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Abstract. Tor, an anonymity network formed by volunteer nodes, uses
the estimated bandwidth of the nodes as a central feature of its path
selection algorithm. The current load on nodes is not considered in
this algorithm, however, and we observe that some nodes persist in be-
ing under-utilized or congested. This can degrade the network’s per-
formance, discourage Tor adoption, and consequently reduce the size
of Tor’s anonymity set. In an effort to reduce congestion and improve
load balancing, we propose a congestion-aware path selection algorithm.
Using latency as an indicator of congestion, clients use opportunistic
and lightweight active measurements to evaluate the congestion state
of nodes, and reject nodes that appear congested. Through experiments
conducted on the live Tor network, we verify our hypothesis that clients
can infer congestion using latency and show that congestion-aware path
selection can improve performance.

1 Introduction

Tor is an anonymity network that preserves clients’ online privacy [6]. Today, it
serves hundreds of thousands of clients on a daily basis [13]. Despite its popular-
ity, Tor suffers from a variety of performance problems that result in high and
variable delays for clients [7]. These delays are a strong disincentive to use Tor,
reducing the size of the network’s user base and ultimately harming Tor users’
anonymity [5]. One reason why Tor is slow is due to the challenges of balancing
its dynamic traffic load over the network’s available bandwidth. In this work, we
propose a new approach to load balancing that can reduce congestion, improve
performance, and consequently encourage wider Tor adoption.
Path selection in Tor. The current path selection algorithm selects nodes
based on the bandwidth of the nodes (adjusted by the current distribution of
bandwidth in the network among entry guards, exits and other nodes), giving a
higher probability of being chosen to nodes with higher bandwidth. It also takes
into account a number of constraints designed to promote network diversity.
However, peer-to-peer file sharing users, while discouraged from using Tor, may
still do so and consume a significant portion of the available bandwidth [15]. Even
though the number of such users is likely small, when these bulk downloaders
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use nodes with insufficient bandwidth, they may affect the performance of other
clients using the nodes by introducing high delays due to congestion.
Latency as a congestion signal. Congestion occurs at the node level ei-
ther when a node reaches its bandwidth rate limit configured in Tor, or when a
node’s connection to the Internet is congested. When a node is congested, out-
going cells must wait in the node’s output queue. We find that this node latency

is sometimes significantly larger than the link latency, which is dominated by
the propagation delay between two nodes. Delays that do not originate from
propagation effects have been found to be quite common [3]; they have also been
found to be large [18]. From measurements and analysis of the live Tor network,
we find that Tor’s token bucket rate limiting implementation often contributes to
congestion delays of up to one second per node. These delays are detrimental to
interactive web browsing users, who are the most common type of Tor user [15].
Congestion-aware path selection. To reduce congestion and improve Tor’s
load balancing, we introduce node latency as a new metric to be used when
selecting nodes to form a circuit. Our approach uses a combination of lightweight
active and opportunistic methods to obtain this information. Clients measure
the overall latency of their circuits and use an inference technique to extract
the component latencies due to congestion for each individual node along the
circuit. Live experiments indicate that a typical client’s circuit latency can be
reduced by up to 40% if congestion information is taken into account during
path selection. We also argue that the security and anonymity implications of
our scheme are minimal.
Contributions. This paper contributes the following:

1. We identify latency as a measure of node congestion and characterize how
congestion varies across different types of nodes. We describe ways to ob-
serve and isolate this node congestion from other sources of delay (such as
propagation delay) with lightweight tests.

2. We design and evaluate a latency inference technique that attributes con-
gestion-related latencies to constituent nodes along a measured circuit.

3. We extend Tor’s path selection algorithm to avoid congested relays. Our ap-
proach has low overhead, can be incrementally deployed, needs no additional
infrastructure, and our live evaluation shows that it improves performance.

2 Tor Background

Tor is the third-generation onion routing design providing source and destination
anonymity for TCP traffic. A client wanting to connect to an Internet destination
through Tor first contacts a directory server to obtain the list of Tor nodes. Next,
the client constructs a circuit of three Tor routers (or nodes) and forwards traffic
through the circuit to a desired Internet destination using a layered encryption
scheme based on onion routing [10]. To balance the traffic load across the routers’
bandwidth, clients select routers in proportion to their bandwidth capacities.
To mitigate the predecessor attack [23], the first router on the circuit (called
an “entry guard”) is selected among nodes with high stability and bandwidth.
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Clients choose precisely three entry guards to use for all circuits and new entry
guards are selected every 30 to 60 days. The last router (called an “exit router”)
is chosen to allow delivery of the client’s traffic to the destination. All data is
transmitted through Tor in fixed-size 512-byte units called cells. More details
about Tor’s design can be found in its design document [6] and its protocol
specification [4].

