
Design and Implementation of the idemix Anonymous
Credential System

Jan Camenisch and Els Van Herreweghen
IBM Research, Zurich Research Laboratory

8803 Rüschlikon
Switzerland

{jca,evh}@zurich.ibm.com

ABSTRACT
Anonymous credential systems [8, 9, 12, 24] allow anony-
mous yet authenticated and accountable transactions be-
tween users and service providers. As such, they represent a
powerful technique for protecting users’ privacy when con-
ducting Internet transactions. In this paper, we describe
the design and implementation of an anonymous credential
system based on the protocols developed by [6]. The system
is based on new high-level primitives and interfaces allowing
for easy integration into access control systems. The pro-
totype was realized in Java. We demonstrate its use and
some deployment issues with the description of an opera-
tional demonstration scenario.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption—Public key cryptosystems

General Terms
Design, Security

Keywords
Privacy, Anonymous Credential Systems, Cryptographic
Protocols

1. INTRODUCTION
The protection of users’ privacy when performing Inter-

net or web-based transactions is an important factor in the
acceptance and use of Internet and web services.

Solutions for minimizing release of personal information
can be based on one of many proposed techniques for ano-
nymizing the transport medium used between users and ser-
vice providers, e.g., [26, 18, 27]. This may anonymize the
user towards outsiders and, if desired, towards the service
provider.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02,November 18–22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

Service providers may require authentication (e.g., for
controlling access to resources) or accountability of users’
actions, in which case users need to prove their identity, or
at least possession of a certificate or capability of a certain
type. Such a certificate may contain a pseudonymous iden-
tity of the user, or contain only the necessary attributes
required for accessing a certain service. However, when us-
ing certificates as defined by X.509 [11] or SPKI [2], or even
certificates specifically constructed for conveying policy or
authorization information as in Keynote [3], different uses
of the same certificate still remain linkable to each other.
They can eventually identify a user through a combination
of context and addressing information from one or a series
of transactions. Moreover, the transaction in which the cer-
tificate was issued can be linked to the transaction where it
is used and thus, it the issuer and the verifier collude, the
user can identified directly.

These linkabilities can be avoided by using an anonymous
credential system (also called pseudonym system) [8, 9, 12,
24]. In such a system, the organizations (service providers
and credential issuers) know the users only by pseudonyms.
Different pseudonyms of the same user cannot be linked.
Yet, an organization can issue a credential to a pseudonym,
and the corresponding user can prove possession of this cre-
dential to another organization (who knows him by a differ-
ent pseudonym), without revealing anything more than the
fact that the user owns such a credential.

In this paper, we describe the design and implementa-
tion of idemix (short for identity mix), a prototype of the
credential system by Camenisch and Lysyanskaya [6]. We
describe the idemix functionality using high-level primitives.
These primitives allow reasoning about security and privacy
features, while hiding the complexity of the cryptographic
protocols, as well as the differences between actual protocols
realizing the same primitive. We also developed additional
functionality for service providers and credential issuers to
configure and enforce resource access control and credential
issuing decisions. As we demonstrate with an example, this
allows the use of the prototype in developing actual appli-
cations using concepts of anonymous and attribute-based
authentication and access control.

After describing the functionality of the credential sys-
tem protocols in Section 2, we describe in Section 3 the
high-level primitives. Section 4 describes the architecture
and implementation of the prototype implementing these
protocols, as well as the additional modules developed to

support easy configuration, creation, management and de-
ployment of idemix -based applications. The use of the pro-
totype is demonstrated with an implemented scenario. Sec-
tion 6 raises security and infrastructure management issues
related to the deployment of idemix. Section 7 states con-
clusions and lists future work.

2. IDEMIX PROTOCOLS, PSEUDONYMS
AND CREDENTIALS

In this section we describe the functionality of the cre-
dential system. The basic protocols for issuing and showing
credentials are described in Section 2.1; Sections 2.2 and 2.3
describe optional features of protocols and credentials.

