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Abstract

In this paper, we introduce a novel metric that can
quantitatively measure the practical effectiveness (i.e.
anonymity) of all anonymous networks in the presence of
timing attack. Our metric is based on a novel measure-
ment of the distortion of the packet timing between the in-
coming and the outgoing flows to and from the anonymous
network and it uses wavelet based analysis to measure the
variability of the distortion. To the best of our knowledge,
our approach is the first practical method that can quanti-
tatively measure the packet timing distortion between flows
that may have gone through such transformations as flow
mixing/spliting/merging, adding chaff, packet dropping.

To validate our anonymity metric, we have conducted
real-time timing attacks on various deployed anonymous
networks such as Tor, anonymizer.com and have used the
timing attack results as the ground truth for validating our
anonymity metric. We have found strong correlation be-
tween our anonymity metric and the timing attack results.
Our metric measurements and timing attack results show
that the circuit rotation in Tor network could significantly
increase its resistance to timing attack at the cost of more
timing disturbances to the normal users. In addition, we
have found that adding constant rate chaff (i.e. cover traf-
fic) has diminishing effect in anonymizing packet flows.

Keywords: Dependability benchmarking, Measurement

techniques, Networking and networked systems, Reliabil-

ity, availability and safety, Security.

1 Introduction

Privacy and anonymity are a major concern for Inter-

net users. To provide anonymous, real-time communica-

tion (e.g., Internet browsing) for Internet users, many low-

latency, anonymous networks (e.g. Anonymizer.com [3],

Crowds [25], Onion Routing [24], Tor [10], Hordes [28],

Web Mixes [6], Tarzan [13]) have been proposed to disguise

the identity and correspondence between the communicat-

ing parties.

However, the timing constraint imposed by the require-

ment of low-latency makes low-latency networks suscepti-

ble to the timing-attack [12, 30, 20, 21, 15, 29, 32, 33, 23],

which essentially exploits the timing correlation between

the original flow and the anonymized flow to correlate them.

Since no practical low-latency anonymous network could

completely eliminate the timing correlation between the

original flow and the anonymized flow, all practical low-

latency anonymous networks are subject to timing attacks.

Therefore, it is important to understand the negative impact

of timing attack on low-latency anonymous networks.

To evaluate the resilience of various low-latency anony-

mous networks against the timing attack, we need a met-

ric to quantitatively measure the effectiveness of various

anonymous networks in the presence of timing attack. Such

a generic metric not only lets us to compare different de-

ployed anonymous networks, but also enables us to analyze

new anonymity techniques in order to design better anony-

mous network in the presence of timing attack.

In this paper, we propose a novel metric that can quanti-

tatively measure the practical effectiveness (i.e. anonymity)

of all anonymous networks in the presence of timing at-

tack. Recognizing that the objective of anonymous net-

work is to disguise the anonymized flow as much as pos-

sible so that it is hard to be correlated with the correspond-

ing original flow in the packet timing domain, we build our

anonymity metric upon a novel measurement of the packet

timing distortion between the incoming and the outgoing

flows to and from the anonymous network. To the best of

our knowledge, our approach is the first practical method

that can quantitatively measure the packet timing distortion



between flows that may have gone through such transforma-

tions as flow mixing/spliting/merging, adding chaff, packet

dropping. We use wavelet-based multiresolution analysis

(MRA) to capture the variability of the timing distortion

at all scales, and quantify the effectiveness of low-latency

anonymous network in the presence of timing attack as the

wavelet-based energy.

To validate our anonymity metric, we have conducted

real-time timing attack on various deployed anonymous net-

works such as Tor, anonymizer.com, findnot, stegnos and

have used the timing attack results as the ground truth for

validating our anonymity metric. We have found strong cor-

relation between our anonymity metric and the timing at-

tack results. Our analytical and empirical results show that

the circuit rotation in Tor network could significantly in-

crease its resistance to timing attack at the cost of more tim-

ing disturbances to the normal users. In addition, we have

found that adding constant rate chaff (i.e. cover traffic) has

diminishing effect in anonymizing packet flows.

The rest of the paper is organized as follows. In section

2, we briefly overview related works in anonymous network

and timing attack. In section 3, we build our wavelet-based

energy metric upon a new packet timing distortion mea-

surement and describe several properties of the new metric.

In section 4, we empirically validate our new anonymity

metric with real time experiments on Tor, anonymizer.com,

Steganos, and findnot.com. We conclude in section 5.

