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ABSTRACT
Recently, there have been several research efforts to design a trans-
port layer that meets the security requirements of anonymous com-
munications while maximizing the network performance experi-
enced by users. In this work, we argue that existing proposals suffer
from several performance and deployment issues and we introduce
PCTCP, a novel anonymous communication transport design for
overlay networks that addresses the shortcomings of the previous
proposals. In PCTCP, every overlay path, or circuit, is assigned a
separate kernel-level TCP connection that is protected by IPsec, the
standard security layer for IP.

To evaluate our work, we focus on the Tor network, the most
popular low-latency anonymity network, which is notorious for its
performance problems that can potentially deter its wider adoption
and thereby impact its anonymity. Previous research showed that
the current transport layer design of Tor, in which several circuits
are multiplexed in a single TCP connection between any pair of
routers, is a key contributor to Tor’s performance issues.

We implemented, experimentally evaluated, and confirmed the
potential gains provided by PCTCP in an isolated testbed and on
the live Tor network. We ascertained that significant performance
benefits can be obtained using our approach for web clients, while
maintaining the same level of anonymity provided by the network
today. Our realistic large-scale experimental evaluation of PCTCP
shows improvements of more than 60% for response times and ap-
proximately 30% for download times compared to Tor. Finally,
PCTCP only requires minimal changes to Tor and is easily deploy-
able, as it does not require all routers on a circuit to upgrade.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General— Data
communications; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design; C.4 [Computer Systems Or-
ganization]: Performance of Systems; K.4.1 [Computers and So-
ciety]: Public Policy Issues—Privacy
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1. INTRODUCTION
While advances to the Internet have enabled users to easily inter-

act and exchange information online, they have also created several
opportunities for adversaries to prey on users’ private information.
Whether the motivation for data collection is commercial, where
service providers sell data for marketers, or political, where a gov-
ernment censors, blocks and tracks its people, or even personal, for
cyberstalking purposes, there is no doubt that the consequences of
personal information leaks can be severe.

Consequently, several solutions emerged, a key example of which
is Tor [14]. Tor is the most widely used privacy-preserving network
that empowers people with low-latency anonymous online access.
That is, people can surf the Internet without the fear of revealing
their identity or location. Since its introduction in 2003, Tor has
successfully evolved to support hundreds of thousands of users us-
ing approximately 3000 volunteer-operated routers run all around
the world. Incidents of sudden increases in Tor’s usage, coincid-
ing with global political events, confirm the importance of the Tor
network for Internet users today [13].

Despite Tor’s increasing popularity, the bitter reality is that it
offers anonymity at the expense of intolerable performance costs.
Not only do performance problems hinder Tor’s wider adoption,
but they can have an immense impact on its anonymity. If users
are discouraged from Tor’s below-mediocre service, the anonymity
set of all users would eventually shrink, which in turn reduces the
anonymity guarantees obtained from the network today.

For this reason, the Tor research community has been intensively
investigating the sources of the performance problems in Tor, as
well as proposing remedies to enhance the usability of Tor. First,
one major problem in Tor is traffic congestion, which has a number
of causes. One cause for congestion is the high client-to-relay ratio
which is approximately 165:1. To help reduce the client-to-relay
ratio, incentive-based schemes have been introduced to encourage
users to donate bandwidth to the network to reduce the traffic pres-
sure on the routers [20, 27, 29].

Congestion is also magnified because a small fraction of users
use greedy file-sharing applications that can consume up to 40%
of the bandwidth [24]. What adds to the problem is Tor’s lack of
congestion control and awareness, as Tor only implements an end-
to-end window-based flow-control algorithm that does not react to
congestion. To address these problems, some congestion control



and avoidance techniques have been proposed to reduce congestion
[6, 43]. To reduce the effects that greedy applications impose on
the network, static and dynamic throttling approaches have been
proposed for clients’ connections [21, 27].

Regardless of all these intensive efforts, performance problems
will continue to persist in Tor, even if the above proposals are em-
ployed. A major culprit is Tor’s poor transport design, which has
been shown to add unnecessary latency [15, 31]. Tor multiplexes
circuits (overlay paths established through the Tor network) from
different users over the same TCP connection. Reardon and Gold-
berg [31] observed that since heavy circuits are often multiplexed
with light circuits in the same TCP connection, and since heavy
circuits have higher loss rates, they result in unfair application of
the TCP congestion control of the shared connection on all circuits.
As a design solution, Reardon and Goldberg proposed TCP-over-
DTLS, where every circuit gets a separate user-level TCP connec-
tion, and DTLS is used for encrypting and securing the communi-
cation between routers. Unfortunately, TCP-over-DTLS faces the
following design drawbacks:

• Performance: User-level implementations of TCP provide
significantly lower performance than their kernel-level coun-
terparts in terms of throughput and consume substantially
more CPU cycles [10, 16], a scarce resource in Tor. Such
heavy costs might render any performance benefits moot if a
user-level TCP scheme is deployed at a wide scale.

• Deployability: First, the unavailability of a reliable user-
level TCP stack with a license that is compatible with Tor is
a major obstacle facing TCP-over-DTLS.1 Second, for any
pair of routers to use TCP-over-DTLS, both routers need to
upgrade their transport design.

Our Approach. In this work, we seek to enhance the performance
and usability of the Tor network for interactive application users.
We tackle the performance problem in Tor at its roots, and focus on
fixing the weaknesses in Tor’s transport design. This work is not
concerned with the lack of bandwidth resources, as there have been
several proposals that address this problem, as we described above.
We propose PCTCP, a new transport design for Tor in which a sep-
arate kernel-level TCP connection is dedicated to every circuit. To
protect and secure communication between routers, we use IPsec,
the standard security layer for IP. Our design significantly improves
the performance of Tor while maintaining its threat model. Addi-
tionally, PCTCP requires only minimal changes to the software.
Our design combines the advantages of the previous TCP-over-
DTLS proposal, while avoiding its deployment and performance
shortcomings, inherent from using a user-level TCP stack. Further-
more, PCTCP does not require all routers on the circuit to upgrade,
except for enabling IPsec communication for a pair of routers that
wish to use PCTCP. Our design has a significantly easier road to
deployment.
Contributions. This is the first work that implements a new trans-
port design, for anonymous communication systems in general and
for the Tor anonymity network in particular, and evaluates it with
realistic large-scale experiments, as well as live network experi-
ments. In designing and implementing PCTCP, we offer the fol-
lowing contributions:

• We propose and implement PCTCP, a novel transport de-
sign for anonymous communication systems in general and
for Tor in particular that avoids the deployability and perfor-
mance drawbacks of previous designs.

