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Abstract

Among all the security issues in Voice over IP (VoIP)
communications, one of the most difficult to achieve is traf-
fic analysis resistance. Indeed, classical approaches pro-
vide a reasonable degree of security but induce large round-
trip times that are incompatible with VoIP.

In this paper, we describe some of the privacy and secu-
rity issues derived from traffic analysis in VoIP. We also give
an overview of how to provide low-latency VoIP communi-
cation with strong resistance to traffic analysis. Finally, we
present a server which can provide such resistance to hun-
dreds of users even if the server is compromised.

Index Terms
Unobservability, Anonymity, Voice over IP, Low-Latency

1 Introduction

In an IP network, a communication is composed of pack-
ets. Each packet has a set of headers and a content. When
confidentiality is a concern, in particular with respect to
eavesdropping, it is usually assumed that the eavesdropper
is interested in the contents of the packets. However, some-
times, an eavesdropper will be just interested in the packet
headers (to learn who are the sender or the recipient for ex-
ample) or in their presence (to detect an ongoing communi-
cation or changes in the amount of traffic on the network).

The existence of a communication, when it does begin
or end, the users taking part in it, or the amount of in-
formation exchanged, is part of the meta-data defining a
communication. Hiding the contents of a communication
is easy to achieve through the encryption of the content of
each packet. Hiding the meta-data, on the other side, can

be very difficult. End-to-end encryption cannot be used on
the packet headers as they are needed by the intermediate
nodes of the network for routing purposes. Moreover, in
most of the networks over which IP is implemented an at-
tacker eavesdropping on a communication link will be able
to observe the existence of all the transiting packets. The
systems that try to hide the meta-data associated to a com-
munication are called anonymous communication systems
and the act of trying to discover this meta-data is called traf-
fic analysis.

Strong traffic analysis resistance is hard to obtain. It is
commonly accepted that the only practical way to achieve it
is by the usage of relays that hide the meta-data of the com-
munications.1 There exists an extensive literature on how
to use multiple relays sequentially to obtain traffic analysis
resistance. Some of the proposals are based on an usual
server-client model [15, 10], and others are peer-to-peer
[8, 17], but only two finalized implementations are currently
widespread and operational: JAP [7] the Java Anon Proxy,
and Tor [6], the second generation onion routing network.

In order to respect the latency constraints of VoIP com-
munication it is not possible (at least over the Internet) to
use multiple relays sequentially, and therefore it is prefer-
able that all the users communicate with only one relay. In
this paper, this relay is called the communication server. We
consider that packets can be routed through this server with
a reasonable round-trip time for VoIP communication (in-
cluding at most 100 ms of processing time in the server).
We have not tested or implemented the servers we propose
in this paper. We aim to present a theoretical overview of
what performance we can achieve with different techniques.

We have also decided to focus on the communication
stream. We do not considered signaling issues. How to
define a practical signaling protocol that avoids traffic anal-
ysis is well beyond the scope of this paper, as well as how

1In 1985 a relay-independent approach was proposed [14, 16]. How-
ever the anonymous communication systems derived from this technique
with practical implementations have been based on relay usage [12].



SIP or another standard signaling protocol can be modi-
fied or encapsulated to avoid leaking information to an at-
tacker. Obtaining a low-latency VoIP anonymous commu-
nication system is expensive and complex and will proba-
bly require dedicated protocols and servers. With current
latency, bandwidth and processing power it is unrealistic to
consider that an anonymous VoIP communication service
will provide strong resistance to attackers and be compatible
with standard VoIP protocols, allow conferences, codec ne-
gotiation, etc. The service provided will much more likely
be a closed-circuit system with medium size sets of users,
strong limitations on the number of simultaneous commu-
nications and based on protocols dedicated to ensure that
no traffic analysis can be done. These servers are intended
to be used on highly secured environments like embassies,
defense contractors, intelligence agencies, military tactical
communications, high-tech research facilities, etc.