2 Related works

Since Chaum [7] first introduced the mix network for

anonymous email, a number of low-latency anonymous net-

works [3, 1, 2, 24, 25, 28, 6, 17, 13, 27, 10] have been pro-

posed, developed and deployed. Notably, Onion Routing

[24] and its second generation, Tor [10], use a sequence

of proxies and public key encryption to protect the trans-

port of TCP flows. Crowds [25] uses randomly selected

proxies to make it hard to track the sender and receiver.

However, none of these methods were designed to pro-

vide the unlinkability of sender and receiver. Both Net-

Camo [17] and Tarzan [13] use cover traffic to anonymize

the real-time traffic. Hordes [28] uses multicasting to pro-

vide sender anonymity. P5 [27] uses broadcast to provide

sender-, receiver-, and sender-receiver anonymity assuming

the adversary is passive. Among the deployed low-latency

anonymous networks, anonymizer.com [3] is the most pop-

ular commercial anonymous communication service in the

USA and Tor [10] is the most popular open source low-

latency anonymous network.

To exploit the timing constraint of the low-latency

anonymous networks, a number of timing attacks [12, 30,

20, 21, 31, 15, 29, 32, 33, 23] have been proposed and

identified. Specifically, Wang et al. [32] have developed

an active flow watermarking scheme that has successfully

“penetrated” anonymizer.com [3]. Yu et al. [33] have

developed similar flow watermarking scheme based DSSS

(direct-sequence spread spectrum) technique. Murdoch and

Zieliński [22] conducted passive traffic analysis on sample

data collected from Internet exchanges.

Berthold at el [6] defined the degree of anonymity as the

log of the number of users in the system. Both Diaz [9]

and Serjantov and Danezis [26] proposed the information-

theoretic metric to measure the anonymity. Danezis [8]

further applied the metric [26] to continuous-time mixes,

where inter-arrival time of the messages is Poisson dis-

tributed. Zhu et al [34] investigated the relationship be-

tween the anonymity degree and information leakage from

an anonymous network. Hopper et al [19] studied the infor-

mation leak due to the knowledge of network latency (RTT)

and to what extent such information leak could be used to

compromise anonymity.

To the best of our knowledge, none of the existing

anonymity metrics has considered active timing attack in

their models. Therefore, no existing anonymity metric can

measure the effectiveness of low-latency anonymous net-

work under timing attack.

3 Wavelet-Based Energy Metric of
Anonymity

In this section, we present an energy-based metric to

quantitatively measure the effectiveness of anonymous net-

work in the presence of the timing attack. We first describe

the model of anonymous communication in the presence of

timing attack and then discuss how to measure the packet

timing distortion between two flows that may have different

number of packets. We define the effectiveness of anony-

mous network as the variability of the packet timing distor-

tion it introduces and we use wavelet based energy plot to

measure the variability at multiple resolutions. We demon-

strate several important properties of the newly proposed

wavelet based metric of the anonymous network.

3.1 Low-Latency Anonymous Network
Model and Packet Timing Distortion

Figure 1 illustrates the low-latency anonymous network

model we use in this work. We view the anonymous net-

work as a black box, and we assume there is no attacker

inside the black box. We only consider the incoming and

outgoing flows. Specifically, we assume all the incoming

and outgoing flows are encrypted and there exists no ob-

servable correlation between the content of incoming flow

and outgoing flow. The incoming flow X enters the low-

latency anonymous network and goes through various trans-

forms such as repacketization (i.e. combining several pack-
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Figure 1. Low Latency Anonymous Network
Model.
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Figure 2. Packet Timing Distortion Due to
Flow Transformation.

ets into one packet, splitting packet into multiple packets),

flow spliting/mixing, adding chaff, packet dropping. Y is

the corresponding outgoing flow of flow X . Note that one

incoming flow may have multiple corresponding outgoing

flows when there is flow splitting, and one outgoing flow

may have multiple corresponding incoming flows when

there is flow mixing. Furthermore, the anonymous network

may introduce bounded timing perturbation on each packet

of outgoing flows.

Despite significant transformations done by low-latency

anonymous networks, previous work [32] has shown that,

by transparently watermarking the flow at the packet tim-

ing domain, it is possible for the attacker to uniquely iden-

tify the transformed outgoing flows and correlate them with

their corresponding incoming flows. Such timing attacks

essentially exploit the fact that low-latency anonymous net-

works do not eliminate all the mutual information between

the incoming flows and the outgoing flows in the timing do-

main. The less the amount of mutual information is left in

the timing domain, the more resilient the anonymous net-

work is against timing attack. Apparently the amount of

mutual information in the timing domain is adversely af-

fected by the packet timing distortion by the anonymous

network.