1Reardon and Goldberg used the Daytona TCP stack for their implementation and
measurements. Unfortunately, Daytona cannot be used for the Tor network due to its
unavailability for open-source projects.

• We carry out small-scale experiments on the live Tor net-
work to evaluate our design. Our results show significant
reductions in delays observed. At the 75th percentile, our re-
sponse times are improved by more than 47% and our down-
load times are improved by 27%.

• We further evaluate our design by performing a series of
large-scale experiments on a network emulator with a topol-
ogy that closely approximates the performance of the live Tor
network. Our results show significant performance benefits
for the download and response times of web clients.

• Our simple, yet effective, approach is incrementally deploy-
able, as our changes, except for enabling IPsec communi-
cation between any pair of routers using PCTCP, are local to
individual routers and do not affect their operation with other
routers.

The rest of the paper is structured as follows. We provide the
reader with the necessary background on Tor and IPsec in section 2
and compare our work to previous work in section 3. Then, we
elaborate on our design in section 4 and evaluate it in section 5.
Finally, we discuss some open issues regarding our design and ex-
periments in section 6 and conclude in section 7.

2. BACKGROUND
In this section, we start by providing an overview of the Tor net-

work and its current transport design. Then, we introduce and ex-
plain the basic functionality of IPsec.

2.1 Tor
Tor is a low-latency anonymization network that is based on the

concept of onion routing. The network consists of approximately
3000 volunteer-operated relays [39], known as Onion Routers (ORs).
Each OR creates a router descriptor that contains its contact in-
formation, such as its IP address, ports, public keys, and its band-
width capabilities, and sends the descriptor to directory authorities.
Tor clients, nicknamed Onion Proxies (OPs), download the router
descriptors from directories to build paths, referred to as circuits,
through the network before they can communicate with their Inter-
net destinations. Each circuit usually consists of three ORs, which
are referred to as the entry guard, middle, and exit OR, according
to their position in the circuit. ORs in a circuit are connected by
TCP connections and TLS [12] is used to provide hop-by-hop au-
thenticity, data integrity and confidentiality.
Circuit Construction. For performance reasons, an OP preemp-
tively creates a number of spare circuits for its user applications.
When the OP receives a new TCP stream from a user applica-
tion, it attaches it to an appropriate pre-established circuit. If no
such circuit exists, the OP builds a new circuit by first selecting
three routers, Xi, according to Tor’s bandwidth-weighted router
selection algorithm. Next, to start establishing the circuit, the OP
sends a create_fast command to X1, which responds with a cre-
ated_fast reply. To extend the Diffie-Hellman (DH) channel, the
OP sends an extend command to X1, containing in its payload a
create command and the first half of the DH handshake for router
X2 encrypted to X2’s public key. Router X1 forwards this create
command to router X2, and when it receives a created cell back
from router X2, it forwards its payload in an extended cell to the
OP to finish the client’s DH handshake with router X2. The same
procedure is carried out for each subsequent OR added to the cir-
cuit.

The OP acts as a SOCKS proxy to communicate with user ap-
plications. The OP divides the user’s data into 512-byte fixed-sized
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Figure 1: The cross-circuit interference problem: the figure demonstrates the cross-circuit interference problem when a single TCP
connection is shared between a loud and a quiet circuit. OR1, acting as an exit for both circuits, receives file-sharing data and web
browsing data on two different connection input buffers. The cells then are pushed to their circuit queues. Since the next hop for
each circuit is OR2, both circuits share the same connection output buffer. Since the file-sharing circuit is expected to drop more
data on the connection between OR1 and OR2, the web browsing circuit experiences more delays due to the unfair application of the
TCP congestion control on the shared connection.

cells, adds a layer of encryption for every node on the forward path,
and then cells are source-routed through the established circuits.
Every hop, on receiving a relay cell, looks up the corresponding
circuit, decrypts the relay header and payload with the session key
for that circuit, replaces the circuit ID of the header, and forwards
the decrypted cell to the next OR. When the exit OR receives the
cell, it removes the last layer of the encryption, and establishes the
connection on behalf of the user to the intended destination.
Threat Model. Anonymity is maintained for Tor’s users because
only the entry OR receives a direct connection from a user, and only
the exit OR forms a direct connection to the destination. There-
fore, no single entity can link users to their destinations. The threat
model in Tor assumes a local active adversary that can watch part of
the network. The anonymity of a Tor circuit is compromised if the
adversary can watch the two ends, the entry and exit, of the circuit.
Cross-Circuit Interference Problem. Tor’s OPs and ORs com-
municate with each other using TCP connections. Every OR-to-
OR TCP connection multiplexes circuits from several users. Rear-
don [31] pointed out that this design can potentially hinder the
performance of interactive circuits. This problem is illustrated in
Figure 1. The connection between OR1 and OR2 in the figure de-
picts a scenario where a noisy circuit, carrying BitTorrent traffic
for example, is multiplexed with a circuit carrying interactive web
browsing traffic. In this case, TCP congestion control would be
unfairly applied on both circuits whenever the noisy circuit trig-
gers congestion, due to lost or dropped packets, on the shared TCP
connection. Since the amount of data transmitted by file sharing
applications is significantly larger than that by interactive applica-
tions, it is expected that bulk application circuits trigger congestion
control more often than interactive circuits. However, TCP conges-
tion control would apply on all circuits equally and would result in
extended queueing times for data cells in TCP output buffers and
thereby, longer delays observed by clients.
Tor’s Queuing Architecture Tor uses a tiered buffer architecture
to manage cells traveling through circuits, as also shown in Fig-
ure 1. When an OR receives a cell from an external server or from
another OR or OP, the cell is passed from the kernel TCP receive
buffer to a corresponding 32 KiB connection-level input buffer in
Tor. After the cell is encrypted or decrypted, it is placed on the ap-
propriate FIFO circuit queue. Since several circuits share the same

connection output buffer, a scheduler is used to retrieve cells from
the circuit queues to be placed on a 32 KiB output buffer. Finally,
the cells are sent to the kernel TCP send buffer which flushes them
to the next OR or OP.

2.2 IPsec
IP security (IPsec) [22] is a collection of standards that provides

security at the network (IP) layer. It defines several protocols that
enable authenticating and/or encrypting IP data packets. It consists
of mainly two sub-protocols: Authentication Header (AH) and En-
capsulating Security Payload (ESP). We next briefly describe each
sub-protocol and their modes of operation.