2.1 Basic Credential Protocols
The core of the idemix system consists of the protocols

described in [6]. This section describes these protocols in
terms of parametrized primitives of which functionality can
be easily explained and mapped to system interfaces.

The entities in the system are users, who obtain and show
credentials, and organizations issuing and verifying creden-
tials. Another type of organization, de-anonymizing orga-
nization, is discussed in Section 2.3.11. Thus, a user U can
obtain a credential C from an (issuing) organization OI ; and
then show the credential C to another (verifying) organiza-
tion OV . A credential is always issued on a pseudonym N
under which U is registered with (or known by) the issuing
organization OI . A credential may have certain attributes
(attr). When showing a credential, the user can choose
which of the credential’s attributes shall be revealed (see
Section 3.4).

Pseudonym registration, credential issuing and credential
verification are interactive protocols between the user and
the specific organization. A user U has a (single) master
secret SU , which is linked to all the pseudonyms and creden-
tials issued to that user. Issuing and verifying organizations
all have a public/private key pair. The organization issuing
a credential uses its private key to generate the credential;
the credential can then be verified using the issuing orga-
nization’s public key, either by the user when receiving the
credential, or later on by any organization to which the user
shows the credential. When showing a credential, the user
uses the public key of the verifying organization which, in
turn, needs its private key in the protocol.

Obtaining a credential from OI and showing it to OV

works as follows (cf. Figure 1). First, U contacts OI and
establishes a pseudonym N with OI . If N is eligible to get a
credential with an attribute attr, OI produces a credential
C by signing a statement containing attr and N and sends C
to U . Now U can show this credential to OV . That is, using
a zero-knowledge proof, U convinces OV of (1) possessing a
signature generated by OI on a statement containing attr
and N , and (2) knowing the master secret key SU related
to N . We stress that U does not reveal any other informa-
tion to OV . In particular, U does not send OV the actual
credential. This way of showing a credential together with
the zero-knowledge property of the proof ensures the un-
linkability of different showings of a credential and also the

1In the remainder of the text, organization is used for cre-
dential issuing and/or verifying organizations. Unless ex-
plicitly mentioned, it does not include de-anonymizing or-
ganizations.

U (SU)

OI (PKI ,SKI)

OV (PKV ,SKV)

cred(N, OI , attr) �����������)

PPPPPPPPPPPq
show(OI , attr′)

Figure 1: Basic credential system protocols.

unlinkability of a showing of a credential to the pseudonym
to which the credential was issued. This means that U can
show C to OV (or any other verifier) an unlimited number
of times, without these credential shows becoming linkable
to each other or to a pseudonym. (Exceptions are one-show
credentials, which are discussed in Section 2.2). This un-
linkability is maintained even if OV and OI are the same
organization (or pool their data).

Note that from this unlinkability property it follows that
the user is anonymous towards the verifying organization.
Of course, this property of the pseudonym system can only
provide real anonymity to the user if the communication
channel used supports anonymity [7, 18, 26, 27].

While, in general, this approach to showing a credential is
not very efficient, the special signature scheme used by the
credential system [6] allows for an efficient realization of the
zero-knowledge proof described above. In fact, as indicated
by our performance results, the computational complexity
for both the user and the verifying organization executing
the protocol for showing a credential corresponds to gen-
erating a small number of signatures in the standard RSA
signature scheme.

As all of a user’s credentials are linked to his master se-
cret, sharing a credential would imply also giving away one’s
master secret. This not only ensures that users cannot pool
their credentials (e.g., to obtain a new credential) but also
allows the implementation of measures to discourage users
from sharing their credentials. One way to do this is PKI-
assured non-transferability, where the user’s master secret
key is tied to some valuable secret key from outside the sys-
tem (e.g., the secret key that gives access to the user’s bank
account) [13, 17, 24]. Thus sharing a credential implies also
sharing this valuable secret key. However, such a valuable
key does not always exist. An other, novel way of achieving
this is all-or-nothing non-transferability [6]. Here, sharing
just one pseudonym or credential implies sharing all of the
user’s other credentials and pseudonyms in the system, i.e.,
sharing all of the user’s secret keys inside the system.

