
Minx: A Simple and Efficient Anonymous Packet Format

George Danezis
University of Cambridge, Computer Laboratory,
William Gates Building, 15 JJ Thomson Avenue,

Cambridge CB3 0FD, United Kingdom.

George.Danezis@cl.cam.ac.uk

Ben Laurie
ALD Ltd,

The Stores, 2 Bath Road,
London W4 1LT, United Kingdom.

ben@algroup.co.uk

ABSTRACT
Minx is a cryptographic message format for encoding anony-
mous messages, relayed through a network of Chaumian
mixes. It provides security against a passive adversary by
completely hiding correspondences between input and out-
put messages. Possibly corrupt mixes on the message path
gain no information about the route length or the position of
the mix on the route. Most importantly Minx resists active
attackers that are prepared to modify messages in order to
embed tags which they will try to detect elsewhere in the
network. The proposed scheme imposes a low communica-
tion and computational overhead, and only combines well
understood cryptographic primitives.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; K.4.1 [Computers
and Society]: Public Policy Issues—Privacy

General Terms
Security

Keywords
anonymity, mix networks, tagging attacks

1. INTRODUCTION
In [10] Danezis et al. propose Mixminion, a mix-packet

design that provides bitwise unlinkability and is resistant to
all known active tagging attacks. Furthermore it supports
anonymous replies, using a mechanism that makes them in-
distinguishable from other messages. The design is being
standardised and implemented to replace the ageing Type I
‘Cypherpunk’ and Type II ‘Mixmaster’ remailer infrastruc-
ture [17].

Mixminion was designed to be well understood, secure
and robust. As a result the design is conservative, including

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’04,October 28, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-968-3/04/0010 ...$5.00.

redundant information and mechanisms. Mixminion also
aims to be flexible and, as a result, it is quite complex.

We propose Minx, a new mix-packet format design that is
simpler, yet provides all the security properties that mixmin-
ion provides. Our design uses two cryptographic primitives,
raw RSA [24] and AES [1], and IGE [26] a special mode of
operation for block ciphers. Minx does not require Mixmin-
ion’s ‘swap step’, which is still not very well understood.
Instead it neutralises tagging attacks by using a block ci-
pher mode that propagates errors: if the message is tagged
all useful information is destroyed.

A heuristic security argument is provided, but the mini-
malist nature of the packer format is intended to foster re-
search on more formal ways of proving the security of such
anonymity mechanisms.

2. REQUIREMENTS
The security requirements of Minx are the same as those

for mixminion. This allows a straightforward comparison
between the more conservative mixminion design and the
new Minx proposal.

Minx is a mix packet format, to encode messages that will
be relayed through a mix network as originally proposed by
David Chaum [7]. A mix network is a set of nodes that re-
lay messages without revealing the correspondence between
their inputs and outputs, making it difficult to link their
senders and receivers.

The main aim of a mix packet encoding is for the bit pat-
tern of the messages entering the mix to be unlinkable to
the bit patterns of messages leaving the mix. Additionally
routing information must be privately delivered to all inter-
mediate mixes to allow them to route the message through
the network. We also aim to support anonymous return
addresses that allow receivers of messages to contact the
anonymous sender without knowing their physical address,
by using an anonymous reply block.

We assume that an adversary observes all links of the net-
work, and so can get access to the bit patterns and timings
of all messages. Furthermore the attacker controls a sub-
set of mixes on the path of each message. To minimise the
information hostile nodes gain, we require our mix packet
format to not leak the position of the mix in the path, and
to not reveal whether the message is a reply or not.

Finally an attacker can be active, manipulate messages
and re-inject them into the network. Such tagging attacks [22]
are designed to leak information to the attacker by produc-
ing an observable result that links the final destination of
the message to the message’s sender. Minx eliminates such

attacks, at the cost of destroying the relayed message.
We can summarise the Minx design requirements as fol-

lows:

1. Anonymity despite a global passive adversary that also
controls a subset of nodes on the message path, and
can perform active attacks against the honest mix servers’
networks.

2. A facility for secure anonymous replies, indistinguish-
able from other messages.

3. The position of a mix on the path and the path length
should be hidden from intermediate mixes.

4. Tagging attacks must be totally eliminated.

In addition to the above security requirements we shall
also require that only parties benefiting from anonymity
properties are required to use special software. This makes
deployment easier and provides appropriate incentives to
users.