The AH protocol allows two communicating points to authenti-
cate, and protect the integrity of the data they exchange. Although
the AH protocol guards against spoofing and replay attacks, it does
not encrypt the data traveling between the two ends, so an eaves-
dropper can view the contents of the data packets.

The ESP protocol, on the other hand, enables both authentication
and encryption, which provides confidentiality of the transferred
data. The two communicating ends need to have secret keys to
decrypt the packets. IPsec provides a variety of key-exchange and
authentication algorithms.

For both protocols, there are two modes of IPsec operation: ei-
ther the transport or the tunnel mode. Transport mode is used to
secure the connection, consisting of the traffic from different appli-
cations, between two hosts. The payload of the IP packet, which
typically contains TCP or UDP data, is encrypted or authenticated
and an ESP or an AH header is added to the packet. The original
IP header also remains in the packet.

Tunnel mode, on the other hand, secures not only host-to-host
communication, but it also can be used to protect communication
between subnets to subnets or hosts to subnets. In this mode, the
whole IP packet is encrypted or authenticated and a new IP header
is added to the encrypted packet in addition to the AH or ESP
header. Using ESP in tunnel mode provides the strongest security
for communication at the expense of a few extra bytes per packet
as an overhead. However, when only host-to-host communication
is required, ESP protocol in transport mode suffices.

In the next section, we present previous work on anonymous
communication transport design for Tor. After that, we introduce



our proposed anonymous communication transport for Tor and how
we use IPsec to secure communication between Tor ORs.

3. RELATED WORK
Since Tor was introduced around a decade ago, it has received a

great amount of attention. Several aspects of Tor’s design have been
intensively investigated including Tor’s routing [4,33,35], scalabil-
ity [25, 26] and enhancing its awareness and handling of conges-
tion [6, 17, 21, 37, 43]. There are also several proposals that aim to
increase the total number of ORs using incentive schemes [20, 27,
29].

New transport designs for Tor have also been investigated and
considered by several previous proposals [31,40,42]; Murdoch [28]
provides a summary and compares all these previous possible trans-
port designs. He categorizes the available designs into three differ-
ent architectures: hop-by-hop reliability, initiator-to-exit reliability
or initiator-to-server reliability. Although Murdoch does not ex-
perimentally evaluate these design choices, he expects that a hop-
by-hop reliability approach will be the most promising approach.
Next, we summarize the first two design categories and contrast
them with our design. For more details on the initiator-to-server
design architecture, we refer the reader to Freedom [9] and Mur-
doch’s summary [28].

TCP-over-DTLS is an example of the hop-by-hop reliability de-
sign, which is also the same design approach we adopt in PCTCP.
The TCP-over-DTLS proposal advocates for using a user-level TCP
connection to manage every user circuit over DTLS—the datagram
alternative to TLS—to provide confidentiality and authenticity of
Tor’s traffic. Since every circuit is managed by its own TCP con-
nection, every circuit is guaranteed reliability and in-order deliv-
ery of cells. Furthermore, congestion control is performed at the
circuit level, which solves the cross-circuit interference problem.
Several differences separate PCTCP from TCP-over-DTLS. First,
PCTCP uses mature IPsec protocols to hide TCP/IP header infor-
mation, whereas TCP-over-DTLS uses the relatively rare DTLS for
the same purpose. Also, TCP-over-DTLS introduces deployment
and performance issues that hinder its adoption (as highlighted in
Section 1). PCTCP avoids these problems by using the kernel-level
TCP stack, and by having an easier path to deployment. Second,
while initial experiments performed on a localhost private Tor net-
work showed slightly less degraded latency results, as compared to
Tor, when packet drop rates increased, there is still a need for fur-
ther realistic large-scale experiments in order to obtain conclusive
results of the potential benefits.2

UDP-OR [42] is an example of an initiator-to-exit reliability de-
sign. In this design, an OP and the exit OR of the circuit maintain a
TCP connection, while intermediate ORs communicate using UDP,
an unreliable transport protocol. While this design significantly
simplifies the operations of the intermediate routers, it still suffers
from several problems. The first problem is that since hop-by-hop
communication is unreliable, there will be a need to change the
cryptographic protocols that are implemented in Tor as the current
circuit encryption scheme depends on in-order delivery of cells.
Another problem is that this design uses the OP’s host TCP stack,
rather than a user-level one, which opens the door for OS finger-
printing attacks [23] in which the exit node can learn information
about the client. Second, since a circuit’s round trip time is large, it
would take the TCP endpoints a significant amount of time before

2One difficulty is that TCP-over-DTLS is implemented in a 5-year-old version of Tor
(0.2.0.25). Since Tor’s data structures, queuing and networking have changed over
time, a direct comparison between PCTCP and TCP-over-DTLS is meaningless. Also,
Reardon et al. reported that they found many bugs in both Daytona and OpenSSL’s
DTLS implementation, which affected their results.

congestion is triggered. Also, with the high variability of circuit
performance in Tor, a non-trivial amount of tuning for TCP param-
eters, including congestion timers, thresholds and windows, may
be required for the TCP endpoints; see section 4 for more details.

Torchestra [17] was recently proposed to enhance the perfor-
mance of interactive application users of Tor. In that proposal, two
TCP connections are used for OR-to-OR communication. One TCP
connection is dedicated for light circuits and another is dedicated
for heavy circuits. An Exponentially Weighted Moving Average
(EWMA) algorithm of the number of cells sent on a circuit, origi-
nally proposed by Tang and Goldberg [37], is used to classify cir-
cuits into light and heavy categories. Previous work [5] suggested
that this metric alone is not enough to distinguish circuits.3 Also,
Torchestra has not been examined using large-scale experimenta-
tions to understand the system-level effects of utilizing it. Finally,
to benefit from Torchestra, all ORs on the circuits need to upgrade,
as two TCP connections, as well as a new command cell type, are
needed between every pair of ORs in a circuit.

Tschorsch et al. [40] consider the impact of several proposed
transport designs for Tor on throughput, packet loss, delay and fair-
ness. For their analysis, the authors use a TCP performance model
proposed by Padhye et al. [30]. They examine the performance
of several proposed transport designs for Tor using a discrete-event
simulator, and conclude that they expect that a joint congestion con-
trol that detects loss rates and congestion for all circuits traversing
an overlay node would be a good direction. The authors ruled out
the use of parallel TCP connections, such as in PCTCP, as a de-
sign option, as more connections traversing a bottleneck may result
in higher packet losses, which reduces throughput. We argue that
packet losses mainly occur for the connections carrying bulk traf-
fic, as they send significantly more data than connections carrying
interactive applications. We also demonstrate through comprehen-
sive emulation and live-network experiments that our approach is
effective.