3 Related Work

Tor requires a good path selection algorithm to effectively distribute its traf-
fic load across its nodes. Currently, Tor uses an algorithm that chooses routers
in proportion to their bandwidth capacities. Different criteria have been pro-
posed as possible factors in the path selection algorithm, such as autonomous
system awareness [8] and application awareness [20]. In this paper, we describe a
modification to Tor’s existing path selection algorithm to incorporate congestion
information, which improves load balancing.

Using latency as a path selection criterion has been investigated by Sherr et
al. [19]. In their paper, a case is made for link-based path selection, which uses
link-based properties (e.g., latency, jitter, loss). Panchenko and Renner [17] pro-
pose using round-trip time as a link-based measure to choose paths. They give a
technique to obtain round-trip time and roughly analyze the increase in perfor-
mance by using this criterion. In this paper, however, we look into considering
latency as a node-based property instead of a link-based property. Link-based
latency includes propagation delay, so only using link-based latency as a measure
may bias path selection against circuits with nodes that are geographically far
apart or on diverse networks.

Latency in Tor has also been considered from other perspectives. Hopper et
al. [12] looked into how network latency can be used to deanonymize clients.
Evans et al. [9] investigate using long paths to congest routers, thus revealing
the identities of those connected to the router due to the change in round-trip
time. Since our congestion-informed path selection approach allows clients to
detect congested routers, our proposal may be a defense against such attacks;
we do not, however, focus on defense mechanisms in this paper, but rather on
improving Tor’s performance.

Lastly, in contrast to proposals that seek to reduce congestion by redesign-
ing Tor’s congestion control mechanisms [1, 18], our work is focused solely on
identifying and avoiding congested routers.

4 Latency Measurement and Congestion Inference

We next present a technique for inferring node-level congestion using circuit
measurements. In this section, we describe our latency model and our approach
to measuring latency, and present a technique for identifying congestion-related
delays.
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4.1 Latency Model

We next define a latency model for tmin the minimum round-trip time
tc the congestion time
t the round-trip time
γ a smoothing constant

Table 1. Node-based latency model

nodes. Our latency measurements on the
Tor network suggest that latency mea-
surements on a node can be cleanly di-
vided into a non-congested component and
congestion time. When a node is not con-
gested, the latency can be attributed to
propagation delays, which are nearly constant. Non-congested measurements can
therefore be defined as measurements that are very close to the minimum of all
measurements on the same node. For many nodes, this accounts for most of the
data. When a node is congested, an amount of congestion time is added to the
round-trip time before it can reach the client. This amount of time is frequently
much larger than the non-congested measurements.

In Table 1 we define terms with respect to a node. tmin is the minimum round-
trip time for all measurements of round-trip time t of a node. It is a constant,
assuming all measurements are done from the same client; the chief component
of tmin is the propagation delay. We define the congestion time tc = t − tmin.
By removing tmin from the round-trip time, we isolate the congestion time. γ
is a small smoothing constant added to the measurements to allow for quick
reactions to transient congestion, as detailed further in Section 4.4. Thus, the
actual congestion time is tc = t− tmin + γ.
4.2 Measuring the Latency

We next discuss how circuit-level latency is measured by the client. This mea-
surement should fulfill the following criteria:

1. It should be lightweight. There should be little burden on the network even
if all of Tor’s estimated 300,000 clients use this scheme simultaneously.

2. It should be indistinguishable from non-measurement traffic. Otherwise, it
may be possible for malicious routers to influence the measurements.

3. It should exclude the destination server’s latency. We want the measure-
ment to consider only the delays within the Tor network, as delays at the
destination server may be experienced regardless of whether Tor is used.

To satisfy these criteria, measurements of a circuit can be done in two ways: we
can actively probe the circuit, or we can perform measurements opportunistically
so as not to create a burden on Tor.
Active probing. One way to measure the round-trip time is to tell the exit
node to connect to localhost, which the exit node will refuse to. This scheme,
used by Panchenko et al. [17], works by forcing the exit node to return an error
message to the client, so the client obtains the round-trip time to the exit node.
However, a potential disadvantage is that a malicious exit node can identify the
measurement probes and attempt to influence the results.

