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Abstract. This paper studies anonymity in a setting where individuals
who communicate with each other over an anonymous channel are also
members of a social network. In this setting the social network graph
is known to the attacker. We propose a Bayesian method to combine
multiple available sources of information and obtain an overall measure
of anonymity. We study the effects of network size and find that in this
case anonymity degrades when the network grows. We also consider ad-
versaries with incomplete or erroneous information; characterize their
knowledge of the social network by its quantity, quality and depth; and
discuss the implications of these properties for anonymity.

1 Introduction

In the last few years defining and quantifying anonymity in the context of com-
munication networks has been a hot research topic. A substantial set of papers
focus on the definition of anonymity, others present designs and analysis of new
anonymous communication systems or attacks of existing ones. Yet more focus
on the theory of mix systems in order to improve our fundamental understanding
of anonymity properties which are possible or practically achievable. This paper
takes the fine line between theory and practice and attempts to evaluate the
anonymity properties of an abstract anonymous communication system within
the practical context of a social network.

We consider the anonymity of users belonging to a social network who com-
municate with each other via anonymous messages. The attacker is the global
passive adversary (she observes the inputs and outputs of the anonymous com-
munication network) and also has knowledge of the users’ profiles. First we
consider the two sources of information available to the adversary separately,
then we combine them and examine what happens as the network grows. Inter-
estingly, it turns out that the details of the mixing algorithm employed by the
anonymous communication system play a significant role. Next, we briefly show
how additional sources of information can be used by the attacker to further
reduce anonymity. Finally, we look at how the quantity, quality and depth of
knowledge about the users’ relationships affects our results.
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Our main contribution is evaluating how the uncertainty in the attacker’s
knowledge of user profiles affects anonymity. Indeed, we show that arbitrarily
small errors in the profiles can lead to arbitrarily large errors in the anonymity
probability distribution and hence point to the wrong subjects in the anonymity
set. We develop the intuition behind this result and evaluate the errors in the
anonymity probability distributions in the context of the social network. We con-
duct our experiments by simulation which helps us examine realistic scenarios.

2 Related Work

This paper belongs to a growing body ofwork focusing on the anonymity analysis of
anonymous communication systems.A substantial part of this literature consists of
papers evaluating the effectiveness ofmix-basedanonymity systems ina theoretical
setting;e.g., [6,11,18].Suchworkofteninvolvesassumptionssuchas“userspicktheir
communicationpartners uniformlyat random”whichhelpwith themathematics of
calculating anonymity, and hence aid our understanding and intuition, but do not
necessarily hold in practice. Furthermore, the authors often examine properties of
the anonymous communication systems and shy away from incorporating models
of users. This paper takes a more practical approach by assuming a social network,
deriving the attacker’s knowledge about users based on the fact that they belong to
such a network and then evaluating the performance of the anonymous communica-
tion system in the context of this knowledge. Furthermore, we evaluate how errors
in the information gained from the social network influence the correctness of the
anonymity (and thus, the attacker’s confidence in her result).

In order to evaluate anonymity in a practical setting, it is necessary to in-
corporate a priori information the attacker might have about communication
patterns of users. We briefly mention a number of papers that explore related
research problems. Diaz et al. [9] assume that some information on user proper-
ties is known, such that the user base can be partitioned in different groups that
share a similar profile. Clauß et al. [3, 4] propose a framework and metrics for
systems where the adversary has some information on user attributes. In these
papers the focus is on user properties or profiles, and little effort is made to
combine the knowledge gained through traffic analysis with the profile informa-
tion available to the attacker. In [3, 4], it is mentioned that the communication
layer information gained through traffic analysis can be modeled by means of at-
tributes, but no concrete example is given of how this could be realized. Finally,
Diaz et al. [13] showed a toy example where the combination of user sending
profiles and data gathered through traffic analysis resulted in higher anonymity,
contradicting what had been claimed in [4]. However, no general methodology
was given in [13] for computing anonymity metrics when several sources of infor-
mation are available. The most closely related paper which attempts to combine
knowledge about profiles with traffic analysis information is [8] where a lot of
the Bayesian theory we use is presented, but only a brief demonstration of the
technique is given. Here we give a number of practical examples and evaluate
the impact of errors in the profiles on anonymity.
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Perhaps the most related piece of related work in terms of the spirit of the
analysis and in the style of the results obtained is one of Dingledine and Matthew-
son [16]. They employ simulations in order to evaluate the effectiveness of sta-
tistical disclosure attacks on a model of an anonymity system; i.e., they attempt
to recover profiles from the communications data while we build assumptions
about profiles from the social network and then add the communications data
on top.