Given a latency bound, different anonymity techniques

(e.g., flow mixing, packet dropping) may generate differ-

ent packet timing distortions, which in turn have different

adverse impact on the mutual information in the timing do-

main. Therefore, it is necessary to quantitatively measure

the packet timing distortion in order to study the effective-

ness of low-latency anonymous networks.

3.2 Measuring Packet Timing Distortion

While there are many works on measuring the network

delay jitter, they are not suitable for measuring the packet

timing distortion between the original incoming flow and

the anonymized outgoing flow. This is because there is no

guaranteed one-one correspondence between packets of the

incoming and the outgoing flows. In other words, some

(e.g., dropped) packet in the incoming flow may have no

corresponding packet in the outgoing flow, and some (e.g.,

bogus or chaff) packet in the outgoing flow may have no

corresponding packet in the incoming flow. In addition,

the packet timing of the incoming and outgoing flows may

not be precisely synchronized. All these make it difficult to

quantitatively measure the packet timing distortion between

two flows.

To address these issues in measuring the packet timing

distortion, we develop an interval based approach which di-

vides a flow duration into time intervals of equal length and

build the packet timing distortion metric upon the aggre-

gated time difference between two flows at the granularity

of the time interval. Such an approach allows us to quan-

titatively measure the packet timing distortion between two

flows even if they don’t have same number of packets.

Let X be the incoming flow to a low latency anony-

mous network, and flow Y be the corresponding outgo-

ing flow. Due to the low latency nature, flow X and flow

Y have about the same duration. We use Tf to represent

the duration of both flows X and Y . Assume flow X has

n > 0 packets px
0 , . . . , px

n−1 and flow Y has m > 0 pack-

ets py
0, . . . , p

y
m−1. We use t(px

i ) and t(py
i ) to represent the

timestamp of the i-th packet of flow X and Y respectively.

Here m and n may be different.

We divide the flow duration Tf into �Tf

T � time intervals

of equal length T > 0, and use S(i) to represent the start

point of interval i. Apparently, packet pi falls into interval

� t(pi)−t(p0)
T �. We use n(f, i) to denote the number of pack-

ets in interval i of flow f , and t̄(f, i) to denote the mean

of the timestamp of packets in interval i of flow f . When

n(f, i) = 0, we define t̄(f, i) = 0.

For interval i (i > 0) of flow f , we define fpne(f, i) to

be the index of the first, previous, non-empty interval that is

before interval i. For the first interval of flow f , we define

fpne(f, 0) = 0.

Let

x(f, i) = [t̄(f, i) − t̄(f, fpne(f, i))] × n(f, i) (1)

We define the aggregated time difference of interval i
between flow f1 and flow f2 to be

d(f1, f2, i) = [x(f1, i) − x(f2, i)] × S(i + 1) (2)

Note d(f1, f2, i) could be positive, negative or zero. For

example, in Figure 2, flow X has more packets than flow



Y in the (k − 2)-th interval [S(k − 2), S(k − 1)) and

fpne(X, k − 2) = fpne(Y, k − 2)) = k − 3. As a result,

d(X, Y, k − 2) > 0. On the other hand, d(X, Y, k − 1) < 0
since flow X has less packets than flow Y in the (k − 1)-th
interval [S(k−1), S(k)) and fpne(X, k−1) = fpne(Y, k−
1)) = k − 2. d(X, Y, k) = 0 since both flow X and flow Y
have no packet in the k-th interval [S(k), S(k + 1)).

We further define the overall packet timing distortion be-

tween flow f1 and flow f2 to be vector

D(f1, f2) = 〈d(f1, f2, 0), . . . , d(f1, f2, �Tf

T
� − 1)〉 (3)

3.3 Wavelet-Based Energy Plot

In this subsection, we analyze the variability of packet

timing distortion between two flows via wavelet-based

Multi Resolution Analysis (MRA). Specifically, we use the

wavelet-based statistical estimator developed by Abry and

Veitch [5, 11]. The wavelet-based MRA takes a sequence

of data as input and transforms the sequence of data into

a number of wavelet coefficients at different resolutions

and a low-resolution approximation. The output of dis-

crete wavelet transform (DWT) gives the detail coefficients

(from the high-pass filter) and the approximation coeffi-

cients (from the low-pass filter). The wavelet energy plot

shows the variance of the wavelet detail coefficients at all

time scales.