Like Mixminion and other deployed remailer networks we
assume the existence of a directory service that provides a
list of trusted mix nodes. We assume that the list, and
the index numbers associated with each server and their
public keys, are long lived. This affects the lifespan of reply
blocks, but frequently changing lists and keys should not
have a dramatic effect on the reliability of sender anonymous
messages.

Note that the effects of directory updates can be mitigated
by preserving the position of (most of the) existing entries
and the length of the directory as a whole (by including
redundant entries). While assuming that a directory service
infrastructure is available, the details of how it might be
implemented and secured are not discussed here (see [15]
for details).

3. CRYPTOGRAPHIC PRIMITIVES
Each mix in the Minx system has an RSA [24] key pair.

We will assume that the RSA modulus is 1024 bits long, and
therefore all messages up to 1023 bits can be correctly en-
coded. We use ‘raw’ RSA (modular exponentiation), with-
out any padding scheme, since we will rely on mixes not
being able to recognise valid plaintext (opposite property
from the plaintext awareness [12] provided by most padding
schemes).

Important properties of Minx are provided by using the
AES block cipher in a special mode of operation named In-
finite Garble Extension (IGE) [26]. IGE is a variant of Ci-
pher Block Chaining, that XORs the previous ciphertext
and plaintext to each encrypted block. We denote Ek(·) the
AES encryption operation with key k, and Dk(·) the respec-
tive decryption operation. If Pi is the ith plaintext block
and Ci the corresponding ciphertext block, IGE encoding
can be described as:

Ci = Ek(Pi ⊕ Ci−1)⊕ Pi−1 (1)

The corresponding decoding relation is:

Pi = Dk(Ci ⊕ Pi−1)⊕ Ci−1 (2)

It is clear that if a block of ciphertext or plaintext is modified
all subsequent blocks will decode into random noise. We
shall be denoting IGE encoding of a message M by a key
k, as IGEk(M) and decoding as IGE−1

k (M). Note that we

assume that C−1 and P−1, the initialisation vectors, are set
to a well know value, such as a vector of zero bits. This
does not represent a threat since in the context of Minx,
since IGE and biIGE keys are only used once.

In some cases perfect forward propagation of errors is not
sufficient, and backwards propagation of errors is addition-
ally required. The IGE mode, presented above, can be ap-
plied twice on a plaintext M to achieve this effect. First it
is applied to the plaintext, then the resulting ciphertext is
reversed and a second encryption operation using the IGE
mode is performed. This mode of operation is called bidi-
rectional Infinite Garble Extension, or biIGE:

biIGEk(M) = IGEk(reverse(IGEk(M))) (3)

The property of interest of biIGE mode is its all-or-nothing
nature: if the ciphertext is modified none of the plaintext
can be recovered. Unlike the IGE mode that propagates
errors only forward, biIGE propagates them to the whole
plaintext or ciphertext. A similar effect could be achieved
by using BEAR [2], a variable block length block cipher, as
Mixminion does. Other ’all-or-nothing’ transforms [?] can
be used instead of BiIGE.

Although the properties Minx relies on are provided by
IGE and biIGE, they are not specific to these schemes.
Therefore we will be describing the Minx algorithms in terms
of the abstract modes of operation EP (Error Propagation)
and biEP (bidirectional Error Propagation). EP hides the
correspondence between plaintexts and ciphertexts, and prop-
agates any modifications of the plaintext and ciphertext for-
ward, as IGE does. BiEP also propagates any modification
backwards, as biIGE does.

The biEP mode can, of course, be generally constructed
from EP just as biIGE is constructed from IGE:

biEPk(M) = EPk(reverse(EPk(M))) (4)

though this does assume that EP has the property that ci-
phertext blocks are ordered naturally.

An alternative construction for EP would be to use the
existing PCBC mode, or use an HMAC [4] of the previous
plaintext as the the key for the next block to be encrypted.
This would be substantially less efficient than IGE (the key
schedule would need to be recomputed for every block), but
demonstrates the existence of other possible constructions.

4. THE BASIC PACKET FORMAT
An anonymous sender Alice wishes to encode and send

a message M . This message contains all necessary infor-
mation to reach the final recipient, such as an email ad-
dress, the body of the message to be delivered, as well as
information about the delivery mechanisms (M could be an
RFC 821 [23] formatted email message including the headers
and the body, with all identifying information removed).