In our experiments, we use a technique that is conceptually similar: we use
circuit build cells to measure the circuit latency. To extend the circuit to the
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Fig. 1. A breakdown of congestion in testing. The test packet (colorless triangle) is
sent to the exit node and a response packet (colored triangle) is returned without
going through any destination server.

final exit router, the client sends a circuit EXTEND cell through the entry guard
and the middle router. The middle router sends a CREATE cell to the exit router,
which after performing public-key cryptography replies with a CREATED cell back
through the circuit to the client. The time spent performing public-key cryptog-
raphy can be considered a small constant, which will later be factored out of the
latency measurement.

Opportunistic probing. If only active probing is used, our scheme might add
too much measurement traffic into the Tor network, particularly if all clients were
to perform such measurements frequently. Thus, we also use an opportunistic
approach that leverages Tor’s end-to-end control cells as the measurement ap-
paratus. The stream-level and circuit-level SENDME cells are sent end-to-end in
response to every 50 and 100 DATA cells, respectively. In addition, BEGIN and
CONNECTED cells are sent whenever a new exit TCP stream is established, which
for web browsing clients can happen several times per web page visited. As
long as the client is using the circuit, we can obtain a number of measurements
without any additional burden on the Tor network.

Note that if we want the exit node to immediately send a message back
without spending time contacting a server, then the measurement is slightly
skewed towards the first two nodes. To be precise, the message has to travel
through each link among the client and the nodes twice, and it has to wait in
the queue (if any) of the first two nodes twice, but it only needs to wait in the
queue of the exit node once (see Figure 1).

Overhead. The opportunistic measurements have no overhead, as they leverage
existing end-to-end control cells. However, it might be desirable to augment
the opportunistic measurements with additional active measurements, at some
communication cost. We can obtain one congestion time entry for each member
of a circuit by sending just one cell (512 bytes). Suppose the client actively
probes each circuit it builds 5 times over 10 minutes. This will add an average
of 5 B/s of traffic to each node. If 300,000 users use this scheme together, they
will add a total of 4.5 MB/s of traffic to Tor. This is currently around 0.5%
of the total bandwidth offered by all Tor nodes, so our scheme will only add a
small load to the Tor network. As will be seen in Section 4.4, a small number of
measurements can be effective in detecting and avoiding congested circuits; the
other measurements needed can be done opportunistically.
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4.3 Isolating Circuit Congestion

When we obtain a measurement on the circuit, we want to highlight the conges-
tion times tc1 , tc2 , tc3 for each node along the circuit. First, it is necessary to
separate the circuit’s propagation delay from the delay due to congestion. We
next describe this process.

For one round-trip of the entire circuit, the time T can be dissected this way:

T = Tmin + (Tc − γ)
Tc = 2tc1 + 2tc2 + tc3

where Tmin is an estimate of the circuit’s end-to-end propagation delay and
Tc is the circuit’s delay due to congestion (γ is a small constant described in
Section 4.4). The difference between Tmin and Tc is that Tmin should be constant
for the same circuit, while Tc varies depending on the extent of the circuit’s
congestion. In addition, Tc only includes the last node once as in our tests, as
our probes do not exit through the final node. In our tests, we find that the
congestion term Tc is sometimes zero, but it is often non-zero.

For each measurement of T in this circuit, we save it in a list {T1, T2, ..., Tk},
and after all measurements of the circuit are done, we take the lowest measure-
ment, and let this be Tmin. Note that the number of measurements taken per
circuit should be large to ensure that Tmin converges to the circuit’s actual end-
to-end propagation delay.1 Through experimental analysis, we find that Tmin

can be correctly determined within an error of 0.05 s with 80% probability by
using only five measurements—in the case that Tmin is not correctly identified,
the circuit being considered is likely to be heavily congested.

The ith measurement of congestion time (0 ≤ i < k) is given by:

Tci
= Ti − Tmin + γ

In Figure 1, we summarize how a single end-to-end circuit round-trip time mea-
surement is conducted and where the congestion occurs.