Given flow X , flow Y and interval size T0 > 0,

we can obtain a packet timing distortion vector

〈d(X, Y, 0), . . . , d(X, Y, �Tf

T0
� − 1)〉 from equation

(3) and feed this vector to the wavelet-based MRA as

input. Based on the input vector, the wavelet-based MRA

generate a series of vectors of different scales j:

D(X, Y, j) = 〈dj,0, . . . , dj,nj−1〉 (4)

where nj = �Tf

Tj
�, Tj = 2jT0 (j = 0, 1, ...) and

dj,k = dj−1,2k + dj−1,2k+1 for j > 0.

Let CD(X,Y,j)(p) be the pth (p = 0...Nj − 1) wavelet

detail coefficient at scale j for jth vector D(X, Y, j), where

Nj = 2−jnj is the number of wavelet detail coefficients at

scale j. The energy at time scale j is defined as the variance

of the coefficients. When E(CD(X,Y,j)(p)) = 0, the energy

at scale j is

ej =

∑Nj−1
p=0 [CD(X,Y,j)(p)]2

Nj
(5)

Here the wavelet-based MRA assumes that D(X, Y, j)
is covariance stationary in that 1) for a given j, the mean of

D(X,Y, j) is constant; and 2) the covariance between any

dj,k and dj,k′ only depends on |k − k′|.
From a linear algebra’s perspective, a wavelet detail co-

efficient of the wavelet transform can be thought as an inner

product of a high pass filter g (i.e. a vector of length l) and

a vector 〈dj,2p, ..., dj,2p+l−1〉.
We first consider Haar (Daubechies 2, l = 2) wavelet of

scale j, whose high pass filter g = 〈g0, g1〉 = 〈 1√
2
,− 1√

2
〉.

We have

CD(X,Y,j)(p) =
1√
2j−1

g · d̂j−1

=
1√
2j−1

(g0dj−1,2p + g1dj−1,2p+1)

=
1√
2j

(dj−1,2p − dj−1,2p+1) (6)

Therefore, a Haar wavelet coefficient essentially reflects

the difference between an even-numbered element and an

odd-numbered element of the (j − 1)th scale vector.

Let Δdj−1,p = dj−1,2p − dj−1,2p+1, the energy ej in

equation (5) at scale j for the Haar wavelet becomes

ej = 2−j

∑Nj−1
p=0 Δd2

j−1,p

Nj
(7)

Since E(Δdj−1,p) = 0, the energy ej at scale j can be

thought as the variance of the data variation Δdj−1,p.

Similarly, Daubechies 6 wavelet transform [11] uses a

highpass filter g = 〈g0, g1, g2, g3, g4, g5〉. The pth D6

wavelet coefficient at scale j is

CD(X,Y,j)(p) =
1√
2j−1

g · d̂j−1

=
1√
2j−1

(
5∑

q=0

gqdj−1,2p+q) (8)

where d̂j−1=〈dj−1,2p, dj−1,2p+1, ..., dj−1,2p+5〉T . Since∑5
k=0 gk = 01 and E(dj−1,k) = E(dj−1,k′) for all k 	= k′,

E(CD(X,Y,j)(p)) = 0. The energy at scale j for the D6

wavelet becomes

ej = 2−j+1

∑Nj−1
p=0 (

∑5
q=0 gqdj−1,2p+q)2

Nj
(9)

The wavelet-based energy plot shows the logarithm of

energy log2(ej) at all time scales, which reflects the vari-

ability of the input sequence of data at different scales. The

more variable the input data, the higher the energy will be.

For example, constant rate data series should have the low-

est energy since it has the least variability. Figure 3 shows

the energy plots (the logarithm of energy) of fixed length

(8192) data series of various distributions. The energy of

constant data series is very close to zero (< 2−28). In addi-

tion, the energy of linear increasing data series is also close

1g0=0.035226, g1=0.085441, g2=-0.135011, g3=-0.459878,

g4=0.806892, g5=-0.332671
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Figure 3. Energy Plots of Data Series of Vari-
ous Distributions

to zero. Both Poisson and Gamma distributed data series

have fixed energy, and periodic (with repeating pattern) dis-

tributed data series has decreasing energy level approaching

to zero with increasing time scale.

3.4 Properties of the Energy-Based Met-
ric

Given packet flows X , Y and interval size T0, we can

get the packet timing distortion between X and Y D(X, Y )
from equations (1) (2) (3). We can further get the energy

of the packet timing distortion between X and Y at scale j
from equations (4) (5). We use ej(D(X, Y )) to denote the

energy of the packet timing distortion between flows X and

Y at scale j. The energy-based metric ej(D(X, Y )) has the

following properties

1. Zero energy for no distortion ej(D(X, X)) = 0 for

all j.