In cases where the verifier and the issuer are the same
entity, sharing credentials can be limited by the approach
proposed by Stubblebine, Syverson, and Goldschlag [28]. In
this approach a credential can only be used once, but each
time a credential is used, a new credential is issued. Thus,
when a credential is given away, only the person using the
credential first is given the next credential. This mechanism
makes sharing access to a resource tedious.

Using the so-called Fiat-Shamir heuristic [16], the proto-
col for showing a credential can also be turned into a sig-

U (SU) OV (PKV ,SKV)

OD (PKD,SKD)

show(OI , attr′,EVD(N))
-

?

6

de-anonymize(transcript) N

Figure 2: De-Anonymization

nature scheme. The meaning of a signature will then be “a
person possessing a credential issued by OI has signed this
message.”

Both all-or-nothing non-transferability as well as the sig-
nature functionality will only be implemented in a future
version of the prototype.

2.2 Credential Options and Attributes
Credentials can have options (such as one-show, or multi-

show) and attributes. The one-show credentials incorporate
an off-line double-spending test [10]: when showing a one-
show credential more than once (to the same or different
organizations), this results in transcripts from which the is-
suing organization can extract the pseudonym N on which
it was issued.

Examples of credential attributes can be an expiration
date, the user’s age, a credential subtype. When showing a
credential, the user can choose which attribute(s) to prove
something about, and what to prove about them. E.g.,
when showing a credential that has attributes (exp-date
= "2002-05-19", age = 55), the user can decide to prove
only that age > 18 (see also Section 3.4).

2.3 Parameters of the Show Protocol

2.3.1 De-Anonymizible Show of a Credential
De-anonymization mechanisms allow to reveal the iden-

tity of a user (global de-anonymization, also called global
anonymity revocation) or to reveal a user’s pseudonym with
an issuing organization (lobal de-anonymization or local ano-
nymity revocation). Global de-anonymization allows for glo-
bal accountability of transactions (e.g., for identifying a user
performing illegal transactions); local anonymity revocation
can be applied by the issuing organization to take measures
when a user misuses his credential.

Both types of de-anonymization are optional and require
U ’s cooperation when showing a credential. They require
the existence of a designated third party, a de-anonymizing
organization OD (see Figure 2). OD has a public-private
encryption-decryption key pair (PKD,SKD). Using this
variant of the show protocol, U encrypts N with OD’s pub-
lic encryption key. This encryption is verifiable (denoted
EVD(N)), which means that OV has proof that OD can de-
crypt and reveal the relevant N from OV ’s show protocol
transcript. There may be several de-anonymizing organiza-
tions in the system, from which U may be able to chose. By
including also a de-anonymization condition, U can decide
under which condition he consents to the transcript being

de-anonymized. Later, when deemed necessary by OV , OV

can send the transcript to OD. OD can then decide whether
this condition is fulfilled and, if so, de-anonymize the tran-
script and returns N (local de-anonymization).

Global de-anonymization uses essentially the same tech-
nique. It requires, in addition, the existence of a special
credential issuing organization, a Root Pseudonym Author-
ity , which only issues credentials on pseudonyms of which
it knows the mapping with a real user identity. A user typ-
ically has a single pseudonym (root pseudonym) with the
Root Pseudonym Authority, and one credential (root cre-
dential) on that root pseudonym (additional pseudonyms or
credentials with the Root Pseudonym Authority would any-
way be linkable to the user).

2.3.2 Showing a Credential Relative to a Pseudonym
Using this option, U , who has obtained a credential C by

OI on NI , and who is known under pseudonym NV to OV ,
proves possession of C to OV , while also proving that the
pseudonym to which C was issued belongs to the same user
as does NV . More precisely, the user proves that the same
master secret key SU that is linked to NV is also linked to
the credential C and the pseudonym (NI) the credential C
is issued on.

This option is mandatory for U to convince OV of posses-
sion of several credentials. Without using the option, two
users each possessing a different credential could each show
their credential to OV and fool OV into believing that it
talked to a single user possessing both credentials.