4.4 Attributing Circuit Congestion to Nodes

Now that we have isolated the delay due to congestion from the circuit’s total
delay, we need to attribute the congestion delay to the circuit’s constituent nodes.
Each client maintains a congestion list of all known relays paired with a number
L of congestion times for each relay. This list is updated as new measurements
are taken. Consider a three-hop circuit. Suppose the estimated congestion times
of nodes r1, r2, r3 in this circuit are respectively tc1 , tc2 , tc3 . The entry guard is
r1, the middle router is r2, and the exit router is r3. Next, suppose the round-trip
time taken for some cell to return across this circuit is T ; then the total circuit’s
congestion time is Tc = T − Tmin + γ. For r1 and r2, we assign the following
congestion time:

1
Tmin can also be intelligently estimated using other methods. For instance, the King method [11]
can be used to approximate the pairwise network latency between any two Tor nodes without
probing either of the routers directly.
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tci ← Tc ·
2tci

2tc1 + 2tc2 + tc3

Here i = 1 for node r1 and i = 2 for node r2. For r3, we assign the following
congestion time:

tc3 ← Tc ·
tc3

2tc1 + 2tc2 + tc3

Details. A technical issue emerges when a node becomes congested after a long
period of being non-congested. In this scenario, the estimated congestion time
would be very close to zero and the algorithm would not respond fast enough
to assign a high congestion time to this node. This is where the term γ comes
into play. By ensuring that the minimum estimated congestion time is at least
γ, we can guarantee that even nodes without a history of congestion will not
be immune to blame when congestion occurs in a circuit with such a node. We
empirically find γ = 0.02 s to be a good value; this is not large enough to cover
the differential between congested and non-congested nodes, yet it ensures that
convergence will not take too long.

When a new estimated congestion time has been assigned to a node, the
node’s mean estimated congestion time should be updated. We maintain a list
of congestion time measurements for each node, L; when this amount of data
has been recorded, we push out old data whenever new data comes in. If L is
chosen to be large, then the client’s preference for a node will not change as
quickly, and vice versa.2

5 Techniques for Mitigating Congestion

Congestion can be either short term (e.g., a file sharer decides to use a certain
node for their activities) or long term (e.g., a node’s bandwidth is consistently
overestimated or its flags and exit policy are too attractive). For short-term con-
gestion, we want to provide an instant response to switch to other circuits. For
long-term congestion, we propose a path selection algorithm that takes conges-
tion time into account.
5.1 Instant Response

We provide two ways in which clients can perform instant on-the-spot responses
to high congestion times in a circuit.
Choosing the best pre-built circuits. Tor automatically attempts to main-
tain several pre-built circuits so that circuit construction time will not affect the
user’s experience. Two circuits are built that are capable of exiting to each port
used in the past hour (a circuit can count for multiple ports). Only one of those
circuits is chosen as the next circuit when the user’s circuit times out or breaks.
A reasonable scheme, therefore, is to test all of those circuits before choosing

2
Alternatively, an exponentially weighted moving average (EWMA) of congestion delay would
reduce the space necessary to store historical congestion data.
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which to use. As stated above, those tests can be done quickly and with minimal
overhead using active probing. We suggest that five active probing measurements
per pre-built circuit is sufficient to choose the best, as we observe in our exper-
iments (in Section 6). Since the circuits are pre-built, these measurements will
not cause the client any further delay.
Switching to another circuit. While using the circuit, a client may continue
to measure the circuit and obtain congestion times. This can be done with no
overhead to the Tor network by opportunistically leveraging Tor’s stream-level
and circuit-level SENDME cells, or the stream BEGIN and CONNECTED cell pairs (as
described in Section 4.2). This gives us the round-trip time T , from which we
can follow the procedure given in Section 4.3 to isolate the nodes’ congestion
time. If the estimated congestion time is large, the client should stop using this
circuit and choose another circuit instead.
Comparison. Tor currently takes into account the circuit build time adaptively
and drops circuits that take too long to build [2]. This approach, however, cannot
identify circuits that may become congested after they are constructed, and
the client will not learn to avoid attempting to build circuits over nodes that
are consistently congested. Furthermore, propagation delays are included in the
circuit building time, which is undesirable. Our two schemes improve upon Tor’s
circuit building timeout mechanism.

5.2 Path Selection

In addition to an instant response, we also want a long-term response where
clients can selectively avoid certain nodes if they often receive poor service from
these nodes. This can be helpful when there are nodes with poorly estimated
bandwidth, when bulk downloaders customize their clients to use only specific
relays, or when there are other unexpected load balancing issues that have not
been resolved. Our congestion-aware path selection works as follows.