It is easy to see that D(X, X, j) = 〈0, . . . , 0〉 for all j.

Therefore, CD(X,X,j)(p) = 0 for all j and p.

2. Commutativity or Symmetry ej(D(X, Y )) =
ej(D(Y, X)) for all j. From equations (2) and (3),

D(X,Y ) = −D(Y, X). Therefore, CD(X,Y,j)(p) =
−CD(Y,X,j)(p) from equations (6) and (8). From

equation (5) we have ej(D(X, Y )) = ej(D(Y,X)).

3. Zero energy change by adding a constant to the
distortion ej(D(X, Y )) = ej(D(X, Y ) + ĉ) where

ĉ = 〈c, . . . c〉 be any vector of any constant c of the

same number of elements as that of D(X, Y ). Adding

a constant vector ĉ to the distortion vector D(X, Y )
is equivalent to adding some constant vector ĉ′ =
〈c′, . . . , c′〉 to d̂j−1 for all j. Since

∑l−1
k=0 gk = 0 for

Daubechies l wavelet, we have

g · (d̂j−1 + ĉ′)

= g · d̂j−1 + g · ĉ′
= g · d̂j−1

Therefore, the energy plot captures only the variabil-

ity of the packet timing distortion and it ignores any

constant changes on each element of the packet timing

distortion.

4. Constant energy plot change by multiplying the
distortion by a non-zero constant Suppose we

multiply each element of D(X,Y ) with a 	=
0, then ej(aD(X, Y )) = a2ej(D(X, Y )) or

log(ej(aD(X,Y ))) = 2 log(a) + log(ej(D(X, Y ))).
In other words, multiplying the distortion by a non-

zero constant will move the energy plot up or down

by a constant. This means that changing the unit of

the packet timing distortion will not affect the shape of

the energy plot nor will it affect the relative distance

between the energy plots of different distortions of dif-

ferent pairs of flows at any scale.

Note while property 3) states adding constant to the dis-

tortion vector will not change the energy of the distortion,

it does not mean adding constant rate packets to one flow

will not change the energy of the packet timing distortion.

In fact, mixing or adding constant rate packet flow to flow

Y may change the energy of the packet timing distortion

between X and Y in that ej(D(X, Y )) 	= ej(D(X, Y + ĉ))
where ĉ is a constant rate packet flow. However, as we will

show empirically in section 4, adding constant rate flow to

a flow will have diminishing impact on the energy of the

packet timing distortion. Specifically, ej(D(X, Y + ĉ1)) ≈
ej(D(X, Y + ĉ1 + ĉ2)) where ĉ1 and ĉ2 are constant rate

packet flows.

4 Evaluation

In this section, we empirically evaluate our energy-based

metric via both real time and offline experiments. The goals

of this evaluation are two fold. First, we want to validate our

energy-based metric and see if it really measures the practi-

cal effectiveness of low-latency anonymous network in the

presence of timing attack. Second, we want to gain further

insight from applying the energy-based metric to various

anonymity techniques.

To validate the new metric, we conduct timing at-

tack on four leading low-latency anonymous networks

Anonymizer.com, Tor, Findnot.com and Steganos and use

the timing attack results as the ground truth about the effec-

tiveness in the presence of timing attack.
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Figure 4. Timing Attack against Anonymous
Web Traffic
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Figure 5. Timing Attack against SSH traffic
Anonymized by Tor

We further evaluate, both analytically and empirically,

the impacts of Tor circuit rotation and adding constant rate

chaff on the effectiveness of the low-latency anonymous

networks in the presence of timing attack.

4.1 Experimental Setup

Figure 4 shows the experimental setup for the timing at-

tack on web traffic anonymized by various anonymous net-

works. Specifically, we have setup an Apache web server

as the reverse proxy for news.google.com on a Dell

Dimension 3000 PC running Redhat Enterprise 4 Linux of

kernel 2.6.10. We have also configured the Apache web

server to use non-persistent HTTP protocol so that every re-

quest and response would use a separate TCP connection.

To watermark the web traffic from the Apache web server

to the client, we have installed the watermark encoder at the

host where the Apache reverse proxy ran. To decode the

watermarked flow out of the anonymous network, we have

setup a Dell Precision 390 running Redhat Enterprise 4 as

a NAT router, which would route the client’s web request

traffic to the entry point of the chosen anonymous network

and forward the web response traffic from the anonymous

network to the original client.