3 Preliminaries

3.1 System and Attacker Model

We consider a system where a set U of N users send messages to each other
through an anonymous communication channel modeled as a mix1. Since Chaum
[2] first proposed mixes for achieving anonymous communication in 1981, mul-
tiple designs have been proposed in the literature both for low-latency commu-
nication, e.g. [14] and for high-latency, message-based communication [5, 7, 15].

The adversary we consider can observe all input messages arriving to the mix
(and their respective senders), as well as all output messages leaving the mix (and
their recipients), but not the internal operations of the mix. Naturally, the mes-
sages are encrypted so the content is hidden. Although the attacker does not know
the correspondence between inputs and outputs, she is able to compute the prob-
ability distributions linking every input with all possible outputs and vice versa.

In addition to observing the mix inputs and outputs, the adversary has a
priori knowledge of the users’ sending behavior. We assume users to be linked
via a social network, and that users send messages to those who are in their
profile; i.e., their set of “friends.” We have used various methods to generate the
user sending profiles, which are described in detail in Appendix A.

3.2 Anonymity with One Source of Information

We draw on the literature, more specifically [12] and [17] for our definition of
anonymity. The basic idea of these metrics is to use the Shannon entropy [19] of
the probability distribution linking subjects to a message or action (normalized
entropy in the case of [12]). The entropy of this probability distribution gives
a measure of the uncertainty concerning the identity of the subject who origi-
nated/received a message. Entropy-based anonymity metrics take into account
both the number of users in the system and their probabilities of being linked
to a particular action, and anonymity increases both with the number of users
and the uniformity of the probability distribution linking them to messages.

The goal of our adversary is to identify the recipient of messages arriving
to the mix (recipient anonymity) or the sender of messages leaving it (sender

1 Our analysis and experiments apply to any abstract anonymous communication
channel for which probabilistic relationships between inputs and outputs can be
derived.
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anonymity). Therefore, the adversary makes hypotheses of the type “hypothesis
hj is true if uj is the sender (recipient) of this outgoing (incoming) message,”
and computes the probability Pr(hj) that hj is true. Given that every mes-
sage has one sender and one recipient, the probabilities Pr(hj) sum to one (i.e.,
∑N

j=1 Pr(hj) = 1).
In this paper we use the effective anonymity set size [17] as the metric for

sender and recipient anonymity. For a given message entering (leaving) the
mix, the recipient (sender) anonymity A is given by the Shannon entropy of
the probability distribution of each of the hypotheses hj being true; i.e., A =
−

∑N
j=1 Pr(hj) log2(Pr(hj)).

Let us first illustrate how anonymity is computed when only one source of
information is available to the attacker. If the attacker knows the sending profiles
of users, but cannot observe the inputs and outputs of the mix, the recipient
anonymity of a message sent by user u belonging to the user population U is
given by the entropy of her sending profile. That is, if u chooses user uj as her
recipient with probability Pr(u → uj), then the recipient anonymity provided
by u’s profile is Ap = −

∑N
j=1 Pr(u → uj) log2(Pr(u → uj)). Conversely, when u

receives a message, the anonymity of the sender is given by Ap = −
∑N

j=1 Pr(u ←
uj) log2(Pr(u ← uj)), where Pr(u ← uj) = Pr(uj→u)

∑
N
k=1 Pr(uk→u)

is the probability of
uj being the sender of a message received by u. In the remainder, we denote
the sending profile of a user u as P (u → U) = {Pr(u → uj), ∀uj ∈ U} and its
recipient profile as P (u ← U) = {Pr(u ← uj), ∀uj ∈ U}.

Alternatively, we can consider an adversary who can see the inputs/outputs
of the mix but does not have a priori knowledge of user profiles. The probability
of an input (output) message matching each of the outputs (inputs) depends on
the type of mix, overall traffic load and the timing of messages. Let us consider
a timed pool mix. Pool mixes work in cycles called rounds that comprise three
steps (1) collect: it collects messages from senders for a period of time T ; (2)
store: upon being received, messages are decrypted with the mix’s private key
(which allows it to retrieve the destination address), and stored in an internal
memory called pool ; and (3) flush: once the timeout T has expired, a fraction
of the messages are randomly selected and sent to their destinations, while the
rest is kept in the pool for the next round.

The probabilities of matching the mix inputs and outputs are computed as
follows [10]. Let mr be the number of messages contained in the mix in round
r (prior to the mix flushing), and sr be the number of messages sent by the
mix in round r. If a message M arrived to the mix in round r, its probability
Pr(M = Or′,i) of matching each of the sr′ outputs Or′,i that left the mix in
round r′ is:

Pr(M = Or′,i) = 0 if r′ < r

Pr(M = Or′,i) =
1

mr′
if r′ = r

Pr(M = Or′,i) =
1

mr′

r′−1∏

k=r

(1 − sk

mk
) if r′ > r
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The recipient anonymity Am provided by the mix to message M is given by
the entropy of the probabilities Pr(M = Or′,i). The computation of the probabil-
ities Pr(Ir′,i = M) linking an output M to all possible inputs Ir′,i is analogous,
and their detailed derivation can be found in [10]. Note that probabilistic re-
lationships between inputs and outputs can also be derived for other types of
mixes such as Stop-and-Go [15].