Furthermore, this option is also mandatory if showing of
a credential is a precondition for a user to get another cre-
dential. The reason for this can be seen from the following
example. Let us assume that U wants to obtain a credential
from OVI; OVI, in order to issue such a credential, requires
U to show a credential by OI . If U has such a credential, he
first registers a pseudonym NVI with OVI, and then shows
the credential by OI to OVI, upon which OVI considers the
precondition to be satisfied and issues the new credential on
NVI. If U has no such credential, he can try to collaborate
with U ′ (who does own the credential) by asking U ′ to per-
form the second step (showing the credential by OVI). And
indeed, if OVI does not require U to show the OI credential
relative to a specific pseudonym, U will obtain the credential
from OVI without fulfilling the precondition. By requiring
to show the OI credential relative to NVI, OVI enforces that
the same user who showed the OI credential gets the new
OVI credential.

3. CREDENTIAL SYSTEM PRIMITIVES
In this section, we start out by describing representa-

tions for pseudonyms and credentials, and then define rep-
resentations of credential attributes and protocol options.
Subsequently, we describe the high-level primitives of the
pseudonym system.

3.1 Pseudonyms
A pseudonym N of user U with OI cannot be mapped to

a data representation shared by U and OI : U has a secret
value (other than the user’s master secret) attached to each
pseudonym N - knowledge of this secret value is required
to make any operation with pseudonym N , such as obtain-
ing a credential. Thus, an implementation of the credential
system needs different representations (or data types) for

a pseudonym, depending on the role of the actor (user or
organization).

Nym(N,Ns, U, O, X) could be an abstract representation
of a pseudonym of user U with organization O. N is common
to U and O and uniquely identifies the pseudonym to both
U and O. Ns is the secret value associated by the user with
the pseudonym. X is a statement or set of statements which
O attaches to N : information obtained during registration
(e.g., a real user identity in the case of root pseudonym regis-
tration) as well as up-to-date information about credentials
issued to N .2

Nym(N,Ns, U, O, X) is represented in reality by two sets
of data:
UserNym(N,Ns, O), and OrgNym(N, X).3

Note that the user’s master secret SU , though essential in
using the UserNym, is common to all a user’s pseudonyms
and is not considered part of the UserNym representation.
Note also that the statement X is application-specific, and
is not explicitly supported by the core of the pseudonym
system as it is introduced in Section 4.

O does not authenticate to U during pseudonym registra-
tion. While this is not a security threat, as the registration
does not reveal any information about U , SU or Ns, the
registration of a pseudonym with an impersonator of O can
lead to denial of service when U then tries to obtain a cre-
dential on N from O. For this and other reasons discussed
in Section 6, we assume every O to have a certificate with
which to authenticate communication with users.

3.2 Credentials
Credentials have a different representation at the user and

at the organization side as well: when a credential C is issued
by OI on N , user and organization get to store different
values associated with it.

Cred(N,Ns, U, OI , C, T) represents a credential, issued by
organization OI on pseudonym N of user U . T represents
the credential’s type (CredInfo), including the specific issu-
ing key (PKI) options and attributes:

CredInfo(PKI , MultiShow, Expiration, Subtype, Age, ...).

Using a similar reasoning as for pseudonyms, Cred(N,Ns,
U, OI , C, T) expresses a relationship between
UserCred(UserNym, C, T, OI) and OrgCred(OrgNym, T).

3.3 CredShowFeatures
The parameters of a credential showing are expressed in

a CredShowFeatures parameter array. The parameter Rel-
Nym indicates whether the show is relative to a pseudonym
known to the verifying organization (in which case an addi-
tional argument NV will indicate this pseudonym). Another

2Nym(N,Ns, U, O, X) is the equivalent of following state-
ment: The value N is known by U and O to be a valid
pseudonym according to the credential system specification.
This means that there has been a pseudonym registration
procedure between U and O, during which both U and O
contributed to the value of the pseudonym, and during which
O verified that N is based on a well-formed secret SU . Dur-
ing that registration procedure, O associated X with N . U ’s
contribution is linked to Us master secret SU as well as to
the new pseudonym-specific user secret Ns in a way that
credentials issued on N are linked to these secrets.
3The term DataType(Field1, Field2, . . .) informally defines
the contents of a data set of type DataType.