At the client, we have manually generated the Web Traf-

fic by clicking some URL on news.google.com once every

8 to 10 seconds. At the NAT router, We have collected the

anonymized web response traffic and decoded the water-

mark from the the network traces collected there.

Figure 5 shows the configuration for the timing attack
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Figure 6. Energy Plots of the Timing Distor-
tion by Various Anonymous Networks

on SSH traffic anonymized by Tor. We have setup an

SSH server and the watermark encoder at one Linux ma-

chine. From the Tor network status web site [4], we have

chosen to use ‘croeso’ with IP address 149.9.0.56 as the

fixed entry node of Tor and ‘illuminata’ with IP address

65.111.168.165 as the fixed exit node of Tor. We have gen-

erated SSH traffic at the client by randomly typing echoing

commands with average 3 characters per second, and we

have decoded the watermark at the SSH client machine.

4.2 Empirical Validation of the Energy-
Based Metric

We have conducted the timing attack [32] on four repre-

sentative low-latency networks: Anonymizer.com [3], Tor

[10], Findnot.com [1] and Steganos [2], and have used the

timing attack results as the ground truth for validating the

energy-based metric. The idea is to watermark the incoming

flow to the anonymous network and try to recover the wa-

termark from the corresponding outgoing (i.e. anonymized)

flow. The better we can recover the watermark from the

anonymized flow, the weaker the anonymous network is.

We have routed web traffic from Google news through

all the above 4 anonymous networks (shown in Figure 4).

We have also routed SSH traffic through Tor (shown in Fig-

ure 5). We have watermarked [32] the return web traffic and

the return SSH traffic toward the web browser and the SSH

client respectively with 32 bit watermark of redundancy 5

using 500ms interval size and 350ms maximum timing ad-

justment. This requires the to-be-watermarked flow to be

at least 160 seconds long. We have collected both the in-

coming flow (i.e. the original flow) denoted as X and the

corresponding outgoing flow (i.e. the anonymized flow) de-

noted as Y to and from all the anonymous networks, all of

which are at least 180 seconds long.



Table 1. Average of the Logarithm of En-
ergy Eavg and Watermark Decoding Suc-
cess Rate of Timing Attacks of Redun-
dancy 5 (180 Seconds) on Various Anony-
mous Networks

Anonymities Eavg Decoding Packet rate(pkt/s)

Tor SSH 11.49 96.87% 4.23

Steganos 16.81 96.43% 12.77

Findnot 18.16 91.00% 13.53

Tor CR0 18.10 87.03% 13.13

Tor CR1 19.29 72.15% 11.57

Anonymizer 22.68 59.37% 8.01

We have set the smallest scale T0 = 0.5 second, and we

have measured the energy ej(D(X, Y )) of the timing dis-

tortion between X and Y for all pair of traffic at scales 1 to

5. Figure 6 shows the energy plots of the timing distortion

by Anonymizer.com, Tor, Findnot.com and Steganos. For

web traffic, Anonymizer.com has the highest energy at all

scales, Steganos has the lowest energy, Findnot has about

the same energy level as Tor when it has no circuit rota-

tion. We have found that one circuit rotation in Tor would

increase the energy at all scales. This suggests that Tor cir-

cuit rotation increases the variability of the timing distortion

between the original flow and the anonymized flow by Tor.

We have decoded the outgoing (i.e. anonymized) wa-

termarked flows from various anonymous networks, Ta-

ble 1 summarizes the watermarking decoding results.

Anonymizer.com has the lowest watermark decoding suc-

cess rate 59.37% for web traffic, which means it has the

strongest resistance to timing attack among all the anony-

mous networks we have tested. Tor SSH has the highest

watermark decoding success rate 96.87%, which means it

is very weak in front of timing attack. Column Eavg in

Table 1 shows the average of the logarithm of energy in

all scales in Figure 6, and it is clearly negatively correlated

with the watermarking decoding success rate. This confirms

the intuition that the higher the energy of the timing distor-

tion by a anonymous network, the stronger resistance it has

against the timing attack. This indicates that our energy-

based metric can indeed measure the practical effectiveness

of low-latency anonymous network in the presence of tim-

ing attack.

4.3 Impact of Tor Circuit Rotation

As shown in the left bottom part of Figure 4, a Tor circuit

consists of 3 nodes: the entry, the relay and the exit nodes.