Alice downloads the current directory of mix servers from
a directory server she trusts. The directory is a simple list of
currently running mix servers along with their public keys
and addressing information. Each mix server entry is de-
noted by a small integer (8 bits would suffice) and all entries
are filled, either by distinct servers or by replicating identi-
cal server entries for multiple entries, or you take the index
number modulo the directory length at each step, then you
can use a 4-byte index number in the message format.

Alice then chooses a number of mix servers out of this di-
rectory to relay her message M of fixed size l (she can pad M

up to length l). We will denote these servers by their respec-
tive directory indexes as i1, i2, . . . , in and their respective
public keys PubK 1,PubK 2, . . . ,PubKn. Alice then chooses
n random session keys k1, k2, . . . , kn

1 and encodes her mes-
sage as follows. (We denote the concatenation of bit-strings
with “|”, and the byte range from byte x to byte y of string
s as “s[x–y]”.)

Encode(M, i1 . . . in,PubK 1 . . .PubKn, k1 . . . kn, l, tag = Final) :
(5)

Pn = kn|tag|biEPkn(M) (6)

Cn = RSAPubKn(Pn[0–127])|Pn[128–] (7)

For x from n − 1 to 1 : (8)

Pi = ki|ii+1|EPki(Ci+1) (9)

Ci = RSAPubK i(Pi[0–127])|Pi[128–] (10)

Pad C1 up to a set size: C1 = C1|Jl (11)

The padded ciphertext C1 can be sent to the mix entry
i1, that will decode it and relay it to the other mixes which,
in turn relay it until it reaches its ultimate destination. The
decoding operation, that each mix j with private key PrK j

performs, is very simple:

Decode(PrK j , M
′) : (12)

kj |ij |encM = RSAPrKj (M
′[0–127])|M ′[128–] (13)

Check and store Hid(kj). (14)

if ij is not “Final”: (15)

M = EP−1
kj

(encM) (16)

Send padded message M |J to ij (17)

else: (18)

Process message biEP−1
kj

(M [0–l − 1]). (19)

All packets are padded by the senders or the mixes by
appending a random bit-string Jl of the appropriate size.
Mixminion pads packets up to 32 kb, and Minx could safely
do the same.

The “Final” tag indicates to a mix server that it is the last
in the chain and the final message should be decoded and
processed. As all the other directory indexes it is an integer
with the property that Final mod 23 = 0. Obviously all
such indexes are reserved to represent the “Final” tag and
cannot be used for mix servers. Note that if Alice picks
the route by choosing random 8 bit integers the path length
would follow a geometric distribution with parameter 1

8
, and

the average path length would be 8.

5. REPLY BLOCKS
So far we have described how a user can encode a sender

anonymous message, and how mix servers decode and for-
ward messages. One of the aims of Minx is to provide the
facilities required to reply to an anonymous senders. This is
achieved by the use of anonymous reply blocks, which route
the message from the sender to the anonymous receiver. An
anonymous sender can generate a number of anonymous re-
ply blocks and include them in a message to allow corre-
spondents to reply.

1Each key kj must be an integer such that the overall mes-
sage can be decrypted by the public key PubK j . i.e. PubK j

divided by 2(1024−80) is greater than kj .

An anonymous reply block rbA is encoded as a normal
message with a very small payload containing information
necessary to decode the rest of the message. This can be
thought as a communication channel from the creator of the
reply block, namely Alice, back to herself that allows her to
be stateless.

As for encoding a message, to create a reply block Alice
chooses a set of mixes with indexes i1, . . . , in and respective
public keys PubK 1, . . . ,PubKn. A number of session keys
are then generated from a master key MK such that kj =
H(MK , j). The use of a master key allows for decoding
reply messages without storing any state per message or
reply block. Note that the length the message is going to be
padded to is l′, and much smaller than l, the total message
length, and the the special label Reply is included as the
routing information provided to the last node in the path.

rbA = Encode(mA, i1 . . . in,PubK 1 . . .PubKn, (20)

k1 . . . kn, l′, tag = Reply) (21)

where mA is,

mA =Alice|IV | (22)

biEPH(KAlice|IV)(Alice|Nym|n|i1| . . . |in|MK) (23)

The IV is a large nonce and KAlice is Alice’s secret key.
The ‘Nym’ is the pseudonym associated with this reply block,
and has to be present to foil some higher layer attacks. Two
differences between generating sender anonymous messages
and reply blocks should be noted: reply blocks are only
padded to a much smaller length l′, and the label seen by
the last node on the path should be a different constant de-
noted “Reply”. This allows the final node to decode, using
biEP, only the necessary part of the message.

