishonest user i to T / the honest GM
to A.
S extracts from A the value of x from Cx. x will
be used to identify the dishonest user i. S sends the
request to T on behalf of user i. If T replies accept
S issues and the credential to A and also stored that
credential.

• AUTH(i, j).

◦ Representing dishonest user i to T / the honest SP j
to A.
The difficulty here is that S does not know which



credential A is using for the authentication. For in-
stance, while E specifies user i to perform the au-
thentication, it is entirely possible for A to use the
credential from another dishonest user say, î, to per-
form the authentication. To locate the actual user, S
extracts the value of x from Cx as well as the sig-
nature (A, e, y) and locate the value i such that x is
used and that (A, e, y) is issued in the registration
event.

Note that the output of S is always indistinguishable to
A unless the following happen. We also briefly explain why
such cases happens with negligible probability below.

1. During a REG event, S fails to extract fromA the value
x. This happens with negligible probability under the
soundness property of Siss(Cx).

2. During a successful AUTH, S fails to extract from A
the values (A, e, x, y). This happens with negligible
probability under the soundness property of SSig(Cx).

3. There exists a successful AUTH event fromA such that
S on behalf of an honest SP j outputs accept but T
indicates the authenticating user does not satisfy the
policy. This represents either A has been able to fake
one of the proofs in the authentication, SSig, SWS-Adj
or SPol or A can forge a signature (A, e, y) on a new
value x which never appear before. All these happen
with negligible probability under the soundness of the
protocol.

Case 2: GM is dishonest
• INIT.

◦ Representing Honest SP to A.
S receives gpk from A. S generates the key pairs
(pkSP, skSP) and gives pkSP to A.

• REG(i).

◦ Representing the dishonest GM to T / the honest
user i to A.

Upon receiving a registration request from T on be-
half of user i, S engagesA in the registration proto-
col, using the zero-knowledge simulator to simulate
the ZKPoK in SIss. If S fails to obtain a valid cre-
dential from A, S replies reject to T upon receiv-
ing the request from T .

• AUTH(i, j).

◦ Representing the dishonest SP to T / the honest user
to A.
Upon receiving an authentication request from T on
behalf of an anonymous user, S engages A in the
authentication protocol. If T replies with a bit in-
dicating that the underlying user would proceed and
satisfies the authentication policy, S uses the zero-
knowledge simulator to simulate the ZKPoK proofs
in SSig, Sx, SWS-Adj, SPol in the authentication pro-
tocol using a random value t. If A rejects the au-
thentication, S replies reject to T .

The only difference in the simulation provided by S to
A and a real world A would face is the value of t. Under
the DDH assumption, A would not notice such difference.
Other than that, the simulation provided to A is perfect due
to the zero-knowledgeness of the ZKPoK protocols. At the
same time, the behavior of S in the ideal world is the same
as that of A in the real world. Thus, the output of S to the
environment E is indistinguishable to that of A.

Based on this two strategy in the construction of S, we
have:

RealE,A(λ) = IdealE,S(λ).

That is, our construction of BLACR is secure according
to Definition 1. In the full version of our paper, detailed
proof of security will be given. As a final remark, as the
construction of such simulator S requires an extraction for
the protocol SSig in each authentication, the scheme is se-
cure only when the authentication is done in an sequential
manner. Otherwise, the complexity of S would blow to ex-
ponentiating in the number of authentication event.
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