Normally, the Tor circuit is fixed for web traffic. However,

Tor network could have circuit rotation due to changes of

network condition (e.g., overloading of one Tor node). As
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Figure 7. Energy Plots of the Timing Distor-
tion by Anonymizer.com and Tor with 0 to 5
Circuit Rotations

shown in Figure 6, circuit rotation in Tor would increase

the energy of the timing distortion of Tor at all scales. It is

worthwhile to study the impact of circuit rotation of Tor on

the effectiveness of Tor in the presence of timing attack.

We have conducted real-time experiments on Tor and

have manually triggered 1 to 5 circuit rotations by chang-

ing the relay node in different runs. Specifically, we have

randomly select the multiple Tor nodes from the lists shown

in the real-time Tor network status monitor [4] as the new

relay node for the circuit rotation. The following Tor debug

information shows one instance of 5 Tor circuit rotations

happened in a duration of 420 seconds (16:39:08-16:46:08)

16:39:08.072 [info] connection ap handshake send begin():
Address/port sent, ap socket 11, n circ id 19098 # Initial Circuit
... ...
16:43:58.104 [info] connection ap handshake send begin():
Address/port sent, ap socket 15, n circ id 6172
16:45:28.117 [info] connection ap handshake send begin():
Address/port sent, ap socket 16, n circ id 6173 # Final Circuit

We have watermarked the incoming flows to Tor and

Anonymizer.com with 32 bit watermark of redundancy 10,

350ms maximum timing adjustment and 500ms interval

size. We have collected both the incoming flow (i.e. the

original flow) denoted as X and the corresponding outgo-

ing flow (i.e. the anonymized flow) denoted as Y to and

from Tor in our experiments with 0 to 5 circuit rotations, all

of which are at least 350 seconds long to accommodate up

to 5 Tor circuit rotations.

Table 2 shows the number of packets of both the in-

coming and outgoing flows to and from Tor. It shows

Tor will normally decrease the number of packets when it

anonymizes a packet flow.

Using minimum time scale T0 = 0.5 second, we have

measured the energy ej(D(X, Y )) of the timing distortions



Table 2. Number of Packets of Flows in Tor
Circuit Rotation Experiments

Circuit Rotations Incoming flow X Outgoing flow Y
Tor CR0 8350 7926

Tor CR1 7919 7891

Tor CR2 6583 6472

Tor CR3 6052 6055

Tor CR4 5904 5328

Tor CR5 6105 5469

Table 3. Average of the Logarithm of Energy
Eavg and Watermark Decoding Success Rate
of Timing Attacks of Redundancy 10 (180
Seconds) on Tor with 0-5 Circuit Rotations

Anonymities Eavg Decoding Packet rate(pkt/s)

Tor CR0 20.17 91.25% 24.01

Tor CR1 20.37 85.93% 21.25

Tor CR2 20.66 85.1% 18.66

Tor CR3 21.22 82.14% 16.85

Tor CR4 20.98 75.0% 15.16

Tor CR5 21.17 72.91% 15.66

Anonymizer 23.47 69.7% 8.83

of Tor with 0-5 circuit rotations. Figure 7 shows the energy

plots for the timing distortion by anonymizer.com and Tor

with different circuit rotations. It clearly shows that circuit

rotation in Tor will increase the energy at all scales. How-

ever, Anonymizer still have the highest energy compared

with all Tor circuit rotations.

We have decoded the outgoing flows from

Anonymizer.com and Tor with 0 to 5 circuit rotations

with redundancy 10. Table 3 shows the watermark decod-

ing success rate and the average of the logarithm of energy

at all scales. The average logarithm of energy and the

watermark success rate in Table 3 are generally negatively

correlated.

When there is no circuit rotation, Tor is very weak in

front the timing attack [32]. For example, time attack of

redundancy 10 [3] can achieve 91.25% watermark bit de-

coding success rate on the web traffic anonymized by Tor

without circuit rotation. However, each additional Tor cir-

cuit rotation will decrease the watermark decoding success

rate – making Tor more resistent to timing attack. 5 Tor

circuit rotations can decrease the watermark bit decoding

success rate of the same timing attack to 72.91%. At the

same time, Tor circuit rotation tends to increase the energy

of the timing distortion by Tor. We have noticed that Tor cir-

cuit rotation will introduce long idle period in the outgoing
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Figure 8. Energy Plots of the Timing Distor-
tions by Adding Constant Rates Chaff to a
Synthetic Constant Rate Flow

flow, which makes the anonymized flow more bursty thus

have higher energy. However, Anonymizer.com still has the

lowest watermark decoding success rate than Tor with 5 cir-

cuit rotations. This timing attack result is consistent with

the energy plot shown in Figure 7.