Primitive Inputs/Outputs

U registerNym IN: UserSecret
OUT: UserNym

O registerNym IN: -
OUT: Transcript (incl. OrgNym)

U getCredential IN: UserSecret,UserNym, CredInfo
OUT: UserCred

O issueCredential IN: OrgKeys, OrgNym, CredInfo
OUT: Transcript (incl. OrgCred)

U showCredential IN: UserSecret, UserCred, CredInfo,
CredShowFeatures, [UserNym]

OUT: -
O verifyCredential IN: OrgKeys, CredInfo,

CredShowFeatures, [OrgNym]
OUT: Transcript

O checkDoubleSpendingIN: OrgKeys, Transcript, Transcript
OUT: OrgNym

DO deAnonymize IN: DeAnOrgKeys, Transcript
OUT: OrgNym

Figure 3: Protocol Primitives

parameter contains de-anonymization information specify-
ing whether, under which condition and by which de-anony-
mization organization OD (or which public key PKD) the
show transcript will be de-anonymizable (local or global de-
anonymization):

CredShowFeatures(RelNym, [PKD, ConditionLocal],
[PKD, ConditionGlobal])

3.4 Protocol Primitives
Figure 3 lists the basic protocol primitives for regis-

tering pseudonyms, issuing and verifying credentials, ver-
ifying double-spending of one-show credentials, and de-
anonymizing. Primitives invoked by a user (respectively org,
de-anonymizing org) carry the prefix U (O , DO).

In the user-invoked (U) primitives, the identifier of the
targeted organization (OI , OV) is not listed as parameter:
it is assumed that the application calling the user primitives
has set up a communication channel with the correct organi-
zation, using addressing information obtained at application
level.

The organization (O) versions of these primitives result
in a Transcript of the protocol which, among the crypto-
graphic transcript and other application data, includes also
the newly established OrgNym or OrgCred. The calling ap-
plication is responsible for extracting this information and
store it in appropriate persistent storage.

When showing a credential with CredInfo T , a user can
choose which subset of attributes he wants to prove, and
what to prove about them, by setting the CredInfo pa-
rameter T ′ in the UserShowCredential() primitive. This T ′

is communicated to the verifying organization and used as
CredInfo parameter also in OrgVerifyCredential(). E.g., if

T .Age=‘55’, T .Expiration=‘20020831’,
T ′.Age=‘>18’, T ′.Expiration=‘any’

then the show protocol will only prove that T .Age>18.
Before executing the show protocol, the calling user ap-

plication should verify whether canFulfill(T , T ′) holds.
The de-anonymization primitive does not check the con-

dition for de-anonymization (which is included in the tran-
script to be de-anonymized): this is assumed to be the ap-
plication’s responsibility.

Figure 4: User, Org, and DeAnOrg components

Additional primitives, such as for generating parties’ key
pairs and master secrets (and extracting the public informa-
tion from them), are described in the next section.

4. THE IDEMIX PROTOTYPE
In this Section, we describe design and implementation

(Java) of the idemix prototype. The core of the idemix
system is the NymSystem package as described in [5] im-
plementing the UserNymSystem, OrgNymSystem4 and De-
AnOrgNymSystem components in Figure 4. Each of these
components offers functionality related to the specific cryp-
tographic operations executed by the different entities, as
well as methods to create a new instance of the entity by
generating cryptographic key material (user master secret,
organization’s public/private key pair, de-anonymizing or-
ganization’s public/private encryption key pair). The fol-
lowing paragraphs shortly discuss the different interfaces.