How to provide very low-latency unobservability has
been scarcely studied in the literature. In [13], a large sur-
vey is done of the different approaches to obtain such a ser-
vice based on a technique originally presented in [5] called
superposed sending. This approach will be discussed in sec-
tion 5. In [3] we proposed a thorough study of how to com-
bine different primitives to obtain low-latency unobservable
communication.

The contribution of this paper is twofold. First, we
present how traffic analysis can result in privacy and secu-
rity issues in VoIP. Second, we adapt the techniques of [3]
and propose a set of servers providing strong traffic analysis
resistance for VoIP communications. In particular, we pro-
pose the first server able to provide this service to hundreds
of users over the Internet, even if the attackers monitor the
whole network or control the VoIP server. The only asser-
tions done to limit the attackers’ strength is that they are
unable to break the cryptographic primitives used, and that
they do not control the computers of the users they want to
obtain information from.

This paper is divided in two parts. The first part (from
section 2 to section 5) defines the issues of traffic analysis
in the VoIP context, and presents the systems that can be
implemented based on classic techniques. The second part
(section 6) presents our proposal. We have three main rea-
sons that justify the choice of having a very large introduc-
tory part, and then a much smaller section presenting our
system. First, obtaining a low-latency anonymous commu-
nication service is expensive, and therefore it is important
to justify why, especially in sensitive contexts, the cost of
such systems is justified. Second, one may be tempted to
use lesser forms of traffic analysis resistance as it can be
done with higher latency applications such as web brows-
ing or electronic mail. We therefore introduce the differ-
ent levels of traffic analysis resistance and show why only

the stronger properties can ensure anonymity in interactive
low-latency communication systems. Third, obtaining such
a system with a single server is a pretty unexplored research
domain. It is therefore important to present a thorough anal-
ysis that provides comparative performance overviews and
justifies the complexity of the final solution.

Section 2 is devoted to the basic concepts related to traf-
fic analysis resistance. In Section 3 we present the privacy
and security issues related to traffic analysis. The usage of a
trusted third party will be studied in Section 4, and the per-
formance achievable with classical approaches is presented
in Section 5. We present our server in Section 6 and con-
clude in Section 7.

2 Basic notions

Most research in anonymous communication deals with
single messages and the possibility to link them to users.
This approach comes from the fact that the first papers on
this domain were oriented towards mailing systems. Indeed,
in these systems a communication is usually composed of a
single unidirectional message, with possibly a reply (with a
very large latency between the two messages).

In a VoIP context, communications are bidirectional and
usually formed of large sets of packets with very low latency
between them. We will therefore define the traffic analysis
resistance properties directly over communications and not
over messages as it is traditionally done for high latency
anonymous communication systems.

2.1 Definitions

Informally, let S by a set of communicating users and
C a communication in which at least one user of S takes
part. If for any communication C, an attacker A is unable
to link it to a specific user in S, we will say that this set is
an anonymity set (with respect to A). A stronger property
of traffic analysis resistance is unobservability. We will say
that a set of users is an unobservability set (with respect to
an attacker A) if A can see the communications associated
to this set but is unable to know for any user of the set if he
is communicating or not. If moreover A is unable to know
if there is any internal communication in the set or not we
will say that it is a completely unobservable set.

It is important to remark the differences between
anonymity and unobservability sets. In order to illustrate
them, let us present an example. Let {A,B, C, D, E} be
a set of five users. A, B are communicating together and
C is communicating with an external user F . D and E are
not communicating. The anonymity set cannot be larger
than {A,B, C} as it just concerns communicating users. If
the communication system used provides communication
unobservability the unobservability set can be as large as



{A,B, C, D, E} as the attacker will be unable to know if a
given user is communicating or not. If {A,B, C, D, E} is
a completely unobservable set, the attacker may be able to
see that a user of this set is communicating with F , but the
communication between A and B will remain unnoticed.