Each client will keep a list of all routers, each of which will be recorded with
a list of their measured congestion times. The list of measured values is of size
L; when new data comes in, old data is pushed out.
Node selection. Our scheme is designed to be built atop the current path
selection algorithm in this way: when we wish to extend a circuit by one node,
we pick a few nodes from the list according to the original scheme (e.g., 10
nodes), and then choose one of them in negative correlation to their estimated
congestion times. Estimated congestion times should be obtained by leveraging
both the active and opportunistic measurements done for the instant response
schemes. Suppose that node r’s estimated congestion time is tcr . We define a
base constant α > 0, and use it to obtain the probability of selecting the node r

for a circuit:

P (Cr) ∝
1

α+ tcr

where Cr is the event of node r being chosen. α is a constant that prevents very
low congestion nodes from dominating the path selection algorithm.
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The effect of this scheme on the user’s experience and the Tor network itself
depends in part on the choice of the constant α. A smaller α will impact the
load balancing more as nodes with less estimated congestion become more likely
to be chosen.
Advantages. Our approach is simple and efficient. Furthermore, this scheme
requires no further infrastructure to support, and it is incrementally deployable
in the sense that any client who chooses to use this scheme can immediately
do so. The long term path selection scheme adds no further overhead on the
network over the instant response scheme, as it can share the few measurements
used to support the instant response scheme.

6 Experiments

We designed a number of experiments that aim to validate our assertions about
latency and congestion in Tor. For all experiments, we use the Tor control pro-
tocol to instrument Tor. We use the final pair of circuit construction cells to
measure the round-trip time of a circuit (as described in Section 4.2). In the
remainder of this section, we present experiments and results that show that
congestion is a property of Tor nodes, explore the relationship between a node’s
consensus bandwidth and its estimated congestion, and evaluate the performance
improvements offered by our congestion-aware router selection proposal.

6.1 Node Congestion

We first seek to demonstrate that congestion is a property of Tor routers. For
72 hours in August 2011, we collected round-trip time data for all Tor routers
that can be used on a circuit by measuring the time to construct one-hop cir-
cuits. For each node, we subtracted the node’s minimum measurement (e.g., the
propagation delay) to isolate the congestion delays tc.

Figure 2(a) shows the distribution of congestion delays for entry guards, exits,
guard/exits, and middle-only nodes. The median congestion delay is minimal (3–
5ms) across all node types; however, the tails of the distributions tell a different
story. For the most congested ten percent of the measurements, nodes marked as
both guard and exit experience congestion delays greater than 866ms, and guard-
only nodes have at least 836ms of congestion delay. Exit-only and middle-only
nodes tend to be the least congested. Guard nodes may be the most congested
because the stability and bandwidth criteria for the guard flag is too high. Re-
laxing the requirements for the guard flag would enable some middle-only nodes
to become guards, reducing congestion among guards.

Figure 2(b) shows congestion delays over the duration of our measurements
for all routers (top) and for three representative high-bandwidth (10MiB/s)
routers (bottom). We note that these delays tend to be low. However, there
exists noticeable variability regardless of a node’s flags or bandwidth, and many
of the delays are close to one second (Figure 2(a) also illustrates these one second
delays where the CCDF lines become vertical). These one second delays are the
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Fig. 2. Analysis of congestion delays

result of Tor’s token bucket rate limiting with a once-per-second token refilling
policy (see the extended version of this manuscript [22] for more details).3 These
one-second delays indicate that nodes are being asked to forward more traffic
than they are configured to handle, resulting in congestion. Thus, we conclude
that congestion is a property of the Tor router itself, motivating the need for
clients to consider congestion when selecting nodes for a circuit.

To investigate the possible relationship between a node’s bandwidth and its
congestion, we analyze the nodes’ consensus bandwidth as reported by Tor’s
directory servers. We observe no correlation between a node’s bandwidth and
congestion (the Pearson’s r value between log of the bandwidth and the conges-
tion time is −0.00842).4 This implies that considering only a node’s bandwidth
during path selection may not be sufficient to achieve optimal load balancing.

6.2 Performance Improvements of Our Schemes

We next present experiments that seek to quantify clients’ latency improvements
when using our scheme. Experiments are performed on both the instant response
and long-term path selection components.