4.1 OrgNymSystem and UserNymSystem
Token-Based Interfaces

UserNymSystem and OrgNymSystem contain the user’s
and organization’s methods to compose and analyze the
cryptographic tokens exchanged in the nym registration, cre-
dential issuing and credential show protocols. OrgNymSys-
tem, in addition, contains a method for verifying whether
two show transcripts result from the double-spending of a
one-show credential, and if so, extract the pseudonym the
credential was issued on. It is the calling application’s re-
sponsibility to call this method when deemed appropriate.

Each of the interactive user-organization protocols is im-
plemented by a user (in UserNymSystem) and an organiza-
tion (in OrgNymSystem) state machine (encapsulated in a
UserProtocol or OrgProtocol) which the calling application
initializes (e.g., initRegProtocol). After this, the calling ap-
plication can execute the protocol using the state machine’s
getNextMsg() method and a communication channel. When
the protocols is finished, the state machines (UserProtocol
or OrgProtocol) allow the calling application to retrieve a
newly formed UserNym or UserCred (OrgNym or OrgCred).
The advantage of this token-based interface is that the pro-
tocols can be used asynchronously.

For easier programming of synchronous applications, syn-
chronous interfaces (UserSyncNymSystem and OrgSync-
NymSystem) (see Section 4.2) were implemented hiding the
protocol state machines and the transport of cryptographic
tokens from the calling application.

4NymSystem does not distinguish between verifying and is-
suing organizations. A distinction can be made only by not
enabling an organization to issue credentials using the Re-
questGranter (Section 4.6.2) functionality.

The NymSystem library is stateless and consists of static
methods: i.e., the calling application is responsible for pro-
viding all the cryptographic information (including system
parameters, such as key lengths, and the actual key ma-
terial) when calling the library methods5. E.g., when a
user master secret is generated using createUser(), the result
(UserNymSysData) contains the master secret as well as the
system parameters, and is a parameter to any of the cryp-
tographic protocols. For ease of application programming
and to avoid repeated file access for key material by User-
App and OrgApp, the synchronous extensions which are de-
scribed in the next section were given a non-persistent state:
the classes implementing them contain static variables with
handles to system parameters and key material. The organi-
zation’s public key can be extracted from the OrgNymSys-
Data (and distributed to users upon system setup or up-
date).

4.2 UserSyncNymSystem and OrgSyncNym-
System Synchronous Interfaces

The token-based interfaces of UserNymSystem and Org-
NymSystem leave the task of driving the protocols to the
calling application. It is also the calling application’s respon-
sibility to communicate the meta-information that allows
user and organizations to initialize their respective protocol
state machines; e.g., it is up to the calling user application to
communicate to the organization which kind of credentials
and with which options/features it wants to prove possession
of, or what type of credential or data it wants to get.

To enable easy programming of synchronous applications
on top of this token-based interface, the synchronous inter-
faces (Figure 5) UserSyncNymSystem and OrgSyncNymSys-
tem take care of the signalling of meta-information as well
as of driving the protocol state machines. They require the
respective UserApp and OrgApp to pass a communication
(ClientCommSession, ServerCommSession) object. This al-
lows the calling application to decide whether to create a
new communication session for the exchange, or to re-use
a communication channel in use by the application; it also
allows the calling application to decide which protocols are
run within the same communication session. This allows
maximal flexibility when hooking idemix as an authentica-
tion mechanism into an existing application.

4.3 DeAnonOrgNymSystem
A deanonymizing organization does not carry out in-

teractive protocol. It may receive a transcript to be
deanonymized from any out-of-band communication chan-
nel, and may be operating in batch or asynchronous mode.
Therefore, DeAnOrgNymSystem only has an asynchronous
interface (Figure 5): it provides methods for creation of the
organization and for de-anonymizing a transcript. Also here,
the public key in DeAnOnOrgNymSysData (resulting from
the createDeAnOrg()) can be extracted in order to be dis-
tributed to users.

4.4 Communication
ClientCommSession and ServerCommSession are defined

as interfaces offering generic read and write methods. It
is up to the calling applications to pass a communication

5This differs slightly from the earlier version described in [5],
where NymSystem was parametrized with file locations of
secret keys

Figure 5: User, Org and DeAnOrg Token-Based and
Synchronous interfaces

object that implements these interfaces. Use of encrypted
or authenticated channels (e.g., using SSL) is allowed but
not mandatory; the security of the communication channel
is discussed in more detail in Section 6.