The anonymity sets provide a fair amount of traffic anal-
ysis resistance as long as global observers (attackers able
to observe simultaneously the whole set of users) are not
considered. Indeed, keeping the example proposed in the
previous paragraph, suppose that an attacker can observe si-
multaneously A, B, C, D and E. The attacker can see that
three users {A,B, C} are communicating and two {D,E}
are not. When the communication between A and B is over
he will observe that the set of communicating users will be
reduced to {D} and therefore he will conclude that there has
been an internal communication between A and B. Simi-
larly if D and E begin a communication the attacker will
observe that the set of communicating users has suddendly
increased from {A,B, C} to {A,B, C, D, E} and will con-
clude that D and E have probably started a communication.
More generally, if a global observer is able to know whether
the users communicate or not, he can identify when they
start and stop communicating and therefore correlate these
data to learn who is communicating with whom.

In the case of unidirectional communications, anonymity
and unobservability can be related just to the act of send-
ing or to the act of receiving. In VoIP, as communications
are bidirectional, detecting that a user is receiving or send-
ing messages is equivalent as either he is doing both, or
none. Even if this distinction between sending and receiv-
ing properties is unnecessary in VoIP, the techniques used
to obtain each of them are different: some primitives pro-
vide sender unobservability, while others provide recipient
unobservability. Of course, both sender and recipient un-
observability are necessary to obtain communication unob-
servability in VoIP systems.

As we just deal with systems that resist to strong attack-
ers (and specially to global observers) in this paper, we will
not consider the approaches providing just anonymity sets.
In the following section we present the general idea behind
unobservability primitives.

2.2 Sender and recipient unobservability

We suppose that attackers detect any message in a link
they eavesdrop on. The only way to obtain sender (resp. re-
cipient) unobservability is therefore to send (resp. receive)
regularly dummy traffic among which there may be infor-
mation messages. If it is not possible for the attacker to dis-
tinguish between information messages and dummy traffic
he will not be able to say whether the user is really commu-
nicating or not.

A user can easily decide to send dummy traffic or in-
formation messages without anybody knowing (except pos-
sibly the receiver). On the other hand, obtaining recipient
unobservability has proven to be an more complex issue.
The different alternatives that have been proposed are based
on a trusted third party (see Section 4) or introduce either
large communication costs [16] or computational costs [2].

2.3 Performance bounds

In order to provide correct VoIP communications, an
anonymous system must respect some minimal perfor-
mance bounds. First, the round trip latency must be lower
than 250ms (as recommended by the International Telecom-
munications Union). Second, the throughput must be at
least of 8 Kbits/s, and it would be preferable if this through-
put can be raised up to 32 Kbits/s (G729-EV codecs).
To simplify the examples given, we will suppose that the
throughput used for a VoIP communication is 10 Kbits/s in
this paper.

We will also suppose that the users do not want to use
neither more than ten percent of their available bandwidth
nor over 1 Mbit/s for the communication system. The avail-
able bandwidths will be set in a local network to 100 Mbits/s
and in the case of an Internet connection we will suppose
that the users have a 1 Mbit/s upload 128 Kbits/s download
xDSL line. The server is supposed to have a 100 Mbits/s
connection dedicated to the VoIP traffic whether the users
are in a local area network or are connected through the In-
ternet.

3 Privacy and security issues

As indicated in the previous section, three sorts of traffic
analysis resistance can be distinguished:

• prevent an attacker to know who is communicat-
ing with whom: the communicating users form an
anonymity set,

• prevent an attacker to know if a user is communicating
or not: the users form an unobservability set,

• prevent an attacker to know whether there is ongoing
communications or not in an unobservability set: the
users form a completely unobservable set.

Even if in this paper we do not deal with systems just
allowing the users to form anonymity sets, it is important to
separate the issues associated with each of these cases, as it
shows what security and privacy enhancing features result
of the usage of unobservability providing systems (besides
resistance to global observers).



3.1 Anonymity issues

Sometimes, knowing who is communicating with whom
is much more important than knowing what is being said.
For example, inferring a society strategies and alliances
from the phone-calls made by its CEO is a clear secu-
rity risk. From the privacy protection point of view, if a
user makes a phone-call to Alcoholic Anonymous, it does
not matter much whether the conversation is encrypted. It
would be a clear privacy leak if somebody learnt about this
communication.

