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Abstract

We provide a framework for reasoning about information-hiding require-
ments in multiagent systems and for reasoning about anonymity in particular.
Our framework employs the modal logic of knowledge within the context of
the runs and systems framework, much in the spirit of our earlier work on se-
crecy [Halpern and O’Neill 2002]. We give several definitions of anonymity
with respect to agents, actions, and observers in multiagent systems, and we
relate our definitions of anonymity to other definitions of information hid-
ing, such as secrecy. We also give probabilistic definitions of anonymity
that are able to quantify an observer’s uncertainty about the state of the sys-
tem. Finally, we relate our definitions of anonymity to other formalizations
of anonymity and information hiding, including definitions of anonymity in
the process algebra CSP and definitions of information hiding using function
views.

1 Introduction

The primary goal of this paper is to provide a formal framework for reasoning
about anonymity in multiagent systems. The importance of anonymity has in-
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creased over the past few years as more communication passes over the Internet.
Web-browsing, message-sending, and file-sharing are all important examples of
activities that computer users would like to engage in, but may be reluctant to do
unless they can receive guarantees that their anonymity will be protected to some
reasonable degree. Systems are being built that attempt to implement anonymity
for various kinds of network communication (see, for example, [Goel, Robson,
Polte, and Sirer 2002; Ahn, Bortz, and Hopper 2003; Levine and Shields 2002;
Reiter and Rubin 1998; Sherwood, Bhattacharjee, and Srinivasan 2002; Syverson,
Goldschlag, and Reed 1997]). It would be helpful to have a formal framework in
which to reason about the level of anonymity that such systems provide.

We view anonymity as an instance of a more general problem: information
hiding. In the theory of computer security, many of the fundamental problems and
much of the research has been concerned with the hiding of information. Cryp-
tography, for instance, is used to hide the contents of a message from untrusted
observers as it passes from one party to another. Anonymity requirements are in-
tended to ensure that the identity of the agent who performs some action remains
hidden from other observers. Noninterference requirements essentially say that
everythingabout classified or high-level users of a system should be hidden from
low-level users. Privacy is a catch-all term that means different things to different
people, but it typically involves hiding personal or private information from others.

Information-hiding properties such as these can be thought of as providing an-
swers to the following set of questions:

• What information needs to be hidden?

• Who does it need to be hidden from?

• How well does it need to be hidden?

By analyzing security properties with these questions in mind, it often becomes
clear how different properties relate to each other. These questions can also serve
as a test of a definition’s usefulness: an information-hiding property should be able
to provide clear answers to these three questions.

In an earlier paper [Halpern and O’Neill 2002], we formalized secrecy in terms
of knowledge. Our focus was on capturing what it means for one agent to have
total secrecy with respect to another, in the sense that no information flows from
the first agent to the second. Roughly speaking, a high-level user has total secrecy
if the low-level user never knows anything about the high-level user that he didn’t
initially know. Knowledge provides a natural way to express information-hiding
properties—information is hidden froma if a does not know about it. Not sur-
prisingly, our formalization of anonymity is similar in spirit to our formalization
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of secrecy. Our definition of secrecy says that a classified agent maintains secrecy
with respect to an unclassified agent if the unclassified agent doesn’t learn any new
fact that depends only on the state of the classified agent. That is, if the agent
didn’t know a classified factϕ to start with, then the agent doesn’t know it at any
point in the system. Our definitions of anonymity say that an agent performing an
action maintains anonymity with respect to an observer if the observer never learns
certain facts having to do with whether or not the agent performed the action.

Obviously, total secrecy and anonymity are different. It is possible fori to have
complete secrecy while still not having very strong guarantees of anonymity, for
example, and it is possible to have anonymity without preserving secrecy. How-
ever, thinking carefully about the relationship between secrecy and anonymity sug-
gests new and interesting ways of thinking about anonymity. More generally, for-
malizing anonymity and information hiding in terms of knowledge is useful for
capturing the intuitions that practitioners have.

We are not the first to use knowledge and belief to formalize notions of in-
formation hiding. Glasgow, MacEwen, and Panangaden [1992] describe a logic
for reasoning about security that includes bothepistemicoperators (for reasoning
about knowledge) anddeonticoperators (for reasoning about permission and obli-
gation). They characterize some security policies in terms of the facts that an agent
is permitted to know. Intuitively, everything that an agent is not permitted to know
must remain hidden. Our approach is similar, except that we specify the formulas
that an agent isnot allowed to know, rather than the formulas she is permitted to
know. One advantage of accentuating the negative is that we do not need to use
deontic operators in our logic.

Epistemic logics have also been used to define information-hiding properties,
including noninterference and anonymity. Gray and Syverson [1998] use an epis-
temic logic to define probabilistic noninterference, and Syverson and Stubblebine
[1999] use one to formalize definitions of anonymity. The thrust of our paper is
quite different from these. Gray and Syverson focus on one particular definition of
information hiding in a probabilistic setting, while Syverson and Stubblebine focus
on axioms for anonymity. Our focus, on the other hand, is on giving a semantic
characterization of anonymity in a framework that lends itself well to modeling
systems.

Shmatikov and Hughes [2003] position their approach to anonymity (which
is discussed in more detail in Section 5.3) as an attempt to provide an interface
between logic-based approaches, which they claim are good for specifying the
desired properties (like anonymity), and formalisms like CSP, which they claim
are good for specifying systems. We agree with their claim that logic-based ap-
proaches are good for specifying properties of systems, but also claim that, with an
appropriate semantics for the logic, there is no need to provide such an interface.
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While there are many ways of specifying systems, many end up identifying a sys-
tem with a set of runs or traces, and can thus be embedded in the runs and systems
framework that we use.

Definitions of anonymity using epistemic logic arepossibilistic. Certainly, ifj
believes that any of 1000 users (includingi) could have performed the action thati
in fact performed, theni has some degree of anonymity with respect toj. However,
if j believes that the probability thati performed the action is .99, the possibilis-
tic assurance of anonymity provides little comfort. Most previous formalizations
of anonymity have not dealt with probability; they typically conclude with an ac-
knowledgment that it is important to do so, and suggest that their formalism can
indeed handle probability. One significant advantage of our formalism is that it is
completely straightforward to add probability in a natural way, using known tech-
niques [Halpern and Tuttle 1993]. As we show in Section 4, this lets us formalize
the (somewhat less formal) definitions of probabilistic anonymity given by Reiter
and Rubin [1998].

The rest of this paper is organized as follows. In Section 2 we briefly review
the runs and systems formalism of [Fagin, Halpern, Moses, and Vardi 1995] and
describe how it can be used to represent knowledge. In Section 3, we show how
anonymity can be defined using knowledge, and relate this definition to other no-
tions of information hiding, particularly secrecy (as defined in our earlier work). In
Section 4, we extend the possibilistic definition of Section 3 so that it can capture
probabilistic concerns. As others have observed [Hughes and Shmatikov 2003;
Reiter and Rubin 1998; Syverson and Stubblebine 1999], there are a number of
ways to define anonymity. Some definitions provide very strong guarantees of
anonymity, while others are easier to verify in practice. Rather than giving an ex-
haustive list of definitions, we focus on a few representative notions, and show by
example that our logic is expressive enough to capture many other notions of inter-
est. In Section 5, we compare our framework to that of three other attempts to for-
malize anonymity, by Schneider and Sidiropoulos [1996], Hughes and Shmatikov
[2003], and Stubblebine and Syverson [1999]. We conclude in Section 6.

2 Multiagent Systems: A Review

In this section, we briefly review the multiagent systems framework; we urge the
reader to consult [Fagin, Halpern, Moses, and Vardi 1995] for more details.

A multiagent systemconsists ofn agents, each of which is in somelocal state
at a given point in time. We assume that an agent’s local state encapsulates all the
information to which the agent has access. In the security setting, the local state
of an agent might include initial information regarding keys, the messages she has
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sent and received, and perhaps the reading of a clock. The framework makes no
assumptions about the precise nature of the local state.

We can view the whole system as being in someglobal state, a tuple consisting
of the local state of each agent and the state of the environment. Thus, a global
state has the form(se, s1, . . . , sn), wherese is the state of the environment andsi

is agenti’s state, fori = 1, . . . , n.
A run is a function from time to global states. Intuitively, a run is a complete

description of what happens over time in one possible execution of the system. A
point is a pair(r,m) consisting of a runr and a timem. We make the standard
assumption that time ranges over the natural numbers. At a point(r,m), the system
is in some global stater(m). If r(m) = (se, s1, . . . , sn), then we takeri(m) to be
si, agenti’s local state at the point(r,m). Formally, asystemconsists of a set of
runs (or executions). LetP(R) denote the points in a systemR.

The runs and systems framework is compatible with many other standard ap-
proaches for representing and reasoning about systems. For example, the runs
might be event traces generated by a CSP process (see Section 5.2), they might be
message-passing sequences generated by a security protocol, or they might be gen-
erated from the strands in a strand space [Halpern and Pucella 2001]. The approach
is rich enough to accommodate a variety of system representations.