In summary, Tor circuit rotation increases Tor’s resis-

tance to timing attack at the cost of more timing distur-

bances to Tor user. The wavelet-based energy plot can ac-

curately model the impact of Tor circuit rotation.

4.4 Impact of Adding Constant Rate
Chaff

Adding cover traffic or chaff has long been believed an

effective way to anonymize network flows, and a number

of proposed anonymous systems [18, 16, 13] are based

on adding cover traffic. However, previous research [14]

suggested that adding constant rate chaff is not optimal in

achieving anonymity. Recent work by Wang et al. [32] has

proved both analytically and empirically that adding cover

traffic has fundamental limitations in anonymizing suffi-

ciently long flows. Specifically, adding constant rate chaff

has been shown to have neglectable impact on the timing

attack developed by Wang et al. [32].

We have evaluated the impact of adding constant rate

chaff on our wavelet-based energy metric using both syn-

thetic flow and real flows.

We have generated a 3000 seconds long synthetic flow

X of constant rate of one packet every 300ms, then we have

add flow X with chaff of different constant rates: one chaff

packet every 100, 200, 300, 400 and 500ms to the chaffed

flow Y . Using the same minimum scale T0 = 0.5 second,

we have measured the energy of the timing distortions be-

tween synthetic flow X and the chaffed flows Y of different
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Figure 9. Energy Plots of the Timing Distor-
tions by Adding Constant Rate Chaff to Real
Flows

chaff rates. Figure 8 shows the corresponding energy plots

of the timing distortions caused by adding different rates of

chaff. It clearly shows that adding constant rate chaff to

constant rate flow only introduces timing distortion of ap-

proaching to zero energy.

To understand the impact of adding constant rate chaff

to non-constant rate flow, we have used real flows collected

from experiments on Tor. Specifically, X is a 350-second

long incoming flow to Tor and Y is the corresponding 350-

second long outgoing flow from Tor. Here X is not water-

marked and we have not manually triggered any Tor circuit

rotation. We have added one chaff packet every 50ms to Y
to get the chaffed flow Y ∗. As a result, flow Y ∗ has 14212

packets while the original Y has 7213 packets. In other

words, the chaff added is about 100% of the original pack-

ets. We have further added one chaff packet every 99ms to

Y ∗ to get Y ∗∗.

Figure 9 shows the measured logarithm of energy of the

timing distortions between X and Y , X and Y ∗, X and

Y ∗∗, Y and Y ∗, Y and Y ∗∗. Despite significant amount

of chaffed added, ej(D(X, Y )) ≈ ej(D(X, Y ∗)) ≈
ej(D(X,Y ∗∗)) and ej(D(Y, Y ∗)) ≈ ej(D(Y, Y ∗∗)) at all

scales j. These analytical results are consistent with the

findings of previous works [32, 33] that adding constant rate

chaff does not increase the resistance to the timing attack.

Therefore, our anonymity metric can model the diminishing

effect of adding constant rate chaff to anonymous network.

5 Conclusion

All practical low-latency anonymous networks are sus-

ceptible to timing attack due the timing constraint imposed

by the low-latency requirement. A quantitative metric is

needed in order to understand and analyze the negative im-

pact of timing attack on low-latency anonymous networks.

The key contribution of this paper is that we have de-

veloped a wavelet-based energy metric that can quantita-

tively measure the practical effectiveness of all low-latency

anonymous networks in the presence of timing attack. Our

metric is based on a novel measurement of the timing distor-

tion of the packet timing between two flows that may have

different number of packets, and it uses the wavelet-based

energy of the timing distortion to represent the practical ef-

fectiveness of the low-latency anonymous network in the

presence of timing attack.

We have validated our wavelet-based energy metric

with real-time experiments on leading low-latency anony-

mous networks Anonymizer.com, Tor, Findnot.com and

Steganos, and we have used the timing attack results as the

ground truth. We have found strong correlation between the

timing attack results and the metric measurements. We have

further found that the circuit rotation in Tor network could

substantially increase Tor’s resistance to the timing attack

at the cost of more timing disturbances to the normal users.

Our wavelet-based energy metric has also confirmed that

adding constant rate chaff (i.e. cover traffic) has diminish-

ing effect in anonymizing network flows.

In our future work, we plan to use the newly developed

wavelet-based energy metric to systematically analyze var-

ious anonymity techniques such as batch, flow transforma-

tion and seek more effective anonymity techniques against

the timing attack.
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