3.3 Anonymity with Several Sources of Information

Bayesian inference is an approach to statistics in which all forms of uncertainty
are expressed in terms of probability. It starts with an initial set of beliefs repre-
sented by an a priori probability distribution, which is updated as new evidence
is collected. The distribution indicates how likely it is for a hypothesis to be
true.

Let hj be the hypothesis that user uj is the sender (or recipient) of a given
message received (or sent) by user u, and Pr(hj) the prior probability of this
hypothesis being true. Let E be some evidence or observation that gives us
additional information on the truthfulness of hj , and Pr(E|hj) be the probability
of observing evidence E conditioned to hj being true. Bayesian inference can be
used to compute the posterior probability Pr(hj |E) of hj , given that we have
obtained evidence E. We denote this probability distribution by P (H |E) =
{Pr(hj |E), 1 ≤ j ≤ N}:

Pr(hj |E) =
Pr(hj) Pr(E|hj)

∑N
k=1 Pr(hk)Pr(E|hk)

In our setting, we consider that both sender profiles and mix input/output
observations are available to the adversary. The prior probability Pr(hj) is given
by the sending profiles of users, and corresponds to Pr(a → uj) in the case
of recipient anonymity, and to Pr(a ← uj) for sender anonymity (as explained
in the previous section). The conditional probability Pr(E|hj) is computed as
follows. For recipient anonymity (analogous for sender anonymity), let Rj be the
set of messages received by user uj . Given that u sent message M to uj (i.e.,
hj is true), the probability Pr(E|hj) of observing the evidence E corresponds to
the probability of the mix matching M to one of the messages received by uj:

Pr(E|hj) =
∑

Or′,i∈Rj

Pr(M = Or′,i)

Bayesian inference can be applied recursively if new independent evidence E′

becomes available to the adversary. We show results that introduce an additional
source of information in Sect. 5.2.

4 Analysis

4.1 Intuition

The attackers’ knowledge about the communication partners of users inside the
social network comes from two sources—observing the mix and her a priori
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knowledge of the user profiles. Naturally, if we have a perfectly anonymous com-
munication layer, the anonymity of the system comes only from the attacker’s
(lack of) information about the profiles. Conversely if the attacker has no infor-
mation on the profiles of the users, she is restricted to observing the commu-
nications layer; i.e., the mix. The more complex setting when the attacker has
knowledge of both is examined below.

Consider the case of users belonging to a vast social network and hence know-
ing a tiny fraction of the overall user population. In our model the attacker
can see the inputs and the outputs of the mix and knows the profiles of all the
users, so the only mixing that will take place is that between senders who share
potential recipients or between recipients who share potential senders. Hence if
the network grows and users’ connectivity remains constant, anonymity falls. On
the other hand, higher traffic load and number of users increase the anonymity
provided by the mix. In Sect. 5.1 we show the tradeoff between these two effects.

The increasing popularity of blogs and, more generally, the availability of
user-generated content makes it easy to gather a corpus of text linkable to an in-
dividual. Different people have different writing styles and patterns (such as word
frequency or preferred grammatical constructions), and statistical tests that de-
tect these patterns can be used to help identifying the authors of anonymous
text. We study in Sect. 5.2 how the results of such a test can be combined with
profiles and traffic analysis information, and its impact on sender anonymity.

The attacker’s knowledge of the social network can vary in its quantity, quality
and depth. She may know only of existence of links between individuals, the
extent of those links, lack knowledge of links in some part of the network and
hence have to make do with approximations or, worst of all, assume wrong
information. We assess the impact of each of these on anonymity in Sections 5.3,
5.4 and 5.5. Before proceeding to the results of the analysis, we give details of
our experimental setup.

4.2 Experimental Setup

We performed the analysis in the setting of a social network with a population
of users arranged in a small-world network constructed following the Watts-
Strogatz algorithm [21]. We also performed experiments on a scale free net-
work [1] created with preferential attachment and the same number of average
users, and the only noticeable difference was a larger variance in the results,
which is due to the more uneven distribution of links per node in these net-
works. Unless indicated otherwise, we consider in our experiments 1000 users
with an average of 20 friends each, arranged in a small world network with
parameter p = 0.1 (i.e., highly clustered).

Users send messages only to their friends (i.e., users linked to them in the
social network) with the probability specified in their profile. For the purposes
of our experiments, we have developed several sets of user profiles with slightly
different probability distributions. A detailed summary of the profiles used and
the algorithms used to generate them can be found in Appendix A.