Another important advantage of the framework is that it it is straightforward to
define formally what an agent knows at a point in a system. Given a systemR, let
Ki(r,m) be the set of points inP(R) thati thinks are possible at(r,m), i.e.,

Ki(r,m) = {(r′,m′) ∈ P(R) : r′i(m
′) = ri(m)}.

Agent i knows a factϕ at a point(r,m) if ϕ is true at all points inKi(r,m).
To make this intuition precise, we need to be able to assign truth values to basic
formulas in a system. We assume that we have a setΦ of primitive propositions,
which we can think of as describing basic facts about the system. In the context of
security protocols, these might be such facts as “the key isn” or “agentA sent the
messagem to B”. An interpreted systemI consists of a pair(R, π), whereR is
a system andπ is an interpretation, which assigns to each primitive propositions
in Φ a truth value at each point. Thus, for everyp ∈ Φ and point(r,m) in R, we
have(π(r,m))(p) ∈ {true, false}.

We can now define what it means for a formulaϕ to be true at a point(r,m)
in an interpreted systemI, written(I, r,m) |= ϕ, by induction on the structure of
formulas:

• (I, r,m) |= p iff (π(r,m))(p) = true

• (I, r,m) |= ¬ϕ iff (I, r,m) 6|= ϕ
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• (I, r,m) |= ϕ ∧ ψ iff (I, r,m) |= ϕ and(I, r,m) |= ψ

• (I, r,m) |= Kiϕ iff (I, r′,m′) |= ϕ for all (r′,m′) ∈ Ki(r,m)

As usual, we writeI |= ϕ if (I, r,m) |= ϕ for all points(r,m) in I.

3 Defining Anonymity Using Knowledge

3.1 Information-Hiding Definitions

Anonymity is one example of an information-hiding requirement. Other information-
hiding requirements include noninterference, privacy, confidentiality, secure message-
sending, and so on. These requirements are similar, and sometimes they overlap.
Noninterference, for example, requires a great deal to be hidden, and typically im-
plies privacy, anonymity, etc., for the classified user whose state is protected by the
noninterference requirement.

In an earlier paper [Halpern and O’Neill 2002], we looked at requirements of
total secrecyin multiagent systems. Total secrecy basically requires that in a sys-
tem with “classified” and “unclassified” users, the unclassified users should never
be able to infer the actions or the local states of the unclassified users. For secrecy,
the “what needs to be hidden” component of information-hiding is extremely re-
strictive: total secrecy requires that absolutely everything that a classified user does
must be hidden. The “how well does it need to be hidden” component depends on
the situation. Our definition of secrecy says that for anynontrivial fact ϕ (that
is, one that is not already valid) that depends only the state of the classified or
high-level agent, the formula¬Kjϕ must be valid. (See our earlier paper for more
discussion of this definition.) Semantically, this means that whatever the high-level
user does, there exists some run where the low-level user’s view of the system is
the same, but the high-level user did something different. Our nonprobabilistic def-
initions are fairly strong (simply because secrecy requires that so much be hidden).
The probabilistic definitions we gave require even more: not only can the agent not
learn any new classified fact, but he also cannot learn anything about the probabil-
ity of any such fact. (In other words, if an agent initially assigns a classified factϕ
a probabilityα of being true, he always assignsϕ that probability.) It would be per-
fectly natural, and possibly quite interesting, to consider definitions of secrecy that
do not require so much to be hidden (e.g., by allowing some classified information
to be declassified [Zdancewic and Myers 2001]), or to discuss definitions that do
not require such strong secrecy (e.g., by giving definitions that were stronger than
the nonprobabilistic definitions we gave, but not quite so strong as the probabilistic
definitions).
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3.2 Defining Anonymity

The basic intuition behind anonymity is thatactionsshould be divorced from the
agentswho perform them, for some set ofobservers. With respect to the basic
information-hiding framework outlined above, the information that needs to be
hidden is the identity of the agent (or set of agents) who perform a particular action.
Who the information needs to be hidden from, i.e., which observers, depends on
the situation. The third component of information-hiding requirements—how well
information needs to be hidden—will often be the most interesting component of
the definitions of anonymity that we present here.

Throughout the paper, we use the formulaθ(i, a) to represent “agenti has
performed actiona, or will perform a in the future”. For future reference, let
δ(i, a) represent “agenti has performed actiona”. Note thatθ(i, a) is a fact about
the run: if it is true at some point in a run, it is true at all points in a run (since it is
true even ifi performsa at some point in the future). On the other hand,δ(i, a) may
be false at the start of a run, and then become true at the point wherei performsa.

It is not our goal in this paper to provide a “correct” definition of anonymity.
We also want to avoid giving an encyclopedia of definitions. Rather, we give some
basic definitions of anonymity to show how our framework can be used. We base
our choice of definitions in part on definitions presented in earlier papers, to make
clear how our work relates to previous work, and in part on which definitions of
anonymity we expect to be useful in practice. We first give an extremely weak def-
inition, but one that nonetheless illustrates the basic intuition behind any definition
of anonymity.

Definition 3.1: Action a, performed by agenti, is minimally anonymouswith re-
spect to agentj in the interpreted systemI, if I |= ¬Kj [θ(i, a)].

This definition makes it clear what is being hidden (θ(i, a)—the fact thati
performsa) and from whom (j). It also describes how well the information is
hidden: it requires thatj not be sure thati actually performed, or will perform, the
action. Note that this is a weak information-hiding requirement. It might be the
case, for example, that agentj is certain that the action was performed either by
i, or by at most one or two other agents, thereby makingi a “prime suspect”. It
might also be the case thatj is able to place a very high probability oni performing
the action, even though he isn’t absolutely certain of it. (Agentj might know
that there is some slight probability that some other agenti′ performed the action,
for example.) Nonetheless, it should be the case that for any other definition of
anonymity we give, if we want to ensure thati’s performing actiona is to be kept
anonymous as far as observerj is concerned, theni’s action should be at least
minimally anonymous with respect toj.
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The definition also makes it clear how anonymity relates to secrecy, as defined
in our earlier work [Halpern and O’Neill 2002]. To explain how, we first need to
describe how we defined secrecy in terms of knowledge. Given a systemI, say
thatϕ is nontrivial in I if I 6|= ϕ, and thatϕ depends only on the local state of
agenti in I if I |= ϕ ⇒ Kiϕ. Intuitively, ϕ is nontrivial inI if ϕ could be false
in I, andϕ depends only oni’s local state ifi always knows whether or notϕ is
true. (It is easy to see thatϕ depends only on the local state ofi if (I, r,m) |= ϕ
andri(m) = r′i(m

′) implies that(I, r′,m′) |= ϕ.) According to the definition in
[Halpern and O’Neill 2002], agentimaintains total secrecy with respect to another
agentj in systemI if for every nontrivial factϕ that depends only on the local state
of i, the formula¬Kjϕ is valid for the system. That is,i maintains total secrecy
with respect toj if j does not learn anything new about agenti’s state. In general,
θ(i, a) does not depend only oni’s local state, because whetheri performsa may
depend on whether or noti gets a certain message fromj. On the other hand,
if whether or noti performsa depends only oni’s protocol, and the protocol is
encoded ini’s local state, thenθ(i, a) depends only oni’s local state. Ifθ(i, a)
does depend only oni’s local state andj did not know all along thati was going to
perform actiona (i.e., if we assume thatθ(i, a) is nontrivial), then Definition 3.1
is clearly a special case of the definition of secrecy. In any case, it is in much the
same spirit as the definition of secrecy. Essentially, anonymity says that the fact
that agenti has or will perform actionamust be hidden fromj, while total secrecy
says that all facts that depend on agenti must be hidden fromj.

Note that this definition of minimal anonymity is different from the one we
gave in the conference version of this paper [Halpern and O’Neill 2003]. There,
the definition given usedδ(i, a) rather thanθ(i, a). We say thata performed by
agenti is minimally δ-anonymous if Definition 3.1 holds, withθ(i, a) replaced
by δ(i, a). It is easy to see that minimal anonymity implies minimalδ-anonymity
(sinceδ(i, a) impliesθ(i, a)), but the converse is not true in general. For example,
suppose thatj gets a signal ifi is going to perform actiona (beforei actually
performs the action), but then never finds out exactly wheni performsa. Then
minimal anonymity does not hold. In runs wherei performsa, agentj knows that
i will perform a when he gets the signal. On the other hand, minimalδ-anonymity
does hold, becausej never knows wheni performsa. In this situation, minimal
anonymity seems to capture our intuitions of what anonymity should mean better
than minimalδ-anonymity does.

The next definition of anonymity we give is much stronger. It requires that if
some agenti performs an action anonymously with respect to another agentj, then
j must think it possible that the action could have been performed byany of the
agents (except forj). LetPjϕ be an abbreviation for¬Kj¬ϕ. The operatorPj is
the dual ofKj ; intuitively, Pjϕ means “agentj thinks thatϕ is possible”.
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Definition 3.2: Action a, performed by agenti, is totally anonymouswith respect
to j in the interpreted systemI if

I |= θ(i, a) ⇒
∧
i′ 6=j

Pj [θ(i′, a)].

Definition 3.2 captures the notion that an action is anonymous if, as far as the
observer in question is concerned, it could have been performed by anybody in the
system.