4. PROPOSED TRANSPORT
Before embarking on the description of PCTCP, we first ask our-

selves, why not adopt and implement an end-to-end TCP approach,
which has been proposed as a possible transport design for Tor. We
start by explaining why we avoided such an approach, and then we
elaborate on our design.

4.1 Why not end-to-end TCP?
One transport design that has received some positive specula-

tion in the Tor research community is the end-to-end TCP design.
This design is inspired by many previous proposals [9,11,42]. The
basic idea of this design is that a TCP connection is maintained
by the two ends of the circuit. In the context of Tor, one end is
the client and the other end can be the exit OR or the destination
server. Communication between intermediate ORs is carried out
using a datagram protocol, such as UDP. We next point out some
weaknesses in this design choice.
Tuning Parameters TCP is a reliable transport. If a packet gets
dropped or lost due to congestion or routing problems in the under-
lying IP network, TCP’s congestion control algorithm is triggered
and the sender retransmits the lost packet. Also, TCP ensures that
the Tor process, residing at the application layer, receives data in
the order they were sent. This functionality significantly simplifies
the task of data processing for Tor. By contrast, a datagram pro-
tocol like UDP, or its secure DTLS alternative, do not implement
reliability or in-order delivery.

3Unfortunately, the classification accuracy was not discussed in Torchestra [17].



In the end-to-end TCP design for Tor, it is assumed that reliable
in-order delivery is maintained only by the end points. There are
several shortcomings with this design that might worsen the expe-
rience of Tor users. The biggest challenge is how to best tune the
TCP parameters to yield a reasonable performance for Tor. TCP
relies on duplicate acknowledgement packets sent by the receiver
to detect congestion which signals that several out of order packets
have been received at the destination. Moreover, TCP also relies on
retransmission timers at the sender to detect loss of packets.

Typically, retransmission timers should be equal to the round-
trip-time (RTT) between a source and a destination. In a network
like Tor, where the RTT of circuits can be several seconds long, it
can be easily seen that a client would detect congestion very late.
Of course, the client can set a smaller retransmission timer to de-
tect congestion faster; however, one should be careful not to send
redundant packets too quickly, as this might cause even further con-
gestion. Striking a good balance between how fast we want to de-
tect congestion and how careful we should be before we decide
we are experiencing congestion is a very difficult problem. Also,
considering the timing characteristics of Tor circuits, which are no-
torious for their highly variable performance, one soon realizes that
an end-to-end TCP solution for Tor is unwise.
Interoperability and Anonymity. An important aspect of any
new transport design for Tor is to ensure that it can be smoothly in-
tegrated to work with the existing Tor network infrastructure with-
out disrupting the operation of the network and its users. Recall
that Tor today currently has thousands of ORs and hundreds of
thousands of users. The network has not experienced significant
downtime since its deployment in 2003. Using a drastically dif-
ferent transport design such as end-to-end TCP would require the
network to pause its operation while ORs and users update. As
a workaround, it might be possible for ORs upgraded with end-to-
end TCP to coexist with unmodified ORs; however, this might open
the door for fingerprinting or partitioning attacks. For example, an
upgraded malicious exit can reduce the anonymity set of the entry
guard used on a circuit from the set of all entry guards in the net-
work to the smaller set of upgraded entry guards. Therefore, one
shortcoming of upgrading to an end-to-end TCP design is possibly
hindering the anonymity provided by the network.
Cryptographic Protocols. An inherent consequence of allowing
an unreliable transport is for the Tor process to expect lost packets.
Since Tor uses the Advanced Encryption Standard (AES) in counter
mode for encrypting and decrypting cells at ORs, lost or dropped
cells will cause subsequent cells to be unrecognized. Therefore,
adopting an end-to-end TCP approach requires changing the cryp-
tographic protocols that are currently used in Tor; this is another
obstacle facing such a design.

4.2 PCTCP
The aim of this work is to address the shortcomings of the trans-

port design in Tor. In particular, our goal is to reduce the impact
of the cross-circuit interference problem which hinders the expe-
rience of interactive application users. Based on our discussion in
section 4.1, we believe that reliability should be maintained on a
per-hop basis for Tor circuits. Therefore, in this work, we advo-
cate for maintaining TCP connections between each adjacent pair
of ORs that comprise a circuit. In particular, we propose two key
design changes to Tor’s transport.

4.2.1 Kernel-mode per-circuit TCP
We propose using a separate kernel-mode TCP connection for

each circuit for Tor. Our design is similar to the TCP-over-DTLS
design that was introduced by Reardon and Goldberg in the sense

TCP connection 
Tor Circuit 
IPsec

OPs

Tor

PCTCP

ORs ORs

Figure 2: Design comparison between Tor and PCTCP.

that reliable in-order delivery of data is implemented between every
two communicating ORs. Also, both designs ensure that conges-
tion control is performed at the circuit granularity. The elimination
of connection-sharing among circuits ensures that we isolate the ef-
fects of loud circuits on the quiet ones; a cell dropped or lost from
one circuit will only affect that particular circuit.

However, one key difference between PCTCP and TCP-over-
DTLS is that for circuit management, PCTCP uses kernel-mode
TCP connections for every circuit, while TCP-over-DTLS uses a
user-space TCP implementation. The lack of availability of a reli-
able open-source user-level TCP stack whose license is compatible
with that of Tor hinders the deployability of the TCP-over-DTLS
solution. Furthermore, PCTCP uses IPsec to protect the commu-
nication between ORs whereas TCP-over-DTLS uses DTLS. One
issue that is inherent from using DTLS is that it is rarely used today
on the Internet. IPsec, on the other hand, is increasingly common,
as it is utilized in many implementations of Virtual Private Network
(VPNs) [34]. Consequently, the rarity of DTLS makes it easier to
be blocked by censors without fearing side effects. Blocking IPsec
would be more problematic, as blocking it may interrupt the oper-
ation of legitimate businesses and organizations.