3.2 User unobservability issues

If an attacker eavesdrops on a communication link used
by a single user (for example the link directly connected to
a computer in an office or in a home connection), the exis-
tence of a communication on this link will probably reveal
the presence of the user in front of his computer and there-
fore his location. Knowing that a user is communicating,
even without knowing with whom is indeed an informa-
tion leading to various location and information inference
issues.

Location issues can be very important for security. For
example, in a military context, the presence of a communi-
cating officer is a critical information. In a company, know-
ing whether a given person is in his office or not can make
a burglary easier. In an embassy, the presence of a high
personality in his office can engage a distant attack.

Inference from traffic analysis is also a major issue in se-
curity. Again, in a military context, the detection of an air-
strike by a mobile radar can be inferred from a sudden com-
munication burst from the radar to a command center. By
detecting who is communicating in the different wings of a
sensitive building, much information can also be inferred.
For example, an outbreak of communications among the
users in the middle-east section of an intelligence agency
may reveal the discovery of an incoming threat to an eaves-
dropper able to know who is communicating and who is
not.

Of course location and inference issues are also critical
for privacy. For example, learning if a user is communicat-
ing from his home or his office can lead to serious privacy
leaks. Unacceptable inference of a user’s habits can be ob-
tained from cross-referencing location data with communi-
cation timings.

3.3 Set unobservability issues

Knowing the number of communications in a set can be a
critical information by itself. In a military context, a sudden
rise on the enemy communications can for example reveal
the imminence of an attack.

Another major issue is that user observability depends
on set observability. Indeed, if an attacker wants to know if
a user U is communicating or not and observes that there is
no communication in the set he will learn with probability 1
that the U is not communicating. Likewise the attacker will
know that the larger the number of communications in the
set is, the more probable is that U is communicating.

Remark that this is a very important issue, but as sets
grow larger the attacker will obtain less and less informa-
tion about a given user. Indeed, granularity will decrease
and therefore the influence a user has on the number of com-
munications will be relatively smaller and smaller.

4 Trusted third party servers

To obtain low latency unobservable communications,
one can use a trusted third party generating cover traffic and
therefore providing recipient unobservability.

4.1 General construction

The idea is to have a server which routes all the commu-
nications between the users connected to it. The usage of
cover traffic will ensure that all the users connected form a
completely unobservable set. We will call such a server a
tMIX (for trusted MIX2). When a user gets connected to the
tMIX, they both follow protocol 1.

Protocol 1 tMIX connection.

1. The user sets an encrypted link with the tMIX.

2. The user sets an upload cover traffic channel by sending
every tenth of a second a one kilobit packet of encrypted
garbage to the tMIX.

3. The tMIX sets a download cover traffic channel by sending
every tenth of a second a one kilobit packet of encrypted
garbage to the user.

Both the tMIX and the user decrypt all the data they re-
ceive, and dump the result as long as it is recognized as
garbage (for example through a special identifier at the be-
ginning of the decrypted message). When a user A wants to
have a communication with another user B they both follow
protocol 2.

When a set of users is connected to the tMIX, an attacker
will only be able to see that they all send every tenth of
a second an encrypted one kilobit packet to the tMIX and
that they all receive every tenth of a second a one kilobit
packet from the tMIX. As long as the attacker cannot de-
crypt the packets, he is unable to say whether they are en-
crypted garbage or encrypted information and therefore he

2A MIX is a node used to relay messages while hiding the relation
between incoming and outgoing messages [4]



Protocol 2 tMIX communication.

1. A replaces the one kilobit encrypted garbage packets on his
upload channel by one kilobit encrypted packets encapsulat-
ing the information he wants to send to B.

2. Upon reception of these packets the tMIX decrypts them and
recognizes that they are not encrypted garbage.

3. The tMIX forwards these messages to user B’s download
channel by replacing the encrypted garbage he is sending
him by an encryption of the packets received from A.