Again, in the conference version of the paper, we defined total anonymity us-
ing δ(i, a) rather thanθ(i, a). (The same remark holds for all the other definitions
of anonymity that we give, although we do not always say so explicitly.) Let total
δ-anonymity be the anonymity requirement obtained whenθ(i, a) is replaced by
δ(i, a). It is not hard to show that if agents have perfect recall (which intuitively
means that their local state keeps track of all the actions they have performed—
see [Fagin, Halpern, Moses, and Vardi 1995] for the formal definition), then total
δ-anonymity implies total anonymity. This is not true, in general, without perfect
recall, because it might be possible for some agent to know thati will perform ac-
tion a—and therefore that no other agent will—but forget this fact by the time that
i actually performsa. Similarly, total anonymity does not imply totalδ-anonymity.
To see why, suppose that the agents are numbered1, . . . , n, and that an outside
observer knows that ifj performs actiona, thenj will perform it at timej. Then
total anonymity may hold even though totalδ-anonymity does not. For example,
at time 3, although the observer may consider it possible that agent 4 will perform
the action (at time 4), he cannot consider it possible that 4 has already performed
the action, as required by totalδ-anonymity.

Chaum [1988] showed that total anonymity could be obtained using DC-nets.
Recall that in a DC-net, a group ofn users use Chaum’s dining cryptographer’s
protocol (described in the same paper) to achieve anonymous communication. If
we model a DC-net as an interpreted multiagent systemI whose agents consist
exclusively of agents participating in a single DC-net, then if an agenti sends
a message using the DC-net protocol, that action is totally anonymous. (Chaum
proves this, under the assumption that any message could be generated by any user
in the system.) Note that in the dining cryptographer’s example, total anonymity
andδ-total anonymity agree, because who paid is decided before the protocol starts.

It is easy to show that if an action is totally anonymous, then it must be mini-
mally anonymous as well, as long as two simple requirements are satisfied. First,
there must be at least 3 agents in the system. (A college student with only one
roommate can’t leave out her dirty dishes anonymously, but a student with at least
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two roommates might be able to.) Second, it must be the case thata can be per-
formed only once in a given run of the system. Otherwise, it might be possible for
j to think that any agenti′ 6= i could have performeda, but forj to knowthat agent
i did, indeed, performa. For example, consider a system with three agents besides
j. Agentj might know that all three of the other agents performed actiona. In that
case, in particular,j knows thati performeda, so actiona performed byi is not
minimally anonymous with respect toj, but is totally anonymous. We anticipate
that this assumption will typically be met in practice. It is certainly consistent with
examples of anonymity given in the literature. (See, for example, [Chaum 1988;
Schneider and Sidiropoulos 1996]). In any case, if it is not met, it is possible to tag
occurrences of an action (so that we can talk about thekth timea is performed).
Thus, we can talk about theith occurrence of an action being anonymous. Be-
cause theith occurrence of an action can only happen once in any given run, our
requirement is satisfied.

Proposition 3.3: Suppose that there are at least three agents in the interpreted
systemI and that

I |=
∧
i6=j

¬[θ(i, a) ∧ θ(j, a)].

If actiona, performed by agenti, is totally anonymous with respect toj, then it is
minimally anonymous as well.

Proof: Suppose that actiona is totally anonymous. Because there are three agents
in the system, there is some agenti′ other thani andj, and by total anonymity,I |=
θ(i, a) ⇒ Pj [θ(i′, a)]. If (I, r,m) |= ¬θ(i, a), clearly(I, r,m) |= ¬Kj [θ(i, a)].
Otherwise,(I, r,m) |= Pj [θ(i′, a)] by total anonymity. Thus, there exists a point
(r′,m′) such thatr′j(m

′) = rj(m) and(I, r′,m′) |= θ(i′, a). By our assumption,
(I, r′,m′) |= ¬θ(i, a), becausei 6= i′. Therefore,(I, r,m) |= ¬Kj [θ(i, a)]. It
follows thata is minimally anonymous with respect toj.

Definitions 3.1 and 3.2 are conceptually similar, even though the latter defini-
tion is much stronger. Once again, there is a set of formulas that an observer is
not allowed to know. With the earlier definition, there is only one formula in this
set:θ(i, a). As long asj doesn’t know thati performed actiona, this requirement
is satisfied. With total anonymity, there are more formulas thatj is not allowed
to know: they take the form¬θ(i′, a). Before, we could guarantee only thatj
did not know thati did the action; here, for many agentsi′, we guarantee thatj
does not know thati′ did not do the action. The definition is made slightly more
complicated by the implication, which restricts the conditions under whichj is not
allowed to know¬θ(i′, a). (If i didn’t actually perform the action, we don’t care
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whatj thinks, since we are concerned only with anonymity with respect toi.) But
the basic idea is the same.

Note that total anonymity doesnot necessarily follow from total secrecy, be-
cause the formula¬θ(i′, a), for i′ 6= i, does not, in general, depend only on the
local state ofi. It is therefore perfectly consistent with the definition of total se-
crecy forj to learn this fact, in violation of total anonymity. (Secrecy, of course,
does not follow from anonymity, because secrecy requires that many more facts be
hidden than simply whetheri performed a given action.)

Total anonymity is a very strong requirement. Often, an action will not be
totally anonymous, but only anonymous up to some set of agents who could have
performed the action. This situation merits a weaker definition of anonymity. To
be more precise, letI be the set of all agents of the system and suppose that we
have some “anonymizing set”IA ⊆ I of agents who can perform some action. We
can define anonymity in terms of this set.

Definition 3.4: Action a, performed by agenti, is anonymous up toIA ⊆ I with
respect toj if

I |= θ(i, a) ⇒
∧

i′∈IA

Pj [θ(i′, a)].

In the anonymous message-passing system Herbivore [Goel, Robson, Polte,
and Sirer 2002], users are organized intocliquesC1, . . . , Cn, each of which uses
the dining cryptographers protocol [Chaum 1988] for anonymous message-transmission.
If a user wants to send an anonymous message, she can do so through her clique.
Herbivore claims that any useri is able to send a message anonymously up toCj ,
wherei ∈ Cj . As the size of a user’s clique varies, so does the strength of the
anonymity guarantees provided by the system.

In some situations, it is not necessary that there be a fixed “anonymizing set”
as in Definition 3.4. It suffices that, at all times, thereexistssome anonymizing set
with at least, say,k agents. This leads to a definition ofk-anonymity.

Definition 3.5: Action a, performed by agenti, is k-anonymouswith respect toj
if

I |= θ(i, a) ⇒
∨

{IA:|IA|=k}

∧
i′∈IA

Pj [θ(i′, a)].

This definition says that at any pointj must think it possible that any of at
leastk agents might perform, or have performed, the action. Note that the set of
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k agents might be different in different runs, making this condition strictly weaker
than anonymity up to a particular set of sizek.

A number of systems have been proposed that providek-anonymity for some
k. In the anonymous communications network protocol recently proposed by von
Ahn, Bortz, and Hopper [Ahn, Bortz, and Hopper 2003], users can send messages
with guarantees ofk-anonymity. In the systemP 5 (for “Peer-to-Peer Personal Pri-
vacy Protocol”) [Sherwood, Bhattacharjee, and Srinivasan 2002], users join a log-
ical broadcast tree that provides anonymous communication, and users can choose
what level ofk-anonymity they want, given thatk-anonymity for a higher value
of k makes communication more inefficient. Herbivore [Goel, Robson, Polte, and
Sirer 2002] provides anonymity using cliques of DC-nets. If the system guarantees
that the cliques all have a size of at leastk, so that regardless of clique composi-
tion, there are at leastk users capable of sending any anonymous message, then
Herbivore guaranteesk-anonymity.

3.3 A More Detailed Example: Dining Cryptographers

A well-known example of anonymity in the computer security literature is Chaum’s
“dining cryptographers problem” [Chaum 1988]. In the original description of this
problem, three cryptographers sit down to dinner and are informed by the host that
someone has already paid the bill anonymously. The cryptographers decide that
the bill was paid either by one of the three people in their group, or by an outside
agency such as the NSA. They want to find out which of these two situations is
the actual one while preserving the anonymity of the cryptographer who (might
have) paid. Chaum provides a protocol that the cryptographers can use to solve
this problem. To guarantee that it works, however, it would be nice to check that
anonymity conditions hold. Assuming we have a system that includes a set of three
cryptographer agentsC = {0, 1, 2}, as well as an outside observer agento, the
protocol should guarantee that for each agenti ∈ C, and each agentj ∈ C − {i},
the act of paying is anonymous up toC − {j} with respect toj. For an outside
observero, i.e., an agent other than one of three cryptographers, the protocol should
guarantee that for each agenti ∈ C, the protocol is anonymous up toC with respect
to o. This can be made precise using our definition of anonymity up to a set.

Because the requirements are symmetric for each of the three cryptographers,
we can describe the anonymity specification compactly by naming the agents us-
ing modular arithmetic. We use⊕ to denote addition mod 3. Let the interpreted
system(I = (R, π) represent the possible runs of one instance of the dining cryp-
tographers protocol, where the interpretationπ interprets formulas of the form
θ(i, “paid”) in the obvious way. The following knowledge-based requirements
comprise the anonymity portion of the protocol’s specification, for each agent
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i ∈ C:

I |= θ(i, “paid”) ⇒ Pi⊕1θ(i⊕ 2, “paid”) ∧ Pi⊕2θ(i⊕ 1, “paid”)
∧ Poθ(i⊕ 1, “paid”) ∧ Poθ(i⊕ 2, “paid”).