We next describe how we modify the behaviour of Tor to support
PCTCP. Recall that during the circuit construction process, every
time an OP attempts to extend the circuit by one more hop, it sends
an extend command cell to the current last OR on the partially con-
structed circuit. When an OR Xi receives an extend cell to another
OR Xj , Xi checks if it has a current TCP connection with Xj . If a
connection exists, Xi uses that connection to send the create cell;
otherwise, it creates a new TCP connection to Xj before a create
cell is sent.

In PCTCP, when an OR Xi receives an extend command cell
to Xj , PCTCP always establishes a new TCP connection from Xi

to Xj . In PCTCP, we maintain the same queueing architecture of
Tor, except that our design eliminates the contention that occurs
among circuits when they share the same connection output buffer,
as each circuit queue is mapped to a single output and a single input
connection buffer. When a circuit is torn down, its corresponding
TCP connections are closed.

Figure 2 visualizes a design comparison between Tor and PCTCP.
As the figure shows, between an OP and an OR, PCTCP, like Tor,
maintains a single TCP connection, which can multiplex several
circuits from the same user. However, PCTCP dedicates a separate
TCP connection for each circuit between any two ORs.

This design has the advantage that it does not require clients to
upgrade, as each client in our design continues to maintain a sin-
gle TCP connection with each of its entry guards. Moreover, the
modifications proposed in PCTCP are only local to each OR. This
means that not all ORs in the circuit need to upgrade to benefit
from PCTCP. For example, if the middle and exit ORs are the only
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Figure 3: Packet headers for current Tor and for PCTCP. The
grey shaded area depicts the encrypted part of the packet. The
upper figure shows the design of the Tor packets at the network
(IP) layer. TLS is used to encrypt the TCP payload, but not the
TCP header. The lower figure depicts the packet format when
PCTCP is used. The whole IP payload, which contains the TCP
segment, is encrypted. An ESP header is added between the
encrypted data and the IP header.

ORs upgraded with PCTCP on a circuit, that pair of ORs will use
PCTCP for their communication even if the entry guard is not up-
graded. Nevertheless, more performance gains should be obtained
when more ORs on the circuit upgrade.

4.2.2 Replace TLS with IPsec
One issue that arises with our design so far is that it allows an

adversary monitoring a relay to easily count the total number of
circuits that are currently serviced by the monitored relay. Further-
more, the adversary can perform traffic analysis to infer the activity
of each circuit [5]. While it is not clear how this extra information
can be beneficial for a non-global adversary,4 there is no doubt that
such a design reduces the overall anonymity of the system and its
users. To alleviate this problem, we propose using the ESP protocol
of IPsec in transport mode to encrypt and protect the traffic between
the ORs using PCTCP. Since IPsec can encrypt the IP packet pay-
load, TCP connection ports will be encrypted and hidden from an
eavesdropper. This makes it more difficult for an adversary to per-
form traffic analysis on TCP connections between routers. Figure 3
compares the format of PCTCP and Tor data packet headers.

Using ESP makes the TLS encryption redundant for PCTCP for
OR-to-OR communication, as ESP can provide the hop-by-hop au-
thenticity and data confidentiality that is currently provided by TLS
in Tor. Furthermore, like TLS, ESP provides perfect forward se-
crecy for the data on connections, and prevents an attacker from
modifying data. For two ORs to authenticate each other, they can
use a certificate-based authentication method that is provided by
IPsec. Since ORs issue a long-term identity key that they use to
sign their descriptors, they can use the same identity key to sign
their IPsec certificates.

Alternatively, ORs can use a public-key authentication approach.
An OR could publish its IPsec public key with its signed descriptor
to the directory authorities. Then, when other ORs download the
descriptors, they can find each other’s public keys and use them
to start the IPsec connections. Communication between ORs and
directory authorities or OPs can continue to use the traditional TLS
connections that are used in Tor today.

Ideally, a user-mode IPsec implementation integrated with Tor
would be the best option. First, OR operators would not have to
deal with the details of setting up IPsec. Second, for user-mode
IPsec to operate, superuser privileges are not needed. However,

4The threat model of Tor assumes an active local adversary.
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Figure 4: Network setup for the live experiment

with the lack of an available user-space IPsec implementation, we
default to the kernel-mode IPsec option. Luckily, installing IPsec
is a one-time operation which typically should not require periodic
maintenance. To facilitate this operation for non-expert OR opera-
tors, Tor should ship with scripts for IPsec configurations.

5. EXPERIMENTS
To evaluate the performance benefits possible with PCTCP, we

have implemented our proposed transport in a stable release of the
Tor source code (0.2.2.39). Our implementation, which changes
fewer than 20 lines of code in the Tor OR application, can be eas-
ily turned on or off using a configuration option for any OR. We
first performed small-scale experiments on the live Tor network.
We also performed a series of large-scale experiments on an iso-
lated testbed using different traffic loads. As evaluation metrics,
we use the download time, the time needed for a client to finish
downloading a file over a Tor circuit after issuing a request, and the
time-to-first-byte, which is the time it takes the client to receive the
first chunk of the file data after issuing a download request.

5.1 Live Experiments
To test our new proposed design, we first conducted some exper-

iments on the live Tor network in October and November 2012. We
next describe our experimental setup and then present our results.
Experimental Setup. Our setup is shown in Figure 4.We config-
ured an IPsec connection, using OpenSwan [3], between our two
ORs, entry and middle, which we deployed on the live Tor net-
work. Our entry implements PCTCP which can be enabled as a
configuration option only for our clients, so as not to affect other
users of the network. Our middle OR runs an unmodified Tor pro-
cess, but, as above, has an IPsec connection configured. For gath-
ering Tor measurements, we simply turned off the option to enable
PCTCP from the configuration of the entry and disabled the IPsec
connection. Both ORs have been configured with a bandwidth rate
of 250 KB/s. Our ORs obtained the FAST flag by the authority di-
rectories, which allows them to be selected by the network clients
for their circuits.5 To protect the privacy of other users, we con-
figure both ORs to belong to the same Tor family, which prevents
other users’ unmodified Tor clients from choosing them both on
one circuit. Also, we do not disable TLS in order to avoid risking
other users’ privacy in case of an accidental misconfiguration. We
next describe our two experiments and present our results.