4. B decrypts the packets received from the tMIX and recog-
nizes an incoming communication from A.

5. B replies to A following the same protocol.

is unable to distinguish whether a user is communicating or
not.

Figure 1. tMIX description.

Likewise the view the attacker has from the whole sys-
tem is the same whether there are communicating users or
not. Therefore the attacker is not only unable to say whether
a user is communicating or not but also whether there are
ongoing communications or not. The set of users forms a
completely unobservable set.

4.2 Implementations

The most evident way to obtain a tMIX is to trust its
administrators not to betray the users and to consider (or
hope!) that the attackers are unable to intrude in it. Indeed,
as well the administrators as an intruder are able to collect
all the traffic analysis information in this single point of fail-
ure.

In classical systems providing anonymity sets for
medium or large latency applications, the usual way to
avoid this issue is to share the trust among a set of relays
that are used one after another. In this set, the relays must
all betray the users (or be compromised by the attacker) to
be able to obtain some traffic analysis information.

This cannot be done in our context for various reasons.
The most important of them is that recipient unobservabil-

ity is provided by the cover traffic sent to the users by the
last relay used, and therefore it is enough to compromise
it to defeat recipient unobservability. More complex trust
distribution techniques can be used to avoid this attack, but
they generally lead to unsatisfactory performance. The sec-
ond main reason not to use trust distribution among differ-
ent servers is that the latency introduced by this approach is
proportional to the number of servers used and in most of
the cases it is impossible to respect the latency restrictions
if more than one relay is used.

Another approach is for the server to use a trusted hard-
ware device inside of which the tMIX is implemented, so
that the server administrators or an attacker intruding on the
server are unable to obtain more information than observing
the communication links.

The trust will not be in this case placed on the server
administrators and on the server resistance to intrusions,
but on the trusted hardware device. This trust consists in
mainly two assumptions. First, that the administrators are
unable to tamper the device to obtain traffic analysis infor-
mation. Second, that the software installed on the trusted
device is secure and does not contain any backdoor. The
first assumption is inherent to the usage of a trusted hard-
ware device. The second is a more complex issue. Indeed,
the main question is who installs the tMIX software in the
trusted device ?

Indeed, when using a trusted hardware device, instead
of placing the users trust on the administrators of the tMIX
it is placed on the entity who installed the tMIX software
in the trusted device. There is thus not such a big differ-
ence between the two situations except for one important
point. The software installation can be done off-line, in a
controlled environment and it may be supervised or certi-
fied.

It is however important to keep in mind that in a tMIX
we cannot avoid to place some trust in an entity. This can
be the tMIX administrators or the entity providing a pro-
grammed trusted device. By no means the usage of trusted
hardware ensures a security based uniquely on its tamper-
proof capabilities.

4.3 Performance

Every user needs a 10 Kbits/s duplex channel for its un-
observability. A trusted server can therefore handle a com-
pletely unobservable set of ten thousand users using com-
pletely its 100 Mbits/s connection.

For the approach based on trusted hardware, the main
limitation will be the device I/O throughput. Indeed, last
generation trusted hardware devices have a USB2 commu-
nication interface, however, due to obfuscation needs, the
I/O throughput is usually very low. Using the IBM 4758
high performance secure co-processor, this value is limited



Figure 2. tMIX performance overview.

to 8 Mbits/s. With such devices, the tMIX will be able
to handle a completely unobservable set of eight hundred
users per co-processor used. Figure 8 presents the perfor-
mance results, n being the number of users connected to
the tMIX. As each user has a 10 Kbits/s upload and down-
load cover traffic channel at his disposal he can only deal
with one communication at a time which limits the maxi-
mum number of simultaneous communications this server
can deal with to n/2. The users’ expansion factors are one
both for the upload and download channels. The server will
receive and send n × 10 Kbits/s which is indicated in the
last line of the performance overview.