50 C. Diaz, C. Troncoso, and A. Serjantov

We chose a Mixmaster [5, 20] mix, as it is the most widely deployed high-
latency network for anonymous email. The time intervals between users sending
messages follow an exponential distribution with parameter λ, common to all
users. We have chosen 1/λ to be 25 times greater than the timeout of the mix,
so if users send messages on average once a day, the expected delay is between
30 mins and 1 hour. In every experiment we simulate 130 rounds of mixing. We
then extract the information which could have been observed by the attacker
and compute the sender and receiver anonymity of each message.

5 Results

5.1 Growing the Network

In this section we consider the anonymity of users as the social network is scaled
up. To help develop the intuition we show the anonymity calculated from traffic
analysis (mix input/output observations) and knowledge of the profiles sepa-
rately. As the network grows, the anonymity provided by the mix increases as
shown in Fig. 1(a)(Mix) simply because more traffic goes through it. As for the
anonymity provided by the profiles (corresponding to Uniform profiles in Ap-
pendix A), we can see in Fig. 1(a)(Profile) that it remains constant, because we
assume that the connectivity does not increase with the network (though in a
real network it might increase slightly), which becomes more sparse. Interest-
ingly, Fig. 1(a)(Combined) shows that the combined anonymity decreases with
the network size. As we shall see, variations in parameters that have a posi-
tive (mix) or no (profiles) effect on anonymity when sources of information are
considered separately, can have a negative impact when all information is put
together.

In this particular case the decrease in anonymity with network size is due to an
interaction between profiles and mix function. Consider a random user Alice. The
attacker is aware of her sender profile, so only users who share friends with Alice
contribute to her anonymity. Alice and her friends send and receive on average
the same number of messages whether the network is large or small. At the same
time, the Mixmaster function [5] that determines the fraction f of messages sent
per round increases with the traffic load until it reaches its limit2—note that
in Fig. 1(a)(Combined) anonymity stabilizes beyond that point. Therefore, the
larger network induces the mix to flush a higher fraction of messages, which
consequently in the mix for fewer rounds. This effect, in fact, decreases the
amount of mixing, because friends of Alice who sent or received messages in the
rounds before or after her contribute less to her anonymity3.

2 The maximum fraction of messages sent by Mixmaster is f = 0.65. In our setting,
this is reached when there are around 2500 users.

3 Friends who sent messages during the same round as Alice contribute the same
amount as in the case of the smaller network.
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5.2 Adding Extra Information

In this section we briefly show how Bayesian inference can be used to incorpo-
rate additional sources of information. Consider, for instance, a writing pattern
recognition test. Let us assume that the attacker can run a test on the messages
at the output of the mix and compare the writing to available text from the
potential senders. This test outputs a true positive result with probability pt

and a false positive with probability pf , and therefore produces as result a set
of positives Up and a set of negatives Un.

Based on the evidence E′ produced by the test, the adversary can derive for
each user uj the probability Pr(hj |E′) that she was the true author of the text.
Users testing negative (i.e., uj ∈ Un) have probability Pr(hj |E′ = 0) of being
the writer, while those testing positive (i.e., uj ∈ Up) are the originator of the
message with probability Pr(hj |E′ = 1).

The posterior probability distribution P (H |E′) is computed applying
Bayesian inference as explained in Sect. 3.3. The evidence E′ is a vector with
zeros for users who tested negative and ones for those who tested positive. The
prior P (H) corresponds to the (already existing) probability distribution that
combines the profile and traffic analysis information. Assuming that E′ contains
k positives for a population of N users, P (E′|H) is computed as follows:

Pr(E′ = 0|hj) = (1 − pt)

(
N − 1

k

)

pk
f (1 − pf )N−k−1

Pr(E′ = 1|hj) = pt

(
N

k − 1

)

pk−1
f (1 − pf )N−k

We made experiments where we considered two tests that give correct answers
with different degrees of accuracy. The high accuracy test had a true positive
rate pt = 0.8 and a false positive rate pf = 0.01, while in the low accuracy one
these values were pt = 0.5 and pf = 0.1. The results are shown in Figure 1(b),
where we can see how the new information provided by the test reduces (on
average) sender anonymity. Note however the outliers: in some instances, the
additional information provided by text recognition test does not help reducing
anonymity. We further investigate this effect in Sect. 5.6.