In these experiments, an unmodified Tor client used the current path selection
algorithm in Tor. At the same time, a modified client uses the instant response
components of our scheme (from Section 5.1) to determine which circuit it should
use. The original client builds 225 circuits and measures each one precisely 30
times to obtain round-trip times. The modified client determines which circuits
it should use based on the same data.
3

Increasing the frequency with which the tokens are refilled may reduce or eliminate these one
second delays. This design change is currently being discussed [21].

4
Dhungel et al. report no significant correlation between bandwidth and overall delay [3].
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Fig. 3. Improvements in congestion time and round-trip time for instant response

Choosing the best pre-built circuits. We first tested how much of an im-
provement we would see if the client simply tested each circuit five times when
building them preemptively and chose the one with the lowest congestion. For
simplicity we assumed that the client always had three circuits to choose from.
The original client tested each of its circuits 30 times, and took the mean of the
congestion times as its experience with the circuit. The modified client chose the
best among every three circuits to use by only looking at the first five measure-
ments; after choosing the best out of three, all 30 measurements of that circuit
are revealed to the modified client and it is taken as its experience of the circuit.
Without the scheme, the mean circuit congestion time was about 0.276 s. With
the scheme, it was about 0.119 s. We find that this large improvement was be-
cause most circuits were non-congested, except a minority where the congestion
time was very high. Those circuits also clearly exhibited congestion in the first
five measurements. This experiment demonstrates that just a few measurements
are needed to effectively identify congested circuits.
Switching to another circuit. We next tested how much of an improvement
we would get if the client switches to a better circuit when the current one
becomes too congested. This time both the original client and the modified
client can see all measurements. The modified client dropped a circuit if the last
five measurements had a mean of more than 0.5 s of congestion; 73 of the 225
circuits were eventually dropped. This sufficed to improve the mean congestion
experienced from 0.276 s to 0.137 s.

Finally, we combined the two instant response schemes. 75 of the 225 circuits
were chosen using the first scheme, and later 11 of the 75 circuits chosen were
eventually dropped using the second scheme. We achieved a mean congestion
time of 0.077 s, compared to the original 0.276 s. The total round-trip time was
reduced from a mean of 0.737 s to 0.448 s. Figure 3(a) shows the distribution of
congestion times for the client when it used our improvements compared to the
original selection scheme, and Figure 3(b) shows the distribution of round-trip
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time for the same comparison. Note that such a reduction in congestion delays
would result in a faster time-to-first-byte for interactive clients (e.g., web brows-
ing clients), which positively affects the users’ perceived quality of service [16].
Overhead. One may worry that these
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Fig. 4. Distribution of errors when
learning individual node congestion
over a large number of trials

schemes will add too much overhead be-
cause they drop existing circuits and build
new ones. With the first scheme we are
not dropping any circuits. With the sec-
ond scheme, in our experiment we found
that we would need to build about 26%
more circuits, which is a relatively modest
increase.5

Long-term path selection. We eval-
uate the long-term path selection algo-
rithm as follows. We ran a client that
builds many circuits over the entire Tor
network using the original path selection
scheme. In total 13,458 circuits were built,
for which the round-trip time was obtained
5 times each. One-third of the circuit build
times were used as testing data; the rest
were used in training the client to learn the estimated congestion times for each
relay. By using the long-term path selection scheme, we observed a decrease in
the mean congestion time for this experiment from 0.41 s to 0.37 s over the testing
data. The improvement is not as large as in the instant response schemes, be-
cause the long-term path selection scheme tackles more persistent factors which
adversely affect node performance rather than short-term bursts of congestion.

The long-term path selection scheme offers an improvement nonetheless be-
cause it is capable of deducing the congestion time of individual nodes while only
measuring the congestion times of random circuits, allowing it to choose uncon-
gested nodes. We performed a total of 379 trials where we compared deduced
congestion (by building three-hop circuits) to directly measured congestion (by
building one-hop circuits). Figure 4 shows the distribution of errors. We found
that nearly 90% of the errors were within -0.5 s to 0.5 s, and 65% of the errors
were within -0.1 s to 0.1 s. The scheme very rarely overestimated node conges-
tion, but sometimes underestimated it, as shown by the large number of negative
errors. The mean error was therefore -0.2 s. This may be because high congestion
is somewhat random in nature, so the scheme is less accurate in predicting the
extent of a node’s congestion while only given a previous record.