This means that if a cryptographer paid, then each of the other cryptographers
must think it possible that the third cryptographer could have paid. In addition, an
outside observer must think it possible that either of the other two cryptographers
could have paid.

4 Probabilistic Variants of Anonymity

4.1 Probabilistic Anonymity

All of the definitions presented in Section 3 were nonprobabilistic. As we men-
tioned in the introduction, this is a serious problem for the “how well is informa-
tion hidden” component of the definitions. For all the definitions we gave, it was
necessary only that observers think itpossiblethat multiple agents could have per-
formed the anonymous action. However, an event that is possible may nonetheless
be extremely unlikely. Consider our definition of total anonymity (Definition 3.2).
It states that an action performed byi is totally anonymous if the observerj thinks
it could have been performed by any agent other thanj. This may seem like a
strong requirement, but if there are, say,102 agents, andj can determine thati per-
formed actiona with probability0.99 and that each of the other agents performed
actiona with probability0.0001, agenti might not be very happy with the guaran-
tees provided by total anonymity. Of course, the appropriate notion of anonymity
will depend on the application:i might be content to know that no agent canprove
that she performed the anonymous action. In that case, it might suffice for the
action to be only minimally anonymous. However, in many other cases, an agent
might want a more quantitative, probabilistic guarantee that it will be considered
reasonably likely that other agents could have performed the action.

Adding probability to the runs and systems framework is straightforward. The
approach we use goes back to [Halpern and Tuttle 1993], and was also used in our
work on secrecy [Halpern and O’Neill 2002], so we just briefly review the relevant
details here. Given a systemR, suppose we have a probability measureµ on the
runs ofR. The pair(R, µ) is aprobabilistic system. For simplicity, we assume that
every subset ofR is measurable. We are interested in the probability that an agent
assigns to an event at the point(r,m). For example, we may want to know that
at the point(r,m), observeri places a probability of0.6 on j’s having performed
some particular action. We want to condition the probabilityµ onKi(r,m), the
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information thati has at the point(r,m). The problem is thatKi(r,m) is a set of
points, whileµ is a probability onruns. This problem is dealt with as follows.

Given a setU of points, letR(U) consist of the runs inR going through a
point inU . That is,

R(U) = {r ∈ R : (r,m) ∈ U for somem}.

The idea will be to conditionµ onR(Ki(r,m)) rather than onKi(r,m). To make
sure that conditioning is well defined, we assume thatµ(R(Ki(r,m))) > 0 for
each agenti, runr, and timem. That is,µ assigns positive probability to the set of
runs inR compatible with what happens in runr up to timem, as far as agenti is
concerned.

With this assumption, we can define a measureµr,m,i on the points inKi(r,m)
as follows. IfS ⊆ R, defineKi(r,m)(S) to be the set of points inKi(r,m) that
lie on runs inS; that is,

Ki(r,m)(S) = {(r′,m′) ∈ Ki(r,m) : r′ ∈ S}.

Let Fr,m,i, the measurable subsets ofKi(r,m) (that is, the sets to whichµr,m,i

assigns a probability), consist of all sets of the formKi(r,m)(S), whereS ⊆ R.
Then defineµr,m,i(Ki(r,m)(S)) = µ(S | R(Ki(r,m)). It is easy to check that
µr,m,i is a probability measure, essentially defined by conditioning.

Define aprobabilistic interpreted systemI to be a tuple(R, µ, π), where
(R, µ) is a probabilistic system. In a probabilistic interpreted system, we can give
semantics to syntactic statements of probability. Following [Fagin, Halpern, and
Megiddo 1990], we will be most interested in formulas of the formPri(ϕ) ≤ α
(or similar formulas with>, <, or = instead of≤). Intuitively, a formula such as
Pri(ϕ) ≤ α is true at a point(r,m) if, according toµr,m,i, the probability thatϕ
is true is at leastα. More formally,(I, r,m) |= Pri(ϕ) ≤ α if

µr,m,i({(r′,m′) ∈ Ki(r,m) : (I, r′,m′) |= ϕ}) ≤ α.

Similarly, we can give semantics toPri(ϕ) < α andPr(ϕ) = α, as well as con-
ditional formulas such asPr(ϕ |ψ) ≤ α. Note that although these formulas talk
about probability, they are either true or false at a given state.

It is straightforward to define probabilistic notions of anonymity in probabilis-
tic systems. We can think of Definition 3.1, for example, as saying thatj’s prob-
ability that i performs the anonymous actiona must be less than 1 (assuming that
every nonempty set has positive probability). This can be generalized by specifying
someα ≤ 1 and requiring that the probability ofθ(i, a) be less thanα.

Definition 4.1: Action a, performed by agenti, is α-anonymouswith respect to
agentj if I |= θ(i, a) ⇒ Prj [θ(i, a)] < α.
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Note that if we replaceθ(i, a) by δ(i, a) in Definition 4.1, the resulting notion
might not be well defined. The problem is that the set

{(r′,m′) ∈ Ki(r,m) : (I, r′,m′) |= δ(i, a)}

may not be measurable; it may not have the formKi(r,m)(S) for someS ⊆ R.
The problem does not arise ifI is asynchronoussytem (in which casei knows that
time, and all the points inKi(r,m) are of the form(r′,m)), but it does arise ifI
is asynchronous. We avoid this technical problem by working withθ(i, a) rather
thanδ(i, a).

Definition 4.1, unlike Definition 3.1, includes an implication involvingθ(i, a).
It is easy to check that Definition 3.1 does not change when such an implication
is added; intuitively, ifθ(i, a) is false then¬Kj [θ(i, a)] is trivially true. Defini-
tion 4.1, however, would change if we removed the implication, because it might
be possible forj to have a high probability ofθ(i, a) even though it isn’t true. We
include the implication because without it, we place constraints on whatj thinks
aboutθ(i, a) even ifi has not performed the actiona and will not perform it in the
future. Such a requirement, while interesting, seems more akin to “unsuspectibil-
ity” than to anonymity.

Two of the notions of probabilistic anonymity considered by Reiter and Ru-
bin [1998] in the context of their Crowds system can be understood in terms of
α-anonymity. Reiter and Rubin say that a sender hasprobable innocenceif, from
an observer’s point of view, the sender “appears no more likely to be the originator
than to not be the originator”. This is simply 0.5-anonymity. (Under reasonable as-
sumptions, Crowds provides 0.5-anonymity for Web requests.) Similarly, a sender
haspossible innocenceif, from an observer’s point of view, “there is a nontriv-
ial probability that the real sender is someone else”. This corresponds to minimal
anonymity (as defined in Section 3.2), or toε-anonymity for some nontrivial value
of ε.

It might seem at first that Definition 4.1 should be the only definition of anonymity
we need: as long asj’s probability of i performing the action is low enough,i
should have nothing to worry about. However, with further thought, it is not hard
to see that this is not the case.

Consider a scenario where there are 1002 agents, and whereα = 0.11. Sup-
pose that the probability, according to Alice, that Bob performs the action is.1,
but that her probability that any of the other1000 agents performs the action is
0.0009 (for each agent). Alice’s probability that Bob performs the action is small,
but her probability that anyone else performs the action is more than three orders
of magnitude smaller. Bob is obviously the prime suspect.

One way to avoid these problems is to strengthen Definition 4.1 in the way that
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Definition 3.2 strengthens Definition 3.1. The next definition does this. It requires
that no agent in the anonymizing set be a more likely suspect than any other.

Definition 4.2: Action a, performed by agenti, isstrongly probabilistically anony-
mous up toIA with respect to agentj if for eachi′ ∈ IA,

I |= θ(i, a) ⇒ Prj [θ(i, a)] = Prj [θ(i′, a)].

Depending on the size ofIA, this definition can be extremely strong. It does
not state simply that for all agents inIA, the observer must think it is reasonably
likely that the agent could have performed the action; it also says that the observer’s
probabilities must be the same for each such agent. Of course, we could weaken
the definition somewhat by not requiring that all the probabilities be equal, but
by instead requiring that they be approximately equal (i.e., that their difference be
small or that their ratio be close to 1). Reiter and Rubin [1998], for example, say
that the sender of a message isbeyond suspicionif she “appears no more likely to
be the originator of that message than any other potential sender in the system”. In
our terminology,i is beyond suspicion with respect toj if for eachi′ ∈ IA,

I |= θ(i, a) ⇒ Prj [θ(i, a)] ≤ Prj [θ(i′, a)].

This is clearly weaker than strong probabilistic anonymity, but still a very strong
requirement, and perhaps more reasonable, too. Our main point is that a wide
variety of properties can be expressed clearly and succinctly in our framework.