5 Broadcast-based servers

In many situations it will not be tolerable to have a single
point of failure for traffic analysis or to consider a trusted
entity, and it will be mandatory to have a communication
system in which even if the server is compromised, no traf-
fic analysis can be done.

5.1 The bMIX

A very simple way to avoid placing trust in anyone is
first to encrypt the upload channel cover traffic with a key
shared with the recipient instead of the tMIX when the user
is communicating and with a random key when he is not.
Second, the server will not create a download cover traffic
channel for each user and instead of it he will broadcast all
the users upload cover traffic channels.

Figure 3. bMIX description.

With such changes, the server, which will be called a
bMIX (for broadcast MIX), is unable to know when a user
is communicating or not. Indeed, he cannot know if the user
is using his upload channel to communicate as he is unable
to decrypt it. The bMIX cannot either know when a user is

receiving information as he sends the same encrypted infor-
mation to all the users, and he is unable to know which users
are able to decrypt a stream and which are unable. When a
user A gets connected to the bMIX he follows protocol 3.

Protocol 3 bMIX connection.

1. A exchanges a secret key KAX with each user X connected
to the bMIX.

2. He sets an upload cover traffic channel by sending every
tenth of a second a one kilobit packet of encrypted garbage
to the tMIX.

3. The bMIX broadcasts every tenth of a second all the packets
received from the upload cover traffic channels of the users.

4. For each user X , A tries to decrypt the packets from X’s
upload channel with the secret key KAX . On failure he drops
the result.

When A wants to communicate with another user B he
just encrypts his upload channel with KAB , the secret key
they share. When B will try to decrypt the broadcasted
channels he will discover that the one associated to A gets
decrypted into an incoming communication. He will then
replace the garbage of his upload channel with his reply and
encrypt it with KAB .

Figure 4. bMIX performance overview.

If n users are connected to the server, each will receive
n× 10 Kbits/s quickly saturating his download bandwidth.
This technique is therefore unusable over the Internet for
more than a few users, but can be used in a local area net-
work to form completely unobservable sets of up to one
hundred users (in which case each user will use 1 Mbit/s
of his download bandwidth). Figure 4 resumes the perfor-
mance values. Remark that on a LAN the bMIX will broad-
cast n × 10 Kbits/s (which is represented by a bold n in
Figure 4). If the users are distributed over the Internet, the
bMIX will be unable to broadcast and will have to unicast
n× 10 Kbits/s to each of the n users and therefore have an
upload expansion factor of n2.

5.2 The sMIX

To limit bandwidth usage, it is possible to use superposed
sending [5]. Suppose that at a given time there is m inter-
nal communications in a set of users (which implies that
2m users are actively using their upload channels). Let us



note U1, · · · , U2m the set of communicating users. Super-
posed sending is a turn-based collaborative technique such
that when implemented in our context can ensure that at any
time:

Figure 5. sMIX description.

• every user knows the number 2m of users actively
transmitting (i.e. not sending garbage), but not who
they are,

• every user has 2m active upload channels C1, · · ·C2m,
using therefore 2m× 10 Kbits/s of bandwidth,

• each transmitting user Ui sends his communication
mixed with scrambling data on the upload channel Ci,
and just scrambling data on the others,

• the non-transmitting users send scrambling data on all
the channels,

• the server xors all the users’ sets of 2m channels into
a single set of 2m channels,

• the scramblings cancel themselves when xored and the
result is the set of 2m unscrambled transmissions from
{1, · · · , 2m}.

The only information that can be obtained when such a
protocol is used is m, the number of active communications.
It is not possible to know if a user is communicating or not
except if all the other users betray him. With such a server
(that we will call sMIX), the users must have 2m upload
channels and therefore will use 2m×10 Kbits/s of their up-
load bandwidth. As for the bMIX recipient unobservability
is ensure by the broadcast of the 2m resulting channels.

Figure 6. sMIX performance overview.