In our live experiment, we run two clients. One client acts as
the bulk traffic generator by continuously downloading a 5 MB file
without pausing between downloads. The second client is an inter-
active web browsing client that downloads a 300 KB file and pauses
randomly for 3 to 30 seconds between downloads. We have also
5Our ORs did not achieve the STABLE flag because they were not running contin-
uously between our experiments. Note that the STABLE status is mainly used for
services that need long lived connections (such as SSH on port 22), whereas a FAST
status, which our ORs obtained, is requird for most services like web browsing, which
comprises the majority of the network traffic.
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Figure 5: Performance of the web and bulk clients in the live experiment

implemented the MeasureMe [5] cell. Briefly, this is a new com-
mand cell type that is sent by our clients to any OR on a circuit they
create to inform the OR to gather statistics only for the respective
circuit.
Results. Figure 5(a) depicts the download time performance for
Tor and PCTCP for the web client.6 With PCTCP, it takes 4.9 sec-
onds to finish downloading, while Tor takes 6.8 seconds at the me-
dian. The improvements become more visible for the 4th quartile,
as download times show a 26% improvement when PCTCP is used.
Figure 5(b) shows the time-to-first-byte results for PCTCP and Tor.
Again, the results consistently show strong improvements that are
magnified at the third and 4th quartiles. For instance, at the 75th

percentile, the time-to-first-byte for Tor clients is approximately 4
seconds, whereas for PCTCP clients, it is only 2.1 seconds, which
is a more than 47% improvement.

Finally, Figure 5(c) demonstrates that the PCTCP bulk client ex-
hibited slightly better performance than the Tor bulk client. Note
that in this experiment, the introduction of the bulk downloader
consumes the majority of the available bandwidth between entry
and middle. Nevertheless, PCTCP still maintains the performance
advantage for web clients compared to Tor. In Figure 5(d), both
PCTCP and Tor produced very similar fast time-to-first-byte re-
sults as the light web traffic did not introduce congestion to the
bulk client.

5.2 Large-scale experiments
Emulation Tools. In order to understand the system-level effects
of our proposed transport, we use ExperimenTor [8], a Tor net-
work emulation-based testbed that is based on the Modelnet net-
work emulation platform [41]. Modelnet offers the ability to eval-
uate large-scale distributed networked systems using commodity
hardware and OSes. Briefly, our Modelnet setup consists of two
machines, an emulator node and a virtual node. The virtual node
runs the Tor network, which consists of directory authorities, ORs
and OPs. The virtual node also runs the destination servers. Com-
munication among the different nodes on the Tor network and the
destination servers is routed through the emulation node, which
provides the underlying IP network emulation. Several network
parameters such as the bandwidth, propagation delay and drop rate
can by configured on the network topology deployed on the emu-
lator node to provide a realistic underlying network emulation. In
our experiments, we use the network and Tor topology models that
were recently proposed by Jansen et al. [18] in order to accurately
produce a scaled-down Tor network that that closely approximates
the performance of the live network.
Configuring IPsec. One challenging task in our experiments is
to enable an IPsec connection between any two ORs in the net-

6Note that the stair-step pattern is a consequence of Tor’s token bucket algorithm
which flushes data once per second. This pattern becomes more visible with increased
congestion. In versions of Tor more recent than the stable version we used, this flush-
ing has been increased to ten times per second.

work. We found that the IPsec implementation we used (Linux
Openswan U2.6.23/K2.6.38 (klips)) does not start the IPsec tunnel
between two virtual interfaces that reside in the same machine. To
overcome this problem, we introduced an intermediary node be-
tween our virtual and emulator nodes. We set up an IPsec tunnel
between the virtual node and the intermediary, whose only purpose
is to receive packets on the IPsec tunnel and forward them to the
emulator. The emulator performs the network emulation and then
forwards the packets back to their destinations in the virtual node.
That way, a packet between any two ORs is forced to go through
an IPsec connection. For stock Tor performance experiments, we
disabled the IPsec tunnel between the virtual and the intermediary
nodes.
Underlying Network Topology. We use the network topology
that was produced and published7 by Jansen et al. in an effort to
methodically model the Tor network for ExperimenTor and Shadow
[19]. Briefly, the authors form a complete network graph consisting
of vertices that correspond to different locations (countries, Ameri-
can states and Canadian provinces) with upstream, downstream and
packet loss properties that they obtained from the Ookla Net Index
dataset [2]. All vertices are connected by edges with approximated
latency,8 jitter, and packet loss properties.
Overlay Tor Topology. We follow the footsteps of Jansen et al.
and create a scaled-down topology that consists of 500 Tor clients
(OPs), 50 Tor ORs, and 50 HTTP servers. Of the 50 ORs, 5 work as
directory authorities. Our ORs are assigned bandwidth values that
are sampled from the bandwidth distribution of the live Tor network
ORs. We create two client types: web clients and bulk clients. Our
client model is based on a previous study of the exit Tor traffic by
McCoy et al. [24]. The study found that 93% of connections that
exited the Tor network are HTTP connections which consumed ap-
proximately 60% of traffic volume. They also found that file shar-
ing applications consumed approximately 40% of the bandwidth in
Tor. During our experiments, our web clients continuously fetch
fixed-sized 320 KiB files, and pause randomly for 1 to 30 seconds
between fetches. Our bulk clients continuously download 5 MiB
files without pausing. Finally, we first use a web-to-bulk client ra-
tio of 19:1, as recommended by Jansen et al.(Figures 7(a)–7(d)).
In addition, we also repeated our experiments on the same network
topology where we lower the web-to-bulk client ratio to 9:1 in or-
der to test PCTCP with different traffic loads and with increased
congestion (Figures 7(e)–7(h)).
Model Accuracy. Before we present our results, we first compare
the performance of our stock Tor bulk and web clients, which we
obtained from our testbed, to the performance of the live Tor net-
work published by the Tor metrics portal [38]. This comparison
step was also carried out by Jansen et al. The purpose of this step
is to confirm that our testbed measurements can indeed approxi-

7The model files are available for download from the authors’ websites (http://
www.mit.edu/~ke23793/misc/tormodel_exptor.tar.gz).
8The authors use iPlane [1] RTTs to approximate latency.
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Figure 6: Comparison between the performance of torperf
(Live Tor), and our scaled-down testbed Tor network (Exper-
imenTor)

mate the measurements taken from the live network, even though
our network is significantly scaled down.