5.3 Quantity of Profile Knowledge

In the previous section we compared anonymity in these cases: (i) the adver-
sary knows the profiles of all users, but cannot perform traffic analysis; (ii) the
adversary does not know any profiles, but can observe the mix; and (iii) the
adversary has access to all profiles and communication data. Here, we look at
sender and recipient anonymity towards adversaries who can observe all traffic
through the mix but only know a fraction of the user profiles (generated follow-
ing the Uniform description in Appendix A). We assume that the attacker has
perfect knowledge of some profiles, and knows nothing about the rest. Whenever
the attacker does not know a profile, she will consider it as uniform.
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(a) Anonymity vs network growth (b) Anonymity after combining
three sources of information

Fig. 1. Sender anonymity when various sources of information are available

In Figure 2(a) we show the results for recipient anonymity with respect to the
percentage of known profiles. On the left hand side of the figure (Mix) we show
the anonymity Am provided by the mix, which is independent from the quantity
of profile knowledge and thus invariant for all experiments. The center and right
hand side show, respectively, the anonymity Ap of the profiles and the combined
Ac. Recipients of users with unknown profiles are unaffected by the percentage
of known profiles, and enjoy the maximum anonymity that the mix can offer.
For them, the profile anonymity is Ap = log2(N) and the combined recipient
anonymity is Ac = Am. Conversely, recipients of profiled users do not benefit
from unknown profiles, and their recipient anonymity is the same regardless
of how many other profiles are known. The aggregation of these two sets of
recipient anonymity results can be clearly seen in the box plots of Fig. 2(a).
Note the sudden jump in the median when half the profiles are known, and the
values of the quartiles and outliers.

Unlike in the case of receiver anonymity, the percentage of known profiles af-
fects the sender anonymity of all users, profiled or not, in the same way. This is
because recipient profiles P (ui ← U) are computed using all sender profiles (see
Sect. 3.2), and unpredictability of some users’ sending patterns introduces uncer-
tainty for all messages. The results of our experiments are shown in Fig 2(b)—as
more profiles become available to the attacker, the sender profile and combined
anonymity decrease.

Note that although the behaviour of sender and recipient anonymity is dif-
ferent when the adversary has partial knowledge, the values are the same for
the extremes—i.e., sender and recipient anonymity are symmetric (in their dis-
tribution of values) both when all profiles are known and when all profiles are
unknown, but not when some profiles are and some are not.

Finally, note that in our experiment all users have non-uniform sending profiles
(they only send messages to their friends), so the adversary’s assumption of
uniform behaviour for unknown users introduces errors in her results. We further
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Fig. 2. Receiver (left) and sender (right) anonymity depending on the quantity of
profile knowledge

elaborate on the implications of having (or assuming) wrong information in the
next section.

5.4 Quality of Profile Knowledge

Human behaviour is hard to model and predict, and even the most sophisticated
adversary with access to vast amounts of information can only at best approx-
imate user behavioural profiles. Therefore, we can reasonably assume that in
a real world scenario there is going to be some difference between the profiles
guessed or predicted by the adversary and the actual user sending patterns. Fur-
thermore, due to the lack of available real-world data, little is known about how
user sending profiles might actually look like, or how they evolve in time. For
this reason, it is worth looking at the implications for the anonymity adversary
of making wrong behavioural assumptions, such as assuming uniform sending
profiles. In this section we study how noise in the profiles propagates and find
that small errors in the profiles may lead to big errors in the end results.

There are many ways for the adversary to construct her guessed profiles.
They can be obtained, to mention some examples, by studying the links between
users in online social networks such as Facebook or LiveJournal, by analyzing
user sending patterns when messages are sent over a non-anonymous channel
(assuming that the user does not always use the mix for sending her messages),
or by applying statistical disclosure attacks [8] to previous mix communications
of the user. The profile construction method and the quality of data available
to the adversary determine not only the accuracy of the profile, but also the
nature of the “error” with respect to the real profile. For example, users may be
linked in Facebook to acquaintances to whom they rarely or never send messages;
they may have friends to whom they only communicate through an anonymous
channel (and therefore do not appear in their non-anonymous communications);
and the profiles obtained through disclosure attacks are noisy versions of the
real sending patterns. Such a wide range of possibilities makes it hard to predict
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the type of profile errors we can expect in a real world scenario, and has led us
to consider various kinds of erroneous profiles.

One important thing to note is the independence between error magnitude
and actual anonymity value. Small errors in the final result indicate that the
probability distribution obtained by the adversary is roughly similar to the one
she would obtain had she used the true profiles; while large errors indicate that
the adversary’s view on who are the likely senders or receivers of a message is very
different from the actual distribution computed with the real profiles—regardless
of the entropy of the actual (guessed and true) distributions. Anonymity gives a
measure of the adversary’s uncertainty on who are the likely senders or recipients
messages given that all available information is correct; while errors model the
uncertainty of the adversary concerning the accuracy of her anonymity results,
assuming that some information may not be correct.

In order to measure and compare the magnitude of the errors in the profile and
final result making abstraction of the nature of the error, we use as metric the
Euclidean distance dist(x, y) =

√∑
i (x(i) − y(i))2 between true and guessed

probability distributions. We have chosen Euclidean distance for its simplicity
and well understood meaning, and because it provides clear bounds for the final
error—the maximum distance between two probability distributions occurs when
they are orthogonal; its value is

√
2 and the minimum distance is 0.