7 Anonymity and Security Implications

We consider if our schemes may be open to attacks which cause a loss of
anonymity for the client. To be specific, we consider sender anonymity, which is
achieved if a message and its origin cannot be traced. It is known that sender

5
Circuit building cells are much rarer than data transfer cells; further, the Tor Project is working
to decrease the computation required for circuit building by a factor of four [14].
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anonymity is lost in Tor if the entry guard and the exit node in a circuit are
both compromised. The possibility of such depends on the attacker’s control of
the network. We therefore focus on the possibility of an attacker increasing their
control of the network through our schemes.

We consider a particular attack called
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Fig. 5. An estimate of the how much
control an attacker can gain through
the smearing attack. We chose tmax =
5000ms, tc = 500ms, L = 20, C = 30.

the smearing attack. The attacker first uses
all of his available bandwidth to deploy
malicious nodes. These malicious nodes
attempt to give the appearance of con-
gestion by artificially delaying cells. If a
client measures a circuit containing both
innocuous and malicious nodes, the in-
nocuous nodes will be “smeared” with high
estimated congestion times. The clients
are then less likely to choose these nodes
under the long-term path selection scheme.
After a certain amount of time, these ma-
licious nodes will be estimated to have
a very high congestion as well, so the smear-
ing becomes less effective. Once a mali-
cious node becomes rarely selected, it is
taken down, and a new one is created in
order to maintain the attack. This attack is continued until all innocuous nodes
can no longer be smeared further (this is bounded by the amount of bandwidth
available to the attacker). After all nodes are maximally smeared, the attacker
can stop the attack and enjoy a larger control of the network for a while, as his
nodes will now seem more attractive.6

A parameter of the attack is C, which indicates for how long each malicious
node will attempt to smear other nodes before being replaced. If C = 5, for
example, the attacker will attempt to keep each malicious node up for as long
as it takes to smear other nodes five times for each client measuring the nodes,
then take it down and replace it with another node. We take tc as the mean
performance of the nodes (including the malicious node) and tmax as the max-
imum time the client performing the latency measurement will wait for before
timing out. The estimation is done by running a simulation with the simplifying
assumption that all nodes can be selected in all positions.

Figure 5 shows how much bandwidth the malicious nodes must possess in
order to affect the measurements of the congestion time of the non-malicious
nodes. The attacker can indeed smear other nodes and gain an advantage by
coming up with fresh, non-smeared nodes. We also note that the advantage
gained is temporary; when the adversary stops performing the attack and uses all
their bandwidth to acquire control of the network, clients will start measuring the
other nodes’ non-smeared congestion times as well, so their estimated congestion
times will slowly return to their non-smeared levels.

6
Note that nodes are less likely to be chosen if they do not have the “stable” and “fast” flags. The
stable flag is a barrier for malicious nodes, as it requires the node to demonstrate high stability
before they can be effective. We neglect this barrier in the following analysis, giving more power
to the attacker.

13



Information leakage could also cause anonymity loss. The list of latencies
stored on a user’s computer may compromise anonymity if divulged. If the list
of latencies for all users is known to an attacker, he can perform an attack by
only controlling the exit node, and using the lists to probabilistically guess who
is connecting by checking the frequency of connections; this will give him some
amount of information. Our scheme, however, gives no reason to directly divulge
the list of latencies at any point. Furthermore, this list is updated based on
client behavior and measurements, which the attacker cannot easily observe or
manipulate without controlling a substantial portion of the network.

While we recognize that our scheme introduces a small risk due to the smear-
ing attack, we believe that reducing congestion would result in increased re-
silience to attacks that utilize congestion to identify the set of routers used by a
client [9]. Due to space constraints, a full investigation is future work.

8 Conclusion and Future Work

Many different metrics for path selection in Tor have been proposed, some
of which consider the use of latency. However, previous work treats latency as a
property of a link and focuses on the delays that occur primarily due to propa-
gation. We assume a different approach: we identify the importance of latency as
an indicator of a node’s congestion. To reduce congestion, improve load balanc-
ing and, ultimately, improve clients’ quality of service, we propose an improved
path selection algorithm based on inferred congestion information that biases
path selection toward non-congested nodes. We also propose ways for clients
to respond to short-term, transient congestion that improve on Tor’s adaptive
circuit building timeout mechanism.

Our experiments show that a single client can expect to experience up to
a 40% decrease in delay when considering congestion during node selection. As
future work, we plan to investigate the potential benefits and other effects when
this scheme is deployed at scale through whole-network experiments.
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