4.2 Conditional Anonymity

While we have shown that many useful notions of anonymity—including many
definitions that have already been proposed—can be expressed in our framework,
we claim that there are some important intuitions that have not yet been captured.
Suppose, for example, that someone makes a $5,000,000 donation to Cornell Uni-
versity. It is clearly not the case that everyone is equally likely, or even almost
equally likely, to have made the donation. Of course, we could take the anonymiz-
ing setIA to consist of those people who might be in a position to make such a
large donation, and insist that they all be considered equally likely. Unfortunately,
even that is unreasonable: a priori, some of them may already have known connec-
tions to Cornell, and thus be considered far more likely to have made the donation.
All that an anonymous donor can reasonably expect is that nothing an observer
learns from his interactions with the environment (e.g., reading the newspapers,
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noting when the donation was made, etc.) will give him more information about
the identity of the donor than he already had.

For another example, consider a conference or research journal that provides
anonymous reviews to researchers who submit their papers for publication. It is un-
likely that the review process provides anything likeα-anonymity for a smallα, or
strongly probabilistic anonymity up to some reasonable set. When the preliminary
version of this paper, for example, was accepted by CSFW, the acceptance notice
included three reviews that were, in our terminology, anonymous up to the program
committee. That is, any one of the reviews we received could have been written by
any of the members of the program committee. However, by reading some of the
reviews, we were able to make fairly good guesses as to which committee members
had provided which reviews, based on our knowledge of the specializations of the
various members, and based on the content of the reviews themselves. Moreover,
we had a fairly good idea of which committee members would provide reviews
of our paper even before we received the reviews. Thus, it seems unreasonable to
hope that the review process would provide strong probabilistic anonymity (up to
the program committee), or even some weaker variant of probabilistic anonymity.
Probabilistic anonymity would require the reviews to convert our prior beliefs, ac-
cording to which some program committee members were more likely than others
to be reviewers of our paper, to posterior beliefs according to which all program
committee members were equally likely! This does not seem at all reasonable.
However, the reviewers might hope that that the process did not give us any more
information than we already had.

In our paper on secrecy [Halpern and O’Neill 2002], we tried to capture the
intuition that, when an unclassified user interacts with a secure system, she does
not learn anything about any classified user that she didn’t already know. We did
this formally by requiring that, for any three points(r,m), (r′,m′), and(r′′,m′′),

µ(r,m,j)(Ki(r′′,m′′)) = µ(r′,m′,j)(Ki(r′′,m′′)). (1)

That is, whatever the unclassified userj sees, her probability of any particular
classified state will remain unchanged.

When defining anonymity, we are not concerned with protecting all informa-
tion about some agenti, but rather the fact thati performs some particular action
a. Given a probabilistic systemI = (R, π, µ) and a formulaϕ, let er(ϕ) consist
of the set of runsr such thatϕ is true at some point inr, and letep(ϕ) be the set of
points whereϕ is true. That is

er(ϕ) = {r : ∃m((I, r,m) |= ϕ)},
ep(ϕ) = {(r,m) : (I, r,m) |= ϕ}.
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The most obvious analogue to (1) is the requirement that, for all points(r,m) and
(r′,m′),

µ(r,m,j)(ep(θ(i, a))) = µ(r′,m′,j)(ep(θ(i, a))).

This definition says thatj never learns anything about the probability thati per-
formed performsa: she always ascribes the same probability to this event. In the
context of our anonymous donation example, this would say that the probability
(according toj) of i donating $5,000,000 to Cornell is the same at all times.

The problem with this definition is that it does not allowj to learn thatsome-
onedonated $5,000,000 to Cornell. That is, beforej learned that someone donated
$5,000,000 to Cornell,j may have thought it was unlikely that anyone would do-
nate that much money to Cornell. We cannot expect thatj’s probability of i do-
nating $5,000,000 would be the same both before and after learning that someone
made a donation. We want to give a definition of conditional anonymity that allows
observers to learn that an action has been performed, but that protects—as much as
possible, given the system—the fact that some particular agent performed performs
the action. If, on the other hand, the anonymous action has not been performed,
then the observer’s probabilities do not matter.

Suppose thati wants to perform actiona, and wants conditional anonymity
with respect toj. Let θ(, a) represent the fact thata has been performed by
some agent other thanj, i.e., θ(, a) = ∨i′ 6=jθ(i′, a). The definition of condi-
tional anonymity says thatj’s prior probability ofθ(i, a) givenθ(, a) must be the
same as his posterior probability ofθ(i, a) at points wherej knowsθ(, a), i.e., at
points wherej knows that someone other thanj has performed (or will perform)
a. Letα = µ(er(θ(i, a)) | er(θ(, a))). This is the prior probability thati has per-
formeda, given that somebody other thanj has. Conditional anonymity says that
at any point wherej knows that someone other thanj performsa, j’s probability
of θ(i, a) must beα. In other words,j shouldn’t be able to learn anything more
about who performsa (except that somebody does) than he know before he began
interacting with the system in the first place.

Definition 4.3: Action a, performed by agenti, is conditionally anonymouswith
respect toj in the probabilistic systemI if

I |= Kjθ(, a) ⇒ Prj(θ(i, a)) = µ(er(θ(i, a)) | er(θ(, a))).

Note that if only one agent ever performsa, thena is trivially conditionally anony-
mous with respect toj, but may not be minimally anonymous with respect toj.
Thus, conditional anonymity does not necessarily imply minimal anonymity.
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In Definition 4.3, we implicitly assumed that agentj was allowed to learn that
someone other thanj performed actiona; anonymity is intended to hidewhich
agent performeda, given that somebody did. More generally, we believe that we
need to consider anonymity with respect to what an observer is allowed to learn.
We might want to specify, for example, that an observer is allowed to know that
a donation was made, and for how much, or to learn the contents of a conference
paper review. The following definition lets us do this formally.

Definition 4.4: Action a, performed by agenti, is conditionally anonymouswith
respect toj andϕ in the probabilistic systemI if

I |= Kjϕ⇒ Prj(θ(i, a)) = µ(er(θ(i, a)) | er(ϕ)).

Definition 4.3 is clearly the special case of Definition 4.4 whereϕ = θ(j, a).
Intuitively, both of these definitions say that once an observer learns some factϕ
connected to the factθ(i, a), we require that she doesn’t learn anything else that
might change her probabilities ofθ(i, a).

4.3 Example: Probabilistic Dining Cryptographers

Returning the dining cryptographers problem, suppose that it is well-known that
one of the three cryptographers at the table is much more generous than the other
two, and therefore more likely to pay for dinner. Suppose, for example, that the
probability measure on the set of runs where the generous cryptographer has paid
is 0.8, given that one of the cryptographers paid for dinner, and that it is 0.1 for
each of the other two cryptographers. Conditional anonymity for each of the three
cryptographers with respect to an outside observer means that when such observer
learns that one of the cryptographers has paid for dinner, his probability that any
of the three cryptographers paid should remain 0.8, 0.1, and 0.1. If the one of the
thrifty cryptographers paid, the generous cryptographer should think that there is
a probability of0.5 = 0.1/(0.1 + 0.1) that either of the others paid. Likewise,
if the generous cryptographer paid, each of the others should think that there is a
probability of0.8/(0.8+0.1) that the generous cryptographer paid and a probabil-
ity of 0.1/(0.8 + 0.1) that the other thrifty cryptographer paid. We can similarly
calculate all the other relevant probabilities.

More generally, suppose that we have an intepreted probabilistic system(R, µ, π)
that represents instances of the dining cryptographers protocol, where the interpre-
tation π once again interprets formulas of the formθ(i, “paid”) andθ(, “paid”)
in the obvious way, and where the formulaγ is true if one of the cryptographers
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paid. (That is,γ is equivalent to
∨

i∈{0,1,2} θ(i, “paid”).) For any cryptographer
i ∈ {0, 1, 2}, letα(i) be the prior probability thati paid, given that somebody else
did. That is, let

α(i) = µ(er(θ(i, “paid”)) | er(γ)).

In the more concrete example given above, if0 is the generous cryptographer, we
would haveα(0) = 0.8 andα(1) = α(2) = 0.1.

For the purposes of conditional probability with respect to an agentj, we are
interested in the probability that some agenti paid, given that somebody other than
j paid. Formally, fori 6= j, let

α(i, j) = µ(er(θ(i, “paid”)) | er(θ(, “paid”))).

If an observero is not one of the three cryptographers, thano didn’t pay, and we
haveα(i, o) = α(i). Otherwise, ifi, j ∈ {0, 1, 2}, we can use conditioning to
computeα(i, j):

α(i, j) =
α(i)

α(j ⊕ 1) + α(j ⊕ 2)
.

(Once again, we make our definitions and requirements more compact by using
modular arithmetic, where⊕ denotes addition mod 3.)

The following formula captures the requirement of conditional anonymity in
the dining cryptographer’s protocol, for each cryptographeri, with respect to the
other cryptographers and any outside observers.

I |=
[
Ki⊕1θ(i⊕ 1, “paid”) ⇒ Pri⊕1(θ(i, “paid”)) = α(i, i⊕ 1)

]
∧[

Ki⊕2θ(i⊕ 2, “paid”) ⇒ Pri⊕2(θ(i, “paid”)) = α(i, i⊕ 2)
]
∧

[Koθ(o, “paid”) ⇒ Pro(θ(i, “paid”)) = α(i, o)] .