The above construction generates a small anonymous re-
ply block, that Alice’s recipients can use to reply to Alice. A
recipient that wants to reply to Alice with reply block i, rbA

and message M̄ simply constructs a message (The NULL
key is a well known constant key, such as the all zero key):

rbA|biEPNULL(M̄)|J (24)

The message is then sent to the first mix i, that will decode
and forward it like all other messages until the last mix. In
case the responder does not have special software to perform
this encoding, a proxy could be used. The last mix can
recover that the message should be routed to Alice, and
sends it to her, by email or other means.

6. DECODING ANONYMOUS REPLIES
Alice can decode, using her secret KAlice, the information

contained in the reply message M ′′, recover the intermediary
hops i1, . . . , in and the master key MK that generates the
session keys k1, . . . , kn, and reconstruct the reply block, and
all other associated information:

Alice|IV |M2 = M ′′ (25)

Alice|Num|n|i1| . . . |in|MK = biEPH(KAlice|IV)(M2[l′′])
(26)

ki = H(MK|i) (27)

PubK j = lookput directory entry for ij
(28)

This allows Alice to reconstruct the reply block from in-
formation contained in the message, without any additional

state kept per reply block. Note that the exact reply block is
necessary to decode the message M̄ sent by Bob since, in the
general case, the EP mode of operation relies on all previous
plaintext blocks being known to recover the message.

mA =Alice|IV | (29)

biEPH(KAlice|IV)(Alice|Nym|n|i1| . . . |in|MK) (30)

rbA =Encode(mA, i1 . . . in,PubK 1 . . .PubKn, (31)

k1 . . . kn, l′, tag = Reply) (32)

In the case of IGE additional information is necessary to
decode the message, aside from the session keys. Since each
IGE block, aside from the key, is dependant on both the pre-
vious plaintext and ciphertext blocks, we need to compute
these. They can then be used a initialisation vectors (IVPi

and IVCi), to decode the rest of the message:

GetIVs(mA, i1 . . . in,PubK 1 . . .PubKn, k1 . . . kn, l′, tag = Reply) :
(33)

Pn = kn|tag|biEPkn(M) (34)

Cn = RSAPubKn(Pn[0–127])|Pn[128–] (35)

IVPn = M [−blocklength :] (36)

IVCn = Cn[−blocklength :] (37)

For x from n − 1 to 1 : (38)

Pi = ki|ii+1|EPki(Ci+1) (39)

IVPi = Ci+1[−blocklength :] (40)

IVCi = Pi[−blocklength :] (41)

Ci = RSAPubK i(Pi[0–127])|Pi[128–] (42)

return IVPn , IVCn , . . . , IVP1 , IVC1 (43)

Given the initialisation vectors (IVPn , IVCn , . . . , IVP1 , IVC1)
the rest of the reply block (M2[l

′ + 1 :]), can be decrypted
to retrieve J ′|biEPNULL(M̄)|J . The length of the Junk J ′,
is know and can be removed. It is then possible to decode
using the well known key NULL the fixed size message M̄ .

Note that different implementations of the EP algorithm
will require different parts of the reply block to decode the
relayed reply. All of this information can be extracted by
modifying slightly the reply block encoding algorithm. The
IGE example above, that extracts the previous plaintext and
ciphertext blocks, necessary to decode an IGE message, can
serve as an example.

7. IMPLEMENTATION DETAILS
Since different RSA key pairs have different moduli it is

possible in some cases to identify a subset of keys which
the creator of a ciphertext must be amongst. In order to
avoid this we modify the RSA operation to make it key-
private [3]. If the RSA ciphertext is greater than 21023,
we choose new session keys, for example the sequence of
hashes of the session keys k′

i = H(ki), until the ciphertext
is smaller. This assures that the encryption could be the
product of any 1024 bit RSA key. To avoid having always
a ciphertext with a leading zero, we substitute it with a
random bit2. If we are building a reply block the leading
random bit must be a function of the master key so that the

2As we will see some of our security properties rely on ci-
phertexts and plaintexts being indistinguishable from ran-
dom bit strings, to protect against malicious nodes taking
advantage of tagging attacks.

reply block can be reconstructed3. Of course the leading bit
is set back to zero before the RSA decryption operation is
applied.