Let us illustrate with a toy example our method for quantifying the impact
of errors and the meaning of our results. Consider a simple scenario as the
one depicted in Fig. 3, with a population U = {A, B, C, ..., Z} and a unique
(threshold) mixing round. User A sends with uniform probability Pr(A → uj) =
1/4 to each of her four friends {B, C, D, F}, and with Pr(A → uj) = 0 to the
other users. The attacker, however, has a noisy version of A’s profile, and believes
that she chooses uniformly from the set {B, C, D, Z}. The attacker sees a single
round of a threshold mix where A sends a message which comes out to either
F or Z. Naturally, it was F as Z is not in A’s true set of friends. The attacker,
however believes it is Z, because he thinks that Z rather than F is in A’s set of
friends. Hence he wrong profile has led the attacker that Z is the recipient with
probability one. We note that in this example, the receiver anonymity computed
by the attacker when considering the wrong profile is zero (Aattacker = 0), as is
the one she would obtain if she had precise knowledge of A’s sending behavior
(Atrue = 0). However, the probability distribution obtained by the attacker is
very different from the true result, and consequently her error is large. As the
distance between the true and wrong results is much larger than the distance
between the true and wrong profiles, this example provides the intuition that
small errors in the profile may lead the attacker to completely wrong results.

Given that it is hard to predict the type of error the adversary is most likely
to make, we have tested multiple instances of erroneous profiles. These include:
(i) adding a tail to the profile distribution so that the probability of sending
to non-friends appears greater than zero—yet significantly smaller than the one
assigned to friends; (ii) introducing Gaussian noise; (iii) eliminating or (iv)
swapping friends; and (v) assuming uniform behaviour. Appendix B provides a
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dist(x, y) =
√∑

i (x(i) − y(i))2

Dp = dist(Ptrue(A → U), Pattacker(A → U)) = 0.35

Ptrue(H|E) =
{

1 if hj = F
0 if hj �= F

Pattacker(H|E) =
{

1 if hj = Z
0 if hj �= Z

Dc = dist(Ptrue(H|E), Pattacker(H|E)) =
√

2

Fig. 3. Example of how small errors in the profile can induce large errors in the at-
tacker’s results

detailed overview of the types of errors we have considered and the algorithms
used to generated them.

The results of our experiments are shown in Figures 4(a) and 4(b). In both
figures, the X axis represents the distance between the true user profiles (with
which the messages were generated) and the erroneous profiles considered by the
attacker; i.e., Dp = dist(Ptrue(A → U), Pattacker(A → U)). The Y axis expresses
the distance between the probability distributions the attacker would obtain with
the correct and wrong profiles; i.e., Dc = dist(Ptrue(H |E), Pattacker(H |E)). The
grey dots include results of experiments generated with the five error methods
previously mentioned, and we have highlighted in black the results for two types
of errors: adding a tail to the profile distribution (Fig. 4(a)) and assuming uni-
form profiles (Fig. 4(b)). We can see that the errors induced by adding a tail to
the profile are relatively benign compared to other types in the background, as
they take mostly low values in Y (note that this is the type of error obtained
when learning users’ profiles with a statistical disclosure attack). On the other
hand, whenever the adversary (due to lack of information) assumes users send
uniformly, she obtains a distribution that substantially deviates from the cor-
rect result—to the extent that she cannot have any confidence on whether or
not she is getting a good approximation to the correct anonymity set. This is ag-
gravated when we consider errors coming from swapping or eliminating friends,
which cover most of grey area.

5.5 Depth of Profile Knowledge

In some practical scenarios (e.g., Facebook) the adversary may guess the friend-
ship graph but lack enough data to estimate the strength of links between friends.
We say that the adversary’s guessed profiles lack depth when she cannot estimate
the frequency with which friends are chosen as recipients, in spite of accurately
distinguishing friends from non-friends (to whom users never send messages). In
these circumstances, the best the adversary can do is to consider that recipients
are picked uniformly at random from the set of friends. This is a special case of
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(a) Error: tail (b) Error: uniform

Fig. 4. Euclidean distance between true and guessed probability distributions vs dis-
tance between true and guessed profiles (quality of profile knowledge)

erroneous profiles like those analyzed in the previous section, but we have chosen
to present it separately for two reasons: first, because of its practical relevance
(such profiles would be reasonably easy to construct); and second, although the
profiles are noisy, correctly identifying friends (and non-friends) already provides
very valuable information to the attacker.