Chaum’s original proof that the dining cryptographers protocol provides anonymity
actually proves conditional anonymity in this general setting. Note that if the prob-
ability that one of the cryptographers will pay is 1, that cryptographer will have
conditional anonymity even though he doesn’t even have minimal anonymity.

4.4 Other Uses for Probability

In the previous two subsections, we have emphasized how probability can be used
to obtain definitions of anonymity stronger than those presented in Section 3. How-
ever, probabilistic systems can also be used to define interesting ways of weakening
those definitions. Real-world anonymity systems do not offer absolute guarantees
of anonymity such as those those specified by our definitions. Rather, they guaran-
tee that a user’s anonymity will be protectedwith high probability. In a given run,
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a user’s anonymity might be protected or corrupted. If the probability of the event
that a user’s anonymity is corrupted is very small, i.e., the set of runs where her
anonymity is not protected is assigned a very small probability by the measureµ,
this might be enough of a guarantee for the user to interact with the system.

Recall that we said thati maintains total anonymity with respect toj if the
fact ϕ = θ(i, a) ⇒

∧
i′ 6=j Pj [θ(i′, a)] is true at every point in the system. Total

anonymity is compromised in a runr if at some point(r,m), ¬ϕ holds. Therefore,
the set of runs where total anonymity is compromised is simplyer(¬ϕ), using the
notation of the previous section. Ifµ(er(¬ϕ)) is very small, theni maintains total
anonymity with very high probability. This analysis can obviously be extended to
all the other definitions of anonymity given in previous sections.

Bounds such as these are useful for analyzing real-world systems. The Crowds
system [Reiter and Rubin 1998], for example, uses randomization when routing
communication traffic, so that anonymity is protected with high probability. The
probabilistic guarantees provided by Crowds were analyzed formally by Shmatikov
[2002], using a probabilistic model checker, and he demonstrates how the anonymity
guarantees provided by the Crowds system change as more users (who may be ei-
ther honest or corrupt) are added to the system. Shmatikov uses a temporal proba-
bilistic logic to express probabilistic anonymity properties, so these properties can
be expressed in our system framework. (It is straightforward to give semantics to
temporal operators in systems; see [Fagin, Halpern, Moses, and Vardi 1995].) In
any case, Shmatikov’s analysis of a real-world anonymity system is a useful exam-
ple of how the formal methods that we advocate can be used to specify and verify
properties of real-world systems.

5 Related Work

5.1 Knowledge-based Definitions of Anonymity

As mentioned in the introduction, we are not the first to use knowledge to han-
dle definitions of security, information hiding, or even anonymity. Anonymity has
been formalized using epistemic logic by Syverson and Stubblebine [1999]. Like
us, they use epistemic logic to characterize a number of information-hiding require-
ments that involve anonymity. However, the focus of their work is very different
from ours. They describe a logic for reasoning about anonymity and a number of
axioms for the logic. An agent’s knowledge is based, roughly speaking, on what
follows from his log of system events. The first five axioms that Syverson and
Stubblebine give are the standardS5axioms for knowledge. There are well-known
soundness and completeness results relating theS5axiom system to Kripke struc-
ture semantics for knowledge [Fagin, Halpern, Moses, and Vardi 1995]. However,
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they give many more axioms, and they do not attempt to give a semantics for which
their axioms are sound. Our focus, on the other hand, is completely semantic. We
have not tried to axiomatize anonymity. Rather, we try to give an appropriate se-
mantic framework in which to consider anonymity.

In some ways, Syverson and Stubblebine’s model is more detailed than the
model used here. Their logic includes many formulas that represent various actions
and facts, including the sending and receiving of messages, details of encryption
and keys, and so on. They also make more assumptions about the local state of
a given agent, including details about the sequence of actions that the agent has
performed locally, a log of system events that have been recorded, and a set of
facts of which the agent is aware. While these extra details may accurately reflect
the nature of agents in real-world systems, they are orthogonal to our concerns
here. In any case, it would be easy to add such expressiveness to our model as
well, simply by including these details in the local states of the various agents.

It is straightforward to relate our definitions to those of Syverson and Stub-
blebine. They consider facts of the formϕ(i), wherei is a principal, i.e., an agent.
They assume that the factϕ(i) is a single formula in which a single agent name
occurs. Clearly,θ(i, a) is an example of such a formula. In fact, Syverson and
Stubblebine assume that ifϕ(i) andϕ(j) are both true, theni = j. For theθ(i, a)
formulas, this means thatθ(i, a) and θ(i′, a) cannot be simultaneously true: at
most one agent can perform an action in a given run, exactly as in the setup of
Proposition 3.3.

There is one definition in [Syverson and Stubblebine 1999] that is especially
relevant to our discussion; the other relevant definitions presented there are similar.
A system is said to satisfy(≥ k)-anonymityif the following formula is valid for
some observero:

ϕ(i) ⇒ Po(ϕ(i)) ∧ Po(ϕ(i1)) ∧ · · · ∧ Po(ϕ(ik−1)).

This definition says that ifϕ(i) holds, there must be at leastk agents, includingi,
that the observer suspects. (The existential quantification of the agentsi1, . . . , in−1

is implicit.) The definition is essentially equivalent to our definition of(k − 1)-
anonymity. It certainly implies that there arek − 1 agents other thani for which
ϕ(i′) might be true. On the other hand, ifPo(ϕ(i′)) is true fork − 1 agents other
thani, then the formula must hold, becauseϕ(i) ⇒ Po(ϕ(i)) is valid.

5.2 CSP and Anonymity

A great deal of work on the foundations of computer security has used process
algebras such as CCS and CSP [Milner 1980; Hoare 1985] as the basic system
framework [Focardi and Gorrieri 2001; Schneider 1996]. Process algebras offer
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several advantages: they are simple, they can be used for specifying systems as
well as system properties, and model-checkers are available that can be used to
verify properties of systems described using their formalisms.

Schneider and Sidiropoulos [1996] use CSP both to characterize one type of
anonymity and to describe variants of the dining cryptographers problem [Chaum
1988]. They then use a model-checker to verify that their notion of anonymity
holds for those variants of the problem. To describe their approach, we need to
outline some of the basic notation and semantics of CSP. To save space, we give
a simplified treatment of CSP here. (See Hoare [1985] for a complete description
of CSP.) The basic unit of CSP is theevent. Systems are modeled in terms of
the events that they can perform. Events may be built up several components.
For example, “donate.$5” might represent a “donate” event in the amount of $5.
Processesare the systems, or components of systems, that are described using CSP.
As a process unfolds or executes, various events occur. For our purposes, we make
the simplifying assumption that a process is determined by the event sequences it
is able to engage in.

We can associate with every process a set oftraces. Intuitively, each trace in
the set associated with processP represents one sequence of events that might
occur during an execution ofP . Informally, CSP event traces correspond to finite
prefixes of runs, except that they do not explicitly describe the local states of agents
and do not explicitly describe time.

Schneider and Sidiropoulos define a notion of anonymity with respect to a setA
of events. Typically,A consists of evens of the formi.a for a fixed actiona, where
i is an agent in some set that we denoteIA. Intuively, anonymity with respect toA
means that if any event inA occurs, it could equally well have been any other event
in A. In particular, this means that if an agent inIA performsa, it could equally
well have been any other agent inIA. Formally, given a setΣ of possible events
andA ⊆ Σ, let fA be a function on traces that, given a traceτ , returns a trace
fA(τ) that is identical toτ except that every event inA is replaced by a fixed event
α /∈ Σ. A processP is strongly anonymousonA if f−1

A (fA(P )) = P , where we
identify P with its associated set of traces. This means that all the events inA are
interchangeable; by replacing any event inA with any other we would still get a
valid trace ofP .

Schneider and Sidiropoulos give several very simple examples that are useful
for clarifying this definition of anonymity. One is a system where there are two
agents who can provide donations to a charity, but where only one of them will ac-
tually do so. Agent0, if she gives a donation, gives $5, and agent1 gives $10. This
is followed by a “thanks” from the charity. The events of interest are “0.gives” and
“1.gives” (representing events where0 and1 make a donation), “$5” and “$10”
(representing the charity’s receipt of the donation), “thanks”, and “STOP” (to sig-
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nify that the process has ended). There are two possible traces:

1. 0.gives→ $5→ “thanks”→ STOP.

2. 1.gives→ $10→ “thanks”→ STOP.

The donors require anonymity, and so we require that the CSP process is strongly
anonymous on the set{0.gives, 1.gives}. In fact, this condition is not satisfied
by the process, because “0.gives” and “1.gives” are not interchangeable. This is
because “0.gives” must be followed by “$5”, while “1.gives” must be followed by
“$10”. Intuitively, an agent who observes the traces can determine the donor by
looking at the amount of money donated.

We believe that Schneider and Sidiropoulos’s definition is best understood as
trying to capture the intuition that an observer who sees all the events generated
by P , except for events inA, does not know which event inA occurred. We can
make this precise by translating Schneider and Sidiropoulos’s definition into our
framework. The first step is to associate with each processP a corresponding set
of runsRP . We present one reasonable way of doing so here, which suffices for
our purposes. In future work, we hope to explore the connection between CSP and
the runs and systems framework in more detail.