Figure 6(a) compares the distribution of the download times of
our testbed bulk downloaders and those measured by torperf, a tool
that measures download performance on the live Tor network. The
two distributions display comparable performance and they indeed
intersect at the median. That is, 50% of the 5 MiB downloads take
65 seconds or less on the live network, and the same is true on our
testbed. Figure 6(b) compares the results of our 320 KiB down-
loads and torperf’s 50 KiB, and 1 MiB downloads.9 As expected,
the distribution of download times for our web clients fits between
the distributions of download times between torperf’s 1 MiB and
50 KiB file downloads.
Results. Now that we have verified that our Tor model closely
approximates the performance of the Tor network, we next shift at-
tention to our results.10 Figure 7(a) compares the download time
observed by web clients when stock Tor and PCTCP are used. The
figure shows significant improvement for the slowest 50% of the
downloads, especially for the 4th quartile of the download times.
For example, the download times for Tor range from 17–90 sec-
onds, whereas for PCTCP, the download times range from 14–56
seconds.

In Figure 7(b), significant time-to-first-byte improvements can
be observed when PCTCP is used, as compared to Tor. At the
median, it takes Tor clients 3.6 seconds before the browser starts
changing for them, whereas PCTCP clients only wait for 1.6 sec-
onds, which is a 55% improvement. For the 75th percentile re-
sponse times, the time-to-first-byte is only 2 seconds for PCTCP
users, whereas Tor clients experience delays of up to 6 seconds.
This increases the observed improvements to 66%.

9Torperf only maintains the results of 5 MiB, 1 MiB and 50 KiB file downloads.
10For simplicity, we have not disabled TLS in PCTCP experiments even though it is
not needed in our design due to the use of IPsec.

We observe in Figure 7(c) that download times for bulk clients
are slightly improved when PCTCP is used. The improvement is
roughly 20% for 80% of the requests. For example, the median
download time for stock Tor is 65 seconds, whereas for PCTCP,
the median download time is approximately 51 seconds. Also,
the time-to-first-byte results are significantly improved for the bulk
downloaders, as can be seen in Figure 7(d). This suggests that con-
gestion is vastly reduced in the network.

Under heavier traffic loads, the amount of available bandwidth
in the network decreases, which affects the benefits we observe
for the download time. The download time comparison between
PCTCP and Tor for web and bulk clients when the ratio of web-
to-bulk clients is 9:1, depicted in Figures 7(e) and 7(g), shows that
PCTCP improves the long tail of the distribution for the web clients
by approximately 20%. The reason for the improvement is that, de-
spite the lack of spare bandwidth, PCTCP allows each circuit at the
transport layer to get its fair share of the bandwidth and forces the
bulk downloads present in the system to back off whenever they
attempt to get more than their allocated bandwidth, as evidenced
by the degradation of the bulk client performance shown in Fig-
ure 7(g). With PCTCP, heavy circuits might observe more delays
because such circuits are expected to drop more cells, and their re-
spective TCP connections would back off more frequently as a re-
sult of the separate TCP congestion control. However, performance
improvements can be observed even for bulk clients if more band-
width was available. For example, we have observed significant im-
provements for both web and bulk clients in the higher-bandwidth
experiments we report in Appendix A.

Figures 7(f) and 7(h) show the significant time-to-first-byte im-
provements for both the web clients and the bulk downloaders. The
improvements at the 75th percentile are more than 60% for both the
web and bulk clients.
Summary of results. Based on our observations, we conclude
that PCTCP produces significant performance benefits that can cer-
tainly be perceived by clients. The download time improvements
depend on the amount of available bandwidth in the network. If
the network has spare bandwidth to offer, PCTCP will improve the
experience of all users in the system. When the network operates at
its capacity, web clients will notice download time enhancements,
while bulk clients will observe degraded performance. However, in
all experimental scenarios, PCTCP significantly improves the re-
sponse times in the network for all clients.

To maximize the benefits of using PCTCP, it should be used
in combination with previous proposals that aim to increase the
amount of available bandwidth in the network, such as traffic clas-
sification [5], throttling approaches [21,27] or approaches aimed to
incentivize clients to run ORs [20, 29].

6. DISCUSSION
We next discuss a variety of open issues regarding PCTCP.

6.1 Anonymity Implications
Since our transport proposal is designed for Tor, an anonymi-

ty network, it is essential to consider the anonymity implications
of our design. In particular, it is important to ensure that our new
design does not add new vulnerabilities to the Tor network. Recall
that the anonymity of a circuit is compromised in Tor if its two
ends, the entry and exit, are compromised. Therefore, one issue
to consider is whether using PCTCP can reduce the anonymity set
of the ORs used in a circuit. For example, can an exit OR reduce
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Figure 7: Performance of all clients in the large-scale experiment under different traffic loads. Figures 7(a)–7(d) show the perfor-
mance of all clients when the web-to-bulk client ratio is 19:1, whereas Figures 7(e)–7(h) show the performance when we increase
congestion by setting the web-to-bulk client ratio to 9:1.

the anonymity set of the entry OR used on a circuit because of
PCTCP?11

First, with exception of the IPsec connections, the changes that
are imposed by PCTCP on any OR are local. That is, our design
does not introduce a new cell type or require other ORs on the cir-
cuit to upgrade. If an entry OR uses PCTCP, then only the middle
OR will notice because the middle has to agree to establish the
IPsec connection with entry and because it receives more than one
TCP connection from the upgraded entry. Those changes do not af-
fect the exit OR in the circuit; therefore, the exit would not be able
to know if entry belongs to the set of upgraded ORs or not. Even
if the exit learns from router descriptors that middle is an upgraded
OR, the exit would still not be able to know if entry is upgraded or
not.

Furthermore, one might wonder if dedicating separate TCP con-
nections might open the door to timing attacks. First, a connection
between the OP and the OR is very similar for Tor and PCTCP.
Second, because the communication between ORs is protected us-
ing IPsec, it would be difficult for the adversary to extract specific
circuit information even though each circuit uses a separate TCP
connection. Therefore, PCTCP does not introduce any new threats
to the Tor network.

6.2 Incremental Deployment
One advantage of PCTCP is that it is incrementally deployable

in two steps. The first step towards deployment is enabling IPsec
communication among ORs. Basically, ORs need to advertise in
their descriptors that they are willing to accept IPsec connections.
Then, IPsec-enabled ORs can try to establish IPsec connections
proactively among each other. When OR1 wishes to use PCTCP
with OR2, it can check if it has an existing IPsec connection with
OR2,12 in which case OR1 can proceed with using PCTCP. If OR1
detects no IPsec connection with OR2, it uses the default Tor TLS
connection with OR2 and multiplexes the circuits in the same con-
nection.

11It is important to prevent the two ends of the circuit from learning about each other
to prevent active or legal attacks.

12For Openswan, the visibility of IPsec for an application can be established using the
libwhack API.