To better illustrate the impact of the attacker’s assumption, we consider that
users choose their partners of communication having strong preferences for some
of them (Skewed in Appendix A). In Fig 5 we show how the error in the com-
bined probability increases proportionally to the error in the profile. When the
true profile of a user is close to uniform4, the assumption of the attacker is not
far from the truth—the distance Dp between both profiles is small, and so the
distance Dc between the combined distributions. As Dp increases, so does Dc,
but as a rule of thumb we could say that the error Dc is most likely to be smaller
than the original error Dp. The contrast with the previous section’s results (con-
sidering profiles uniform in the whole population) indicates that an adversary
who correctly identifies friendship links obtains two advantages: she eliminates
non-friends from the anonymity sets, effectively decreasing anonymity; and she
has higher confidence in her result, because the true and guessed distributions
are comparatively closer to each other.

5.6 How Often Does Additional Information Reduce Uncertainty?

It was pointed out in [13] that in some cases additional information may result in
higher anonymity, even if on average anonymity decreases as more information

4 Because of the algorithm used to generate the profiles (see App. A), recipient profiles
are on average more uniform than sender profiles, this explains why the values in
Fig 5(b) are smaller than in Fig 5(a).
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Fig. 5. Receiver (left) and sender (right) anonymity error depending on depth of knowl-
edge

becomes available. In this section we present some results showing under which
conditions we can expect these cases to appear. In all experiments we used
Mixmaster (i.e., the anonymity Am provided by the mix is invariant), and a
small world network with 1000 users that send to friends with probability Prf

and to non-friends with Prnf , such that 0 ≤ Prnf ≤ Prf . The details of the
generation of profiles is available in Appendix A, under the name Step. We
study the results according to two variables: the number F of friends per user,
and a parameter 0 ≤ D ≤ ∞ that tunes the difference between Prf and Prnf ,
such that D = 0 implies Prnf = 0, and D = ∞ implies Prnf = Prf .

To better understand how sending behaviour affects anonymity, we have stud-
ied separately the frequency of cases where the combined anonymity Ac is higher
than the anonymity of the mix alone Am or the profile Ap, and its variation with
the parameters F and D. The results in Figs. 6(a) and 6(b) show, respectively,
the percentages of messages for which Ac > Am and Ac > Ap, which we denote
fc>m and fc>p.

To interpret the results, note that increasing F and/or D leaves Am constant;
increases Ap (because it makes the profile more uniform); and Ac increases as well
as a result of more uniform profiles. When D = 0 users only send to friends—i.e.,
the recipient anonymity set is reduced drastically—and Ac is always lower than
Am and Ap. For 0 < D < 1 and small F , Ap has increased only slightly, while
Ac benefits mostly from messages sent to non-friends—these are “rare5 events”
in which the hints coming from the mix and the profile are “contradictory.”
Given the profile always points to the highest probability friends, when the
mix points to (less probable) non-friends as most likely recipients, the mix and
profile distributions compensate instead of reinforcing each other, making the
combined distribution more uniform than one or both originals—i.e., Ac > Ap

and/or Ac > Am. This also explains the high fc>m for larger values of D. Once
F and/or D grow to make Ap > Am, it becomes harder for Ac to catch up with

5 Note that for D = 1 half the messages are sent to non-friends, even if the probability
of picking a concrete non-friend is small.
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Fig. 6. Percentage of cases where the combined anonymity is higher than the anonymity
of the mix only fc>m (a) and profile only fc>p(b)

it (we can see in the Fig. 6(b) that fc>p = 0 for F > 15 and/or D > 1.25). When
Ap hits its maximum with perfectly uniform profiles at D = ∞, the profiles stop
bringing any additional information and Ac = Am. Thus, fc>m = 0 at D = ∞
in Fig. 6(a).

6 Conclusions and Future Work

In this paper we examined the anonymity of users in the practical context of
a social network. We showed the overall anonymity is low and likely does not
increase with the size of the social network—if anything, it decreases as the
network becomes more sparse.

The positive result of this paper is that it is necessary to trust the social
network entirely to provide high quality information about the sender profiles
of the users, otherwise big mistakes can be made in the sender and receiver
anonymity of messages. Indeed, unless the profile is perfect, the results may be
meaningless as we demonstrated occurrences of huge errors in the anonymity
probability distribution even when the profile error is small. We have found
however that certain types of errors induce more bounded deviations than others
in the overall anonymity.

Many issues remain to be addressed, particularly in the practical setting.
Particularly interesting to us is the problem of assessing the anonymity of a
real social network such as Facebook and its approximation as mapped by the
attacker. Although we believe that we modeled the “friendship” between users
to a fair degree of accuracy by using a Watts-Strogatz graph, the extent of
the linkage and the resulting sender profiles remain a more difficult issue. Only
empirical modeling can gauge how much the real social dynamics differ from the
theoretical models employed here.