Recall that a run is an infinite sequence of global states of the form(se, s1, . . . , sn),
where eachsi is the local state of agenti, andse is the state of the environment.
Therefore, to specify a set of runs, we need to describe the set of agents, and then
explain how to derive the local states of each agent for each run. There is an obvi-
ous problem here: CSP has no analogue of agents and local states. To get around
this, we could simply tag all events with an agent (as Schneider and Sidiropoulos
in fact do for the events inA). However, for our current purposes, a much simpler
approach will do. The only agent we care about is a (possibly mythical) observer
who is able to observe every event except the ones inA. Moreover, for events in
A, the observer knows that something happened (although not what). There may
be other agents in the system, but their local states are irrelevant. We formalize this
as follows.

Fix a processP over some setΣ of events, and letA ⊆ Σ. Following Schneider
and Sidiropoulos, for the purposes of this discussion, assume thatA consists of
events of the formi.a, wherei ∈ IA anda is some specific action. We say that a
systemR is compatible withP if there exists some agento such that the following
two conditions hold:

• for every runr ∈ R and every timem, there exists a traceτ ∈ P such that
τ = re(m) andfA(τ) = ro(m);

• for every traceτ ∈ P , there exists a runr ∈ R such thatre(|τ |) = τ and
ro(|τ |) = fA(τ) (where|τ | is the number of events inτ ).
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Intuitively,R representsP if (1) for every traceτ in P , there is a point(r,m) inR
such that, at this point, exactly the events inτ have occurred (and are recorded in
the environment’s state) ando has observedfA(τ), and (2) for every point(r,m)
in R, there is a traceτ in P such that precisely the events inre(m) have happened
in τ , ando has observedfA(τ) at (r,m). We say that the interpreted systemI =
(R, π) is compatible withP if R is compatible withP and if (I, r,m) |= θ(i, a)
whenever the eventi.a is in the event sequencere(m′) for somem′.

We are now able to make a formal connection between our definition of anonymity
and that of Schneider and Sidiropoulos. As in the setup of Proposition 3.3, we as-
sume that an anonymous actiona can be performed only once in a given run.

Theorem 5.1: If I = (R, π) is compatible withP , thenP is strongly anonymous
on the alphabetA if and only if for every agenti ∈ IA, the actiona performed by
i is anonymous up toIA with respect too in I.

Proof: Suppose thatP is strongly anonymous on the alphabetA and thati ∈ IA.
Given a point(r,m), suppose that(I, r,m) |= θ(i, a), so that the eventi.a appears
in re(n) for somen ≥ m. We must show that(I, r,m) |= Po[θ(i′, a)] for every
i′ ∈ IA, that is, thata is anonymous up toIA with respect too. For anyi′ ∈ IA,
this requires showing that there exists a point(r′,m′) such thatro(m) = r′o(m

′),
andr′o(n

′) includesi′.a, for somen′ ≥ m′. BecauseR is compatible withP ,
there existsτ ∈ P such thatτ = re(n) andi.a appears inτ . Let τ ′ be the trace
identical toτ except thati.a is replaced byi′.a. BecauseP is strongly anonymous
on A, P = f−1

A (fA(P )), andτ ′ ∈ P . By compatibility, there exists a runr′

such thatr′e(n) = τ ′ andr′o(n) = fA(τ ′). By construction,fA(τ) = fA(τ ′), so
ro(n) = r′o(n). Because the length-m trace prefixes offA(τ) andfA(τ ′) are the
same, it follows thatro(m) = r′o(m). Because(I, r′,m) |= θ(i′, a), (I, r,m) |=
Po[θ(i′, a)] as required.

Conversely, suppose that for every agenti ∈ IA, the actiona performed byi
is anonymous up toIA with respect too in I. We must show thatP is strongly
anonymous. It is clear thatP ⊆ f−1

A (fA(P )), so we must show only thatP ⊇
f−1

A (fA(P )). So suppose thatτ ∈ f−1
A (fA(P )). If no eventi.a appears inτ , for

any i ∈ IA, thenτ ∈ P trivially. Otherwise, somei.a. does appear. Because
τ ∈ f−1

A (fA(P )), there exists a traceτ ′ ∈ P that is identical toP except thati′.a
replacesi.a, for some otheri′ ∈ IA. BecauseR is compatible withP , there exists
a runr′ ∈ R such thatr′o(m) = fA(τ ′) andr′e(m) = τ ′ (wherem = |τ ′|). Clearly
(I, r′,m) |= θ(i′, a) so, by anonymity,(I, r′,m) |= Po[θ(i, a)], and there exists a
run r such thatro(m) = r′o(m) and(I, r,m) |= θ(i, a). Because the actiona can
be performed at most once, the tracere(m) must be equal toτ . By compatibility,
τ ∈ P as required.
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Up to now, we have assumed that the observero has access to all the infor-
mation in the system except which event inA was performed. Schneider and
Sidiropoulos extend their definition of strong anonymity to deal with agents that
have somewhat less information. They capture “less information” usingabstrac-
tion operators. Given a processP , there are several abstraction operators that can
give us a new process. For example thehiding operator, represented by\, hides
all events in some setC. That is, the processP\C is the same asP except that
all events inC become internal events of the new process, and are not included in
the traces associated withP\C. Another abstraction operator, the renaming oper-
ator, has already appeared in the definition of strong anonymity: for any setC of
events, we can consider the functionfC that maps events inC to a fixed new event.
The difference between hiding and renaming is that, if events inC are hidden, the
observer is not even aware they took place. If events inC are renamed, then the
observer is aware that some event inC took place, but does not know which one.

Abstraction operators such as these provide a useful way to model a process
or agent who has a distorted or limited view of the system. In the context of
anonymity, they allow anonymity to hold with respect to an observer with a limited
view of the system in cases where it would not hold with respect to an observer who
can see everything. In the anonymous donations example, hiding the events $5 and
$10, i.e., the amount of money donated, would make the new processP\{$5, $10}
strongly anonymous on the set of donation events. Formally, given an abstraction
operatorABSC on a set of eventsC, we have to check the requirement of strong
anonymity on the processABSC(P ) rather than on the processP .

Abstraction is easily captured in our framework. It amounts simply to changing
the local state of the observer. For example, anonymity of the processP\C in our
framework corresponds to anonymity of the actiona for every agent inIA with
respect to an observer whose local state at the point(r,m) is fA(re(m))\C. We
omit the obvious analogue of Theorem 5.1 here.

A major advantage of the runs and systems framework is that definitions of
high-level properties such as anonymity do not depend on the local states of the
agents in question. If we want to model the fact that an observer has a limited
view of the system, we need only modify her local state to reflect this fact. While
some limited views are naturally captured by CSP abstraction operators, others
may not be. The definition of anonymity should not depend on the existence of
an appropriate abstraction operator able to capture the limitations of a particular
observer.

As we have demonstrated, our approach to anonymity is compatible with the
approach taken in [Schneider and Sidiropoulos 1996]. Our definitions are stated in
terms of actions, agents, and knowledge, and are thus very intuitive and flexible.
The generality of runs and systems allows us to have simple definitions that apply
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to a wide variety of systems and agents. The low-level CSP definitions, on the other
hand, are more operational than ours, and this allows easier model-checking and
verification. Furthermore, there are many advantages to using process algebras in
general: systems can often be represented much more succinctly, and so on. This
suggests that both approaches have their advantages. Because CSP systems can be
represented in the runs and systems framework, however, it makes perfect sense
to define anonymity for CSP processes using the knowledge-based definitions we
have presented here. If our definitions turn out to be equivalent to more low-level
CSP definitions, this is ideal, because CSP model-checking programs can then be
used for verification. A system designer simply needs to take care that the runs-
based system derived from a CSP process (or set of processes) represents the local
states of the different agents appropriately.

5.3 Anonymity and Function View Semantics

Hughes and Shmatikov [2003] introducefunction viewsand function viewopaque-
nessas a way of expressing a variety of information-hiding properties in a succinct
and uniform way. Their main insight is that requirements such as anonymity in-
volve restrictions on relationships between entities such as agents and actions. Be-
cause these relationships can be expressed by functions from one set of entities
to another, hiding information from an observer amounts to limiting an observer’s
view of the function in question. For example, anonymity properties are concerned
with whether or not an observer is able to connect actions with the agents who
performed them. By considering the function from the set of actions to the set of
agents who performed those actions, and specifying the degree to which that func-
tion must be opaque to observers, we can express anonymity using the framework
of [Hughes and Shmatikov 2003].

To model the uncertainty associated with a given function, Hughes and Shmatikov
define a notion offunction knowledgeto explicitly represent an observer’s partial
knowledge of a function. Function knowledge focuses on three particular aspects
of a function: its graph, image, and kernel. (Recall that thekernelof a functionf
with domainX is the equivalence relationker onX defined by(x, x′) ∈ ker iff
f(x) = f(x′).) Function knowledgeof typeX → Y is a tripleN = (F, I,K),
whereF ⊆ X × Y , I ⊆ Y , andK is an equivalence relation onX. A triple
(F, I,K) is consistent withf if f ⊆ F , I ⊆ imf , andK ⊆ kerf . Intuitively,
a triple (F, I,K) that is consistent withf represents what an agent might know
about the functionf . Complete knowledge of a functionf , for example, would be
represented by the triple(f, imf, kerf).