6.3 Experimental Limitations
To be able to faithfully test and evaluate our new transport pro-

posal, we ran a series of testbed experiments on different network
topologies using different traffic models and loads. Regardless of
our efforts, we recognize that our large-scale experiments were
conducted on an isolated experimental testbed. We were unable
to experiment with larger topologies because we are limited by our
CPU, bandwidth and memory resources.

However, to ensure that we report accurate results, we followed
the methodology of Jansen et al. [18] to produce an accurate model
of the Tor network. We also used their published topology files in
order to avoid biased results that might be obtained using a different
experimental setup. Finally, we carried out additional experiments
on the live Tor network to confirm our results.

6.4 IPsec through NATs
One challenge that IPsec faced in the past is its inability to con-

nect to hosts behind NATs. As a result, NAT-Traversal [36] (NAT-
T) has evolved to address this problem. NAT-T can be used when
two hosts detect that if they are behind a NAT. In the context of Tor,
this problem is currently irrelevant as most Tor ORs are publicly
reachable; however, there are some efforts to enable the operation
of ORs from behind NATs [7]. In this case, IPsec can still benefit
from NAT-T.

6.5 File Descriptor and Memory Usage
One issue to consider is how this work affects the very busy

routers on the live network. Since Tor uses a weighted-bandwidth
OR selection algorithm where ORs are selected in proportion to
their bandwidth, some high-bandwidth ORs service thousands of
circuits at the same time. This means that, with PCTCP, such
routers are expected to maintain thousands of file descriptors at the
same time. One might wonder if such a requirement might raise
memory usage concerns due to the TCP buffer space allocated in
the kernel for each file descriptor.

To get an idea of how many file descriptors would be needed
when PCTCP is used, we examined a fast exit OR on the live
network configured with a bandwidth of 100 Mb/s, which puts it
among the fastest 6% of the network routers. This fast exit OR used
roughly 10,000 file descriptors for its communication with other



ORs and with destination servers. Since an exit OR uses one file
descriptor for each stream within a circuit, the number of circuits
it is handling is certainly less than the number of file descriptors it
is using. Note that intermediate routers are currently expected to
use a number of file descriptors that is equal to the number of ORs
in the network, which is approximately 3000. We therefore expect
that other intermediate ORs, such as middles or entries that have the
same bandwidth capabilities as the fast exit, to use between 3000
and 10,000 file descriptors if they use PCTCP. In short, file de-
scriptor and memory usage should not be a problem with PCTCP,
as even the busiest entry and middle ORs running PCTCP should
consume fewer of these resources than the existing Tor network
requires exit ORs to support today.

However, one possible way to reduce the number of file descrip-
tors is to use a threshold algorithm. For instance, every OR can
use PCTCP up to a certain threshold of the number of circuits be-
ing serviced, which can be configured by the relay operator. If
the number of circuits serviced exceeds the threshold, the OR can
multiplex new incoming circuits in existing connections in a round-
robin manner. Even better, an OR can use a classification approach
similar to Torchestra [17], where the OR avoids multiplexing loud
circuits with the quiet ones. In short, we do not believe memory
management issues are detrimental to PCTCP, as several solutions
exist to address them.

6.6 Future Work
One important area for future investigation is to implement other

transport proposals such as TCP-over-DTLS and UDP-OR, in order
to compare their performance to that of PCTCP in large-scale net-
work emulation. Tor’s forthcoming transport abstraction layer [32]
should greatly facilitate this task.

Another area for future work is to consider an alternative queue-
ing design for Tor that reduces the number of times cells are copied.
Indeed, our design eliminates the need for circuit queues as every
input buffer corresponds to single output buffer, which means that
data can be copied immediately from the input buffer to the output
buffer after being encrypted or decrypted.

7. CONCLUSION
In this work, we recognize the importance of the Tor network

as a privacy-preserving tool online and seek to enhance its perfor-
mance for interactive application users. To this end, we propose
PCTCP, a new anonymous communication transport design for Tor
which allows every circuit to use a separate kernel-level TCP con-
nection protected by IPsec. Our design is easily deployable and
requires minimal changes to routers. PCTCP avoids the deploy-
ability and performance problems that were introduced by TCP-
over-DTLS due to the use of a user-level TCP stack. Furthermore,
experimental evaluation of PCTCP shows vast improvement gains,
while maintaining the threat model of the Tor network. Our realistic
large-scale experiments show that it is possible to obtain improve-
ments of more than 60% for response times and approximately 30%
for download times when PCTCP is used, as compared to Tor.
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APPENDIX
A. LARGE-SCALE EXPERIMENTS USING

A HIGHER-BANDWIDTH TOPOLOGY
To observe the effect of PCTCP in a potential future Tor net-

work with more available bandwidth, we construct an experiment
on ExperimenTor using a higher-bandwidth underlying Modelnet
network topology. Our overlay Tor network is a scaled-down net-
work in which we run 400 clients and 20 Tor routers. The ORs are
assigned bandwidth capabilities that are sampled from the band-
width distribution of the live Tor network ORs. We test the per-
formance of PCTCP in this topology using a light traffic load of
39:1 web-to-bulk client ratio, and using a high traffic load of 9:1
web-to-bulk client ratio.

We also experiment with PCTCP on ExperimenTor using a higher-
bandwidth underlying Modelnet network topology. Our overlay
Tor network is a scaled-down network in which we run 400 clients
and 20 Tor routers. The ORs are assigned bandwidth capabilities
that are sampled from the bandwidth distribution of the live Tor
network ORs. We test the performance of PCTCP in this topology
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(d) Bulk clients

Figure 8: Performance of the web clients in a high-bandwidth network of 400 clients and 20 routers. Compare to Figure 7.

using a light traffic load of 39:1 web-to-bulk client ratio, and using
a high traffic load of 9:1 web-to-bulk client ratio.

Figure 8 shows the download time and time-to-first-byte com-
parisons for Tor and PCTCP using the different traffic loads for
the web and bulk clients. The figures show that for Tor clients,
the performance degrades faster, compared to PCTCP clients, as
we increase the traffic load in the network by decreasing the web-
to-bulk client ratio. For example, for the web client, the median
time-to-first-byte remains 0.9 seconds for PCTCP under the low
and high traffic loads, whereas the corresponding value in Tor de-
grades by approximately 20%. This is also true for the download
time distribution. The median download time for PCTCP remains
the same as we increase the load (though the 4th quartile is slightly
degraded), whereas the median download time for Tor clients de-
grades by more than 30%.