In order for the last mix to apply biEP to the message
or the remaining of the reply block, the boundaries must be
known. For this reason messages must be of fixed length l,
and the unused tail of the packet must be filled with random
noise. When the last mix decodes the last header and en-
counters the “Final” label, it simply applies the biEP cipher
to the message of this fixed size. A special label “Reply”
should be included if the reply block information is included
in the header. In this case the last mix decodes a smaller
portion of the remaining message to find out where it should
be sent.

A secure implementation of reply blocks must provide the
creator with the ability to recognise the pseudonym, if any,
associated with a particular reply block. For this reason
Alice’s Nym name is included in the reply block and must
be provided to a higher layer application along with the
message. A failure to do so opens a route to the Who am I?
attack described in [9]. In this attack an adversary routes
replies for one nym using the reply blocks of another to
confirm that they belong to the same principal.

Finally, it is worth noting that the sender anonymous
channel and the reply blocks can be combined to offer a bi-
directional anonymous channel. In this scenario an anony-
mous sender Alice can send messages to an anonymous re-
ceiver Bob using his reply blocks. The message from Alice
is appended to Bob’s reply block, and then the result is en-
coded as a message to be sent to a random mix, with a slight
modification. Instead of indicating that the chosen mix is
the last one (by setting the address as ‘Final’), the direc-
tory index of the first mix of Bob’s reply block is included.
Therefore the message gets decoded as it travels to the cho-
sen mix, then the message gets encoded again as it travels
using Bob’s reply block towards Bob. Finally Bob can de-
code the message as if it were simply routed using his reply
block.

8. SECURITY EVALUATION
In this section we evaluate Minx against the security re-

quirements we set. We also highlight the differences with
mixminion and other mix designs.

8.1 Bitwise unlinkability
It should be impossible to link the encoded and decoded

versions of a packet without knowing the RSA public key
or the session key used to encode it. Because of the RSA
properties, and the key privacy mechanisms described above,
the first 128 bytes of all messages are indistinguishable from
random noise, if the private key is not known. The rest of
the message is encoded using the EP mode of operation and
should also be indistinguishable from noise if the session key
is not known. It is also impossible to link the plaintext with
the ciphertext after EP encryption (each block is encrypted
with a different and unknown session key). Since the session
key is never revealed, and is impossible to extract, it is not
possible to use the decoded packet and link it to the RSA
ciphertext. It is obvious that the random padding appended

3This leading bit influences the encoding and decoding of
all subsequent blocks because of the EP error propagation
properties.

to the message cannot be used to link it to any encoded
input.

Replay attacks are prevented by requiring each mix to
store a hash of the session key of each decoded message
(we call this the message identity). The one way property
of the secure hash function ensures that this record cannot
be used to derive any information about the session keys,
which could be used to link packets4. Messages containing
previously seen session keys are silently dropped. Note that
it is not possible to modify a message so that its identity
changes without destroying its contents. The EP forward
error propagation will ensure that after an honest mix has
processed the packet the message is unrecoverable. Since
replies are indistinguishable, and for other obvious security
reasons, each reply block can only be used to relay a single
message.

8.2 Information leakage
No information is leaked to the intermediate nodes or an

observer. In particular the number of hops is never known
to anyone. Even the final mix does not know how many hops
the message has traversed: since the message is of fixed size,
it will always contain the same amount of trailing noise,
which gives no information about the actual route length.

Furthermore a node only knows its position if it is the
last in the route or the last node of a reply block. This is
necessary since a special decoding step, using biEP, has to be
performed, and the message should be routed to its ultimate
destination using a transport protocol. On the other hand
other intermediate nodes do not know anything about their
position in the path of the message, and cannot infer any
information about it5. Given this level of protection some
of the attacks described in [6], using position information,
should not work.

In some cases, the final node can be the actual message
destination, providing further protection against attack.