Using a sMIX to communicate, the users will therefore
use 2m×10 Kbits/s both of their upload (for the superposed
sending protocol) and their download (as the sMIX broad-
casts the resulting channels) bandwidth. This represents a

drastic reduction of the download bandwidth when com-
pared to the n× 10 Kbits/s of the bMIX as usually m � n.
For example, in a university with one thousand phone sets
the number of simultaneous communications will scarcely
raise over ten. To simplify the provided formulas we will
consider that usually m ≤ n/100, if this is not the case
the reader is invited to adapt the performance evaluation we
provide to its specific context.

The server receives 2n×m×10 Kbits/s. Supposing that
m ' n/100 the 100 Mbits/s bandwidth will be saturated for
eight hundred users. However, in practice, handling more
than two or three hundred users is difficult because of the
collaborative nature of the superposed sending protocol. In
the Internet the sMIX is not usable as the latency constraints
are too strong for this protocol to be used (with current
latency performance in Internet connections). The sMIX
server has to XOR the incoming traffic, which has a com-
putational cost linear in m × n. This limits the maximum
number of simultaneous communications, but not enough
to be a practical issue.

6 PIR-based servers

Private Information Retrieval (PIR) is a cryptographic
primitive that allows a user to download an element from
a database without revealing to anybody, even the database
administrators, what element is being retrieved. Current
PIR schemes are very efficient from a communication point
of view. In [11], a scheme is proposed in which the user
sends a small query and obtains the database element he is
interested in with an expansion factor on the communica-
tions of 2.

Instead of using PIR protocols over a database we pro-
pose in [2] to use them over a set of streams (which can
be seen as a database evolving very quickly) to select one
stream among many without the streaming server noticing
which stream is being selected.

6.1 The pMIX

Figure 7. pMIX description.



We define a pMIX as a bMIX that instead of broadcast-
ing all the user upload cover channels defines them as a set
of streams among which the users privately choose one by
sending every few seconds a PIR query. Each user must
send PIR queries at the same pace. If a user A is hav-
ing a communication with another user B he will choose
B’s stream with his PIR queries. If a user is not communi-
cating he will randomly choose a stream and send queries
for it. The security properties of the PIR scheme used en-
sures that all the queries are indistinguishable both for the
database administrators and for global observers whatever
the queried streams are. Protocol 4 shows the protocol fol-
lowed between a user and the pMIX server upon connec-
tion.

Protocol 4 pMIX connection.

1. The user sets an encrypted link with the pMIX.

2. The user sets an upload cover traffic channel by sending
every tenth of a second a one kilobit packet of encrypted
garbage to the pMIX.

3. The user sends every five seconds a PIR query for a random
stream among n.

4. The pMIX sets a download channel by using the user’s PIR
queries to generate a stream out of the set of the n upload
cover traffic channels.

In a bMIX the users use 10 Kbits/s for their upload chan-
nel and n × 10 Kbits/s for their download channel. In
a pMIX, using an instantiation of the protocol proposed
in [11], the users will use 10 Kbits/s for the upload chan-
nel and 20 Kbits/s for their download channel. The cost of
sending the PIR queries does not change the order of mag-
nitude of the upload bandwidth.

Figure 8. pMIX performance overview.

This server provides a full unobservability set to its users
with almost optimal bandwidth usage and does not require
any trust from them. On the other side, the computational
cost of the operations done is so large that it can just han-
dle very small sets of users. Moreover, the scalability of
pMIXes is reduced as the computational cost is proportional
to n2, n being the number of users. A server with a high-
end processor will not be able to go over n2 ' 100 using
all its processing power. Thus a mono-processor server will
not be able to handle much more than a dozen users, and
even a strong initial investment in a multi-processor server

or a cluster of computers will not allow to have more than
some dozens of users at a reasonable price. For example, a
cluster with twenty-five processors will lead to n2 ' 2500
and therefore to a set of just fifty users.

Obtaining a server that is both efficient from a commu-
nication and computational point of view is a bit more com-
plicated. We present such a server in the next section.