For anonymity, and for information hiding in general, we are interested not
in what an agent knows, but in what an agent doesnot know. This is formalized
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in [Hughes and Shmatikov 2003] in terms of opaqueness conditions for function
knowledge. IfN = 〈F, I,K〉 is consistent withf : X → Y , then, for example,
N is k-value opaqueif |F (x)| ≥ k for all x ∈ X. That is,N is k-value opaque if
there arek possible candidates for the value off(x), for all x ∈ X. Similarly,N
is Z-value opaqueif Z ⊆ F (x) for all x ∈ X. In other words, for eachx in the
domain off , no element ofZ can be ruled out as a candidate forf(x). Finally,N
is absolutely value opaqueif thatN is Y -value opaque.

Opaqueness conditions are closely related to the nonprobabilistic definitions
of anonymity given in Section 3. Consider functions fromX to Y , whereX is
a set of actions andY is a set of agents, and suppose that some functionf is the
function that, given some action, names the agent who performed the action. If
we havek-value opaqueness for some view off (corresponding to some observer
o), this means, essentially, that each actiona in X is k-anonymous with respect
to o. Similarly, the view isIA-value opaque if the action is anonymous up toIA
for each agenti ∈ IA. Thus, function view opaqueness provides a concise way of
describing anonymity properties, and information-hiding properties in general.

To make these connections precise, we need to explain how function views
can be embedded within the runs and systems framework. Hughes and Shmatikov
already show how we can define function views using Kripke structures, the stan-
dard approach for giving semantics to knowledge. A minor modification of their
approach works in systems too. Assume we are interested in who performs an ac-
tion a ∈ X, whereX, intuitively, is a set of “anonymous actions”. LetY be the set
of agents and letf be a partial function fromX to Y . Intuitively, f(a) = i if agent
i has performed actiona, andf(a) is undefined if no agent has (yet) performed
actiona. The value of the functionf will depend on the point. Letfr,m be the
value off at the point(r,m). Thus,fr,m(a) = i if, at the point(r,m) agenti
has performeda.1 We can now easily talk about function opaqueness with respect
to an observero. For example,f is Z-value opaque at the point(r,m) with re-
spect too if, for all z ∈ Z, there exists a point(r′,m′) such thatr′o(m

′) = ro(m)
andf(r′,m′)(x) = z. In terms of knowledge,Z-value opaqueness says that for
any valuex in the range off , o thinks it possible that any valuez ∈ Z could be
the result off(x). Indeed, Hughes and Shmatikov say that function view opaque-
ness, defined in terms of Kripke structure semantics, is closely related to epistemic
logic. The following proposition makes this precise; it would be easy to state sim-
ilar propositions for other kinds of function view opaqueness.

1Note that forf(r,m) to be well-defined, it must be the case that only one agent can ever perform
a single action. We also remark that, while Hughes and Shmatikov did not consider partial functions,
they seem to be necessary here to deal with the fact that the actiona may not have been performed
at all.
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Proposition 5.2: LetI = (R, π) be an interpreted system that satisfies(I, r,m) |=
f(x) = y wheneverf(r,m)(x) = y. In systemI, f isZ-value opaque for observer
o at the point(r,m) if and only if

(I, r,m) |=
∧

x∈X

∧
z∈Z

Po[f(x) = z].

Proof: This result follows immediately from the definitions.

Stated in terms of knowledge, function view opaqueness already looks a lot
like our definitions of anonymity. Givenf (or, more precisely, the set{f(r,m)} of
functions) mapping actions to agents, we can state a theorem connecting anonymity
to function view opaqueness. There are two minor issues to deal with, though.
First, our definitions of anonymity are stated with respect to a single actiona,
while the functionf deals with asetof actions. We can deal with this by taking the
domain off to be the singleton{a}. Second, our definition of anonymity up to a
setIA requires the observer to suspect agents inIA only if i actually performs the
actiona. (Recall this is also true for Syverson and Stubblebine’s definitions.)IA-
value opaqueness requires the observer to think many agents could have performed
an action even if nobody has. To deal with this, we require opaqueness only when
the action has been performed by one of the agents inIA.

Theorem 5.3: Suppose that(I, r,m) |= θ(i, a) exactly iff(r,m)(a) = i. Then
actiona is anonymous up toIA with respect too for each agenti ∈ IA if and only
if at all points(r,m) such thatf(r,m)(a) ∈ IA, f is IA-value opaque with respect
to o.

Proof: Suppose thatf is IA-value opaque, and leti ∈ IA be given. If(I, r,m) |=
θ(i, a), thenf(r,m)(a) = i. We must show that, for alli′ ∈ IA, (I, r,m) |=
Po[θ(i′, a)]. Becausef is IA-value opaque at(r,m), there exists a point(r′,m′)
such thatr′o(m

′) = ro(m) andf(r′,m′)(a) = i′. Because(I, r′,m′) |= θ(i′, a),
(I, r,m) |= Po[θ(i′, a)].

Conversely, suppose that for each agenti ∈ IA, a is anonymous up toIA
with respect too. Let (r,m) be given such thatf(r,m)(a) ∈ IA, and let thati =
f(r,m)(a). It follows that (I, r,m) |= θ(i, a). For anyi′ ∈ IA, (I, r,m) |=
Po[θ(i′, a)], by anonymity. Thus there exists a point(r′,m′) such thatr′o(m

′) =
ro(m) and (I, r′,m′) |= θ(i′, a). It follows that f(r′,m′)(a) = i′, and thatf is
IA-value opaque.

As with Proposition 5.2, it would be easy to state analogous theorems con-
necting our other definitions of anonymity, including minimal anonymity, total
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anonymity, andk-anonymity, to other forms of function view opaqueness. We
omit the details here.

Hughes and Shmatikov argue that epistemic logic is a useful language for ex-
pressing anonymity specifications, while CSP is a useful language for describing
and specifying systems. We certainly agree with both of these claims. They pro-
pose function views as a useful interface to mediate between the two. We have
tried to argue here that no mediation is necessary, since the multiagent systems
framework can also be used for describing systems. (Indeed, the traces of CSP can
essentially be viewed as runs.) Nevertheless, we do believe that function views can
be the basis of a useful language for reasoning about some aspects of information
hiding. We can well imagine adding abbreviations to the language that let us talk
directly about function views. (We remark that we view these abbreviations as syn-
tactic sugar, since these are notions that can already be expressed directly in terms
of the knowledge operators we have introduced.)

On the other hand, we believe that function views are not expressive enough
to capture all aspects of information hiding. One obvious problem is adding prob-
ability. While it is easy to add probability to systems, as we have shown, and to
capture interesting probabilistic notions of anonymity, it is far from clear how to
do this if we take function views triples as primitive.

To sum up, we would argue that to reason about knowledge and probability,
we need to have possible worlds as the underlying semantic framework. Using
the multiagent systems approach gives us possible worlds in a way that makes
it particularly easy to relate them to systems. Within this semantic framework,
function views may provide a useful syntactic construct with which to reason about
information hiding.

6 Discussion

We have described a framework for reasoning about information hiding in multia-
gent systems, and have given general definitions of anonymity for agents acting in
such systems. We have also compared and contrasted our definitions to other sim-
ilar definitions of anonymity. Our knowledge-based system framework provides a
number of advantages:

• We are able to state information-hiding properties succinctly and intuitively,
and in terms of the knowledge of the observers or attackers who interact with
the system.

• Our system has a well-defined semantics that lets us reason about knowledge
in systems of interest, such as systems specified using process algebras or
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strand spaces.

• We are able to give straightforward probabilistic definitions of anonymity,
and of other related information-hiding properties.

One obviously important issue that we have not mentioned at all is model
checking, which could be used to check whether a given system specifies the
knowledge-based properties we have introduced. Fortunately, recent work has ex-
plored the problem of model checking in the multiagent systems framework. Van
der Meyden [1998] discusses algorithms and complexity results for model check-
ing a wide range of epistemic formulas in the runs and systems framework, and
van der Meyden and Su [2002] use these results to verify the dining cryptogra-
phers protocol [Chaum 1988], using formulas much like those described in Sec-
tion 3.3. Even though model checking of formulas involving knowledge seems to
be intractable for large problems, these results are a promising first step towards be-
ing able to use knowledge for both the specification and verification of anonymity
properties.

We described one way to generate a set of runs from a CSP processP , basically
by recording all the events in the state of the environment and describing some
observero who is able to observe a subset of the events. This translation was
useful for comparing our abstract definitions of anonymity to more operational
CSP-based definitions. In future work we hope to further explore the connections
between the runs and systems framework and tools such as CCS, CSP, and the spi
calculus [Abadi and Gordon 1997]. A great deal of work in computer security
has formalized information hiding properties using these tools. Such work often
reasons about the knowledge of various agents in an informal way, and then tries
to capture knowledge-based security properties using one of these formalisms. By
describing canonical translations from these formalisms to the runs and systems
framework, we hope to be able to demonstrate formally how such definitions of
security do (or do not) capture notions of knowledge.
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