8.3 Indistinguishable replies
The routing mechanism for messages using reply blocks is

exactly the same as for sender anonymous messages. There-
fore a mix cannot know which of the messages it is processing
are replies. This increases the anonymity sets for both cat-
egories of messages. The last mix on the path must know
which messages are to be forwarded to a final destination
and which are replies to be sent to the anonymous receiver.
For this reason a special flag is set to “Final” or “Reply” for
the appropriate processing to take place.

8.4 Simple tagging attacks
An attacker might try to modify the input, encoded mes-

sage, hoping to recognise the result of the modifications in
one of the decoding outputs to link them. Such attacks
should not work against Minx.

Unlike Mixmaster and, to some extent, Mixminion, which
use integrity checks, Minx defends against tagging attacks

4We believe that because of the properties of EP it is ac-
tually safe to store session keys, since they cannot be used
to decrypt partial messages, and the start of each message
is obscured by RSA. Nevertheless we recommend hashes for
extra security against seizure of records.
5The first mix might infer its position from the fact that a
client node, instead of another established mix, is injecting
a message.

exclusively by making the payload extremely fragile with re-
spect to any modification of the packet. When an adversary
modifies the packet in order to embed a tag, the EP mode
of operation, which is part of the decoding applied to the
packet by an honest mix, propagates this change towards
the end of the message. Therefore any useful information
contained in the payload, since it is placed at the end of the
mix packet, is destroyed.

Furthermore Minx ensures that tagging can only be de-
tected by the very last node, and no other on the path.
This is achieved by making a correctly decoded packet in-
distinguishable from the random strings that would be the
results of tagging. Therefore an adversary gains very lit-
tle information by tagging any of the message headers: not
only is all the payload information lost forever, but the mes-
sage follows a random path through the network until it is
eventually dropped.

To summarise the defences against tagging attacks:

• If the attacker modifies the RSA encrypted header the
resulting decryption will provide a random directory
index and session key. As a result the decoded pay-
load will be unpredictable and random, which would
destroy any information useful to the adversary.

• An attacker can try to tag the body of the message that
is encoded using the EP mode of operation. If this
modification touches a header, it will not be observ-
able, since the headers of messages cannot be distin-
guished from random, even by the honest mixes that
decode them. As a side effect the message will become
undecipherable, since the errors propagate towards the
end of the packet. A modification of the payload itself
would render it undecipherable, because of the biEP
encoding.

• Finally a modification of the random noise at the tail
of the packet would not yield any usable information.

We have already noted that a modified header will decode,
without producing any errors, to a random next address, a
random session key and a partially random payload (because
of the EP forward error propagation the rest of the message
will also become indistinguishable from random noise, after
an honest mix has decoded it). Therefore the mix will pro-
cess the message, and send it, despite it not containing any
meaningful information. This prevents corrupt mixes being
able to detect tagging attacks, and introduces noise into the
system when tagging occurs. To ensure that these packets
will not travel indefinitely we set aside a set of indexes out
of the directory to encode the “Final” label, which indicates
that the message should be decoded and routed to its final
destination. With probability 1/8 a random number will
produce a “Final” label, and the mix will process the mes-
sage as final, realise that it is noise, and drop it. On average
we expect such “ghost packets” to travel for 8 hops before
being discarded.

9. OVERHEADS
Minx uses a hybrid crypto system that combines the asym-

metric RSA cipher with the symmetric AES in EP mode.
The dominant cost of encoding a packet is the number of
modular exponentiations necessary, which is equal to the
number of intermediate mixes the packet is to be routed

through (on average it will be double this if the key-private
RSA scheme is implemented). The client only needs to store
locally a recent copy of the mix directory and a strong pass
phrase to decode reply blocks.

The communications overheads that Minx introduces are
limited, given the security properties sought. Assuming that
80 bit (10 bytes) keys are used, and the mix indexes in the
directory are 8 bits long (1 byte), the message grows by 11n
bytes, where n is the number of mixes it is relayed through.
The fact that all messages should be of the same length,
such as 32 kb, might lead to wasted bandwidth if a message
to be sent is shorter. With one kilobyte set aside to contain
routing information such a packet could still travel through
up to 93 intermediary mixes.

On the other hand reply blocks are 11(n− 1) + 128 bytes
long, where n is the number of intermediate mixes the reply
is to be routed through, and 128 bytes is the size of an RSA
ciphertext. This is due to the fact that none of the message
can be embedded in the RSA plaintext, since it is not known
to the creator of the reply block: it will be appended by the
user of the reply block to reply to the creator.