6.2 The apMIX

The idea we propose to limit the computational cost of
a PIR-based server is to reduce the number of PIR queries
that must be treated. Instead of sending directly their PIR
queries to the server, the users will use a superposed sending
protocol increasing the communication cost of the emission
by 2m but enabling the server to recover after the xoring
phase just 2m PIR queries instead of n.

Figure 9. apMIX description.

As the server has only to reply to 2m PIR queries the
computational cost is proportional to n × 2m instead of
n2. The number of simultaneous communications in a set
of users is generally at least one or two orders of magni-
tude smaller than the set size and therefore this optimiza-
tion results in a much smaller computational cost. Instead
of handling a few dozen users we can form up with this
server unobservability sets of a few hundred users. Scala-
bility is not improved as m is proportional to n and therefore
O(n×m) = O(n2). Nevertheless, it is important to remark
that in the different contexts (embassies, sensitive laborato-
ries, military communications, etc...) in which a completely
unobservable system would be used, the set of users will al-
most never go over some hundred users and will not need to
scale up to tens of thousands of users.

Figure 10. apMIX performance overview.



Using the protocol proposed in [11] to generate the PIR
replies, a server with a high-end processor will be able to
handle a set of users as long as n × 2m ' 100. This
roughly means the initial investment will be of one pro-
cessor per fifty users and per communication. For exam-
ple, a server with four processors will be able to handle one
hundred users having at most two simultaneous communi-
cations (n × 2m ' 400). A rack of six servers with four
processors each will be able to handle two hundred users
having up to six simultaneous communications.

Latency is not a problem for superposed sending in this
server as it was for the sMIX because is not used to send
the data exchanged during the communication (which must
have an RTT lower than 250 ms), but only to send the PIR
queries. The latency for PIR query sending has an impact
on call establishment times for which the acceptable latency
is of some seconds.

The price to pay with this approach, when compared to
a pMIX, is that the server is not able to know which query
corresponds to which user and must therefore broadcast the
2m 20Kbits/s resulting streams to all the users. The upload
cover traffic channel needs only 10 Kbits/s, but the down-
load cover traffic channel will need 4m × 10 Kbits/s. In a
local area network this limitation is minor but if the users
are connected through the Internet with 1 Mbit/s of down-
load bandwidth, the number of simultaneous communica-
tions cannot be more than three if the users limit their band-
width usage to ten percent.

7 Conclusion

Over the Internet, without relying on a trusted third party,
the only server that would be able to provide unobservable
VoIP communications to more than a few users is the ap-
MIX (as long as there are not many simultaneous commu-
nications). In a local area network, a bMIX or a sMIX can
both provide unobservability in VoIP communications to
one hundred users or more. However, we believe the ap-
MIX approach is also preferable specially as it has better
scalability. Indeed, for the sMIX, scalability is simple in
theory but very hard to achieve in practice. In the case of
the bMIX it is not possible to scale up except if dedicated
lines for the VoIP system are used (in which case the bMIX
is the best option without any doubt).

The investment needed for an apMIX may seem unrea-
sonable, but this should be moderated by other costs, spe-
cially the cost per user of the VoIP infrastructure. Indeed,
the level of security provided by the systems presented in
this paper is inconsistent with the usage of softphones. A
network in which such strong unobservability properties
would be expected each user will probably have a secured
hardphone. These hardphones must moreover be able to en-
crypt and decrypt the communications as traffic analysis re-

sistance is senseless if the communications are unencrypted.
This means that the cost to set up such a VoIP network will
be at least some hundred dollars per user on the network.
The cost per user with an apMIX is roughly (if we suppose
each processor costs five hundred dollars) of ten dollars per
simultaneous communication that the server can handle. We
can therefore conclude that the cost introduced by the ap-
MIX is reasonable when compared with the other costs, as
long as the number of simultaneous communications does
not reach many dozens.

In this paper we have just considered anonymizing the
communication data. As future work we plan to deal with
the communication signaling and try to build a set of con-
sistent modules for an Asterisk IP PBX. We hope that this
work will motivate research in this field.
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