One extremely promising line of research is to set up and evaluate an attack
where the adversary continuously updates the social network graph with new
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information gained from observing the communication patterns and simultan-
iously tries to deanonymize the messages. Interestingly, the result of our paper
holds in this setting too – whatever the methodology of deriving the social net-
work graph, small errors in the graph may cause large errors in the anonymity of
the message. Although complex statistical disclosure attacks may prove efficient
at minimizing the errors in the graph, they can never eliminate such inaccura-
cies which may arise as a result of external factors, for instance changes of user
behaviour over time.
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A User Profiles

In order to create a diverse testbed for our experiments, we defined four different
kinds of user profiles. We create a profile P (u → U) for each user u in the set U of
N users connected through a friendship graph, and we say that uj is a “friend” of
u if they share and edge in the graph and a non-friend otherwise. In the following,
We denote the set of friends of u as fu := {uj ∈ U |Pr(u → uj) 	= 0} (cardinality
F ), and the set of non-friends as nfu := {uj ∈ U |Pr(u → uj) = 0} (cardinality
N −F ). The three first types of profiles (Uniform, Random and Skewed) restrict
users to sending only to their friends, while the fourth type (Step) allows users
to send to non-friends with a smaller probability than to friends.

PU : Uniform. users who send messages according to a PU profile pick their
recipient uniformly at random from their set of friends. P (u → U) is defined as:

P (u → uj) =
{ 1

F if uj ∈ fu

0 if uj /∈ fu

PR: Random. in this setting users send non-uniformly to their friends, but they
have no particularly strong preferences for any of them. Hence, this profile can be
considered a noisy version of PU . PR is created by generating a random number
between 0 and 1 for each friend, and normalizing the resulting distribution.

PK : Skewed. users whose profile is PK usually have strong preferences for
a small subset of their friends who are chosen as recipients very frequently,
while the others only appear sporadically. The algorithm to generate PK starts
defining μ = 1 as the initial probability “budget” available. Then we recursively

http://www.abditum.com/mixmaster-spec.txt
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(a) Fixed D and variable F (b) Fixed F and variable D

Fig. 7. Variation of PT (Step) profiles with F and D

assign to each friend a probability p chosen at uniformly at random from the
interval [0, μ], and update the value μ = μ − p describing the remaining budget.
We repeat the procedure until only one friend is left, to whom we assign the
remaining probability μ.

PT : Step. users with these profiles send messages to the whole population.
Nevertheless, they choose their friends as recipients more frequently than non-
friends. For user u, the probability assigned in her profile to each of her friends
uf is Prf = 1/F+D/N

1+D , while the probability assigned to each non-friend unf is

Prnf = D/N
1+D . F is the cardinality of the set of friends, and the influence of its

variation in the profile can be seen in Fig. 7(a). The parameter D influences
the relation, in terms of probability, between friends and non-friends. As D
increases, the sending profile becomes more uniform in all N potential recipients,
diminishing the difference between friends and non-friends, as shown in Fig. 7(b).
For D = 0, users never send to non-friends, and profiles are uniform on the whole
population for D = ∞.

B Erroneous Profiles

We simulate the adversary’s imprecise information as follows. For each user
u ∈ U we take her true profile P (u → U), generated as explained in Appendix A,
and we create a set of “erroneous profiles”, Pattacker,i(u → U), by applying one
of the following transformations:

Tail : we consider that if the adversary does not have accurate knowledge of u’s
profile, she will rather not exclude any user as potential contact of u (note
that a similar profile shape is obtained after applying statistical disclosure
attacks, with friends getting higher probabilities and non friends getting
lower—but not zero—probabilities). We model this by distributing 20% of
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the total probability to the set nfu, and we subtract this probability uni-
formly from the set of friends fu, so that the new profile probabilities add
up to one. We use this profile as basis when introducing the following errors.

Gaussian: we create two sets of profiles with this method, where we first add
Gaussian noise to each element in the profile and then normalize. The noise
samples come from two normal distributions N(μi, σ

2
i ) with μ1 = 0.01, μ2 =

0.05, and σ1 = σ2 = 0.3.
Eliminate: this error emulates situations where the attacker misses one or more

friends of u in her approximation of the profile, and considers them as non-
friends. As explained before, becoming a non-friend does not discard a user
as potential receiver of u, but it reduces her probability in u’s profile. In
our experiments we eliminate an increasing number of friends until only one
remains. Each time a friend is eliminated the probabilities of the remaining
friends are increased to compensate.

Swap: this error models the case where the attacker not only misses some
friends, but wrongly considers non-friends as likely recipients. This effect is
modeled by swapping (between one and all) the elements of fu with elements
of nfu, i.e. when a friend is erased from the set of contacts, a non friend takes
his place..

Uniform: this error simulates the case where the attacker has no knowledge
about the social network, and thus considers all profiles as uniform over all
population.
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