Finally each mix must perform a modular exponentiation
for each message it decodes, and is required to store a hash
of the resulting session keys (around 10 bytes). This hash
might seem short but it is expected that key rotation will
take place before the 240 messages required to have collisions
travel through the mix. There do not seem to be other
attacks that can make use of the shorter digest. This list
can be deleted, along with the private key of the mix, upon
key rotation.

10. RELATED AND FUTURE WORK
Previous work on cryptographic mix packet formats in-

cludes [7, 19, 14]; these are vulnerable to straight forward
tagging attacks [22, 21]. One mechanism invented to protect
mixes against such attacks is to include integrity protection,
as mixmaster [17], or the scheme analysed by Bodo Möller
does [16]. Another technique is to use zero-knowledge proofs
of correct shuffling to show that the inputs have not been
modified, as Neff [18] does. The hybrid asymmetric and
symmetric crypto technique used in Minx can be traced back
to hybrid encryption with minimal length described in [20].

Minx is simply a mix packet format, and not a complete
anonymous communication channel design. Minx could be
used in any topology such as free or restricted routes [8,
11], or a cascade [6] topology (in which case there will be
no need for the routing data present in each layer). How
to generate and use dummy traffic [5] is also an orthogonal
issue. Note that while any dummy traffic policy can be
implemented alongside the Minx packet format, modified
packets by default become dummy traffic since they turn to
random noise. Finally Minx is independent of the mixing
strategies that mixes implement and can be used by any of
them [25].

Because of its simplicity Minx is a prime candidate for
both practical use in remailer networks and route setup mes-
sages in Onion Routing [13], but also for further study. In
particular we are interested in formally proving some of its
properties, such as resistance to tagging attacks (Möller has
done something similar for a mix packet design in [16]). A
further challenge is to simplify the decoding procedure for
Minx reply blocks, that at the moment requires knowledge
of the reply block itself (although the mechanism we pro-

pose does not require any state to be kept per reply block).
Finally it is worth exploring more primitives and construc-
tions that provide integrity through ‘fragility’, such as the
EP and biEP modes of operations.

11. CONCLUSIONS
Minx fulfils all the security requirements of a mix packet

format and is simpler and less costly in terms of bandwidth
overheads than others proposed and implemented. It al-
lows encoding of sender anonymous messages, as well as
anonymous replies, in a unified fashion that increases the
anonymity provided to both types of messages. Further-
more the two mechanisms can be combined to provide a
bi-directionally anonymous channel.

Minx should be secure against quite a strong attacker
model: an adversary that observes the whole network, can
modify packets on any link, and controls a subset of the
path of each anonymous message. Despite these powers, a
packet encoded using Minx does not reveal any information
about its ultimate destination or contents. Novel techniques
based on fragile cryptographic constructions, which destroy
any useful information if modified, were used to achieve this.

Acknowledgements.This work has benefited from de-
tailed comments and criticisms from Bodo Möller, and the
anonymous reviewers’ comments. George Danezis is sup-
ported by the Cambridge-MIT Institute project entitled ‘The
design and implementation of third generation peer-to-peer
systems’.

12. REFERENCES
[1] Advanced Encryption Standard, FIPS-197. National

Institute of Standards and Technology, November
2001.

[2] R. Anderson and E. Biham. Two practical and
provably secure block ciphers: BEAR and LION. In
International Workshop on Fast Software Encryption.
Springer-Verlag, 1996.
http://citeseer.nj.nec.com/anderson96two.html.

[3] M. Bellare, A. Boldyreva, A. Desai, and
D. Pointcheval. Key-privacy in public-key encryption.
In C. Boyd, editor, Advances in Cryptology (Asiacrypt
2001), volume 2248 of LNCS, pages 566–582, Gold
Coast, Australia, 9-13 December 2001.
Springer-Verlag.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Message
authentication using hash functions: The HMAC
construction. RSA Laboratories’ CryptoBytes, 2(1),
Spring 1996.

[5] O. Berthold and H. Langos. Dummy traffic against
long term intersection attacks. In R. Dingledine and
P. Syverson, editors, Proceedings of Privacy
Enhancing Technologies workshop (PET 2002).
Springer-Verlag, LNCS 2482, April 2002.