Our prototype SSLClientCommSession and SSLServer-
CommSession implementation of these interfaces use a pro-
prietary Java SSL implementation. Organizations’ address
and SSL information is part of the public information cre-
ated by an organization’s initialization program, distributed
to the users and stored in the users’ persistent storage (see
Section 4.5). Communication is authenticated (organization
to user) and encrypted, and the user can check the certifi-
cate using the getPeerCertificate() method of the SSLClient-
CommSession.

4.5 Persistent Data Storage
Credentials, pseudonyms, master secrets, organizations’

keys, system parameters, and address information have to
be stored persistently to have a workable prototype. We
defined interfaces allowing the various entities to store and
retrieve this information. These interfaces, the search keys
used for retrieving information about credentials, organiza-
tions, pseudonyms etc., and how the persistent information
is organized (one or several databases, password-protection,
etc.) ultimately depend on how the application will use the
system, and are not the focus of this work.

Each of the interfaces used in our prototype (UserPer-
sistent, OrgPersistent, DeAnOrgPersistent) combine access
methods to the appropriate data sets for each entity. The
example scenario in Section 5 illustrates how our example

applications use the persistent data.

4.6 Building Applications: Granting and
Processing Requests

When building real applications, we have to link appli-
cation with the NymSystem. As granting requests for both
credentials and data can depend on a user having shown one
or several credentials, granting and processing of credentials
and other resource requests are both treated here as actions
dependent on access control conditions. In this section we
give an overview of how we defined the rules governing the
organizations’ access control conditions, and how we defined
the modules granting and processing service requests. This
was done in such a way that they can be tailored to a specific
application, and that processing conditions and resources
not known to the idemix system can be added and linked to
the idemix -specific ones.

In the following discussion, we refer to Figure 6, where
OrgApp stands for an organization application receiving
and processing requests. MyOrgPersistent allows OrgApp
to store and retrieve its key material OrgNymSysData (in-
put parameter to OrgSyncNymSys methods), to the orga-
nization’s Rules (input parameter to the RequestGranter),
to the organization’s Transcripts file (where the credential
protocol transcripts, resulting from the OrgRequestProces-
sor, are stored persistently). An OrgApp may have one or
more OrgSession threads which accumulate the Transcript
information on a specific communication session with a user.

4.6.1 Organizations’ Access Rules
An organization has to specify which condition or con-

ditions a user has to fulfill in order to get access to data
or to get a credential. A Condition can require to show a
credential:

ShowCondition(CredInfo, CredShowFeatures)

expresses what type of credential U needs to show, and using
which options or parameters. It can be used by UserApp and
OrgApp to parameterize a NymSystem credential show.

Alternatively, a Condition can be an idemix -external fact,
expressed in an ExternalCondition:

Condition(ShowCondition | ExternalCondition)

The format of an ExternalCondition is defined by the ap-
plication, and its fulfillment is verified using an application-
provided method (see RequestGranter and extensions, Sec-
tion 4.6.2). E.g., an OrgApp may grant an anonymous news-
paper subscription credential based on a (non-anonymous)
proof of credit card payment. The checking of this proof is
a condition out of the scope of idemix and has to be imple-
mented by the application programmer in an extension of
the RequestGranter class.

An organization’ Rules set is a collection of Rule entries
([] is used as an array notation):

Rules(Rule[])

Each Rule consists of the description ResourceDescription
of the resource(s) for which this rule is valid, and a set of
conditions to be fulfilled for accessing the resource:

Rule(ResourceDescription, Condition[])

A ResourceDescription can describe a credential or an ex-
ternal resource; an external resource (ExternalResource) is

Figure 6: An Organization Application

any resource other than a credential (e.g., a URL). It has an
application-defined format.

ResourceDescription(CredentialInfo | ExternalResource)