[6] O. Berthold, A. Pfitzmann, and R. Standtke. The
disadvantages of free MIX routes and how to overcome
them. In H. Federrath, editor, Designing Privacy
Enhancing Technologies, volume 2009 of LNCS, pages
30–45. Springer-Verlag, July 2000.

[7] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 4(2), February 1981.

[8] G. Danezis. Mix-networks with restricted routes. In
R. Dingledine, editor, Privacy Enhancing Technologies
workshop (PET 2003), volume 2760 of LNCS, pages
1–17, Dresden, Germany, March 2003.
Springer-Verlag.

[9] G. Danezis. Better Anonymous Communications. PhD
thesis, University of Cambridge, Computer
Laboratory, 2004.

[10] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: Design of a Type III Anonymous
Remailer Protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, May 2003.

[11] R. Dingledine, V. Shmatikov, and P. Syverson.
Synchronous batching: From cascades to free routes.
PET 2004, 2004.

[12] D. Dolev, C. Dwork, and M. Naor. Non-malleable
cryptography. In 23rd ACM Symposium on the Theory
of Computing (STOC), pages 542–552, 1991. Updated
version at http:

//citeseer.nj.nec.com/dolev00nonmalleable.html.

[13] D. M. Goldschlag, M. G. Reed, and P. F. Syverson.
Hiding Routing Information. In R. Anderson, editor,
Proceedings of Information Hiding: First International
Workshop, pages 137–150. Springer-Verlag, LNCS
1174, May 1996.

[14] C. Gülcü and G. Tsudik. Mixing E-mail with Babel.
In Network and Distributed Security Symposium —
NDSS ’96, pages 2–16, San Diego, California,
February 1996. IEEE.

[15] N. Mathewson, R. Dingledine, and G. Danezis. Type
iii (mixminion) mix directory specification. Technical
report, The Mixminion Project, 2004.

[16] B. Möller. Provably secure public-key encryption for
length-preserving chaumian mixes. In M. Joye, editor,
Topics in Cryptology CT-RSA 2003, volume 2612 of
LNCS, pages 244–262, San Francisco, CA, USA, 13-17
April 2003. Springer-Verlag.

[17] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman.
Mixmaster Protocol — Version 2. Draft, July 2003.

[18] C. A. Neff. A verifiable secret shuffle and its
application to e-voting. In P. Samarati, editor, ACM
Conference on Computer and Communications
Security (CCS 2002), pages 116–125. ACM Press,
November 2001.

[19] C. Park, K. Itoh, and K. Kurosawa. Efficient
anonymous channel and all/nothing election scheme.
In T. Helleseth, editor, Advances in Cryptology
(Eurocrypt ’93), volume 765 of LNCS, pages 248–259,
Lofthus, Norway, 23-27 May 1993. Springer-Verlag.

[20] A. Pfitzmann, B. Pfitzmann, and M. Waidner.
ISDN-mixes: Untraceable communication with very
small bandwidth overhead. In W. Effelsberg, H. W.
Meuer, and G. Müller, editors, GI/ITG Conference on
Communication in Distributed Systems, volume 267 of
Informatik-Fachberichte, pages 451–463.
Springer-Verlag, February 1991.

[21] B. Pfitzmann. Breaking efficient anonymous channel.
In A. D. Santis, editor, Advances in Cryptology
(Eurocrypt ’94), volume 950 of LNCS, pages 332–340,
Perugia, Italy, 9-12 May 1994. Springer-Verlag.

[22] B. Pfitzmann and A. Pfitzmann. How to break the
direct RSA-implementation of MIXes. In Proceedings

of EUROCRYPT 1989. Springer-Verlag, LNCS 434,
1990.

[23] J. B. Postel. Simple mail transfer protocol. Technical
report, Request for comments number 821, August
1982.

[24] R. L. Rivest, A. Shamir, and L. M. Adleman. A
method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

[25] A. Serjantov, R. Dingledine, and P. Syverson. From a
trickle to a flood: Active attacks on several mix types.
In F. Petitcolas, editor, Proceedings of Information
Hiding Workshop (IH 2002). Springer-Verlag, LNCS
2578, October 2002.

[26] P. D. V. Gligor. Infinite garble extension. Technical
report, NIST, 10 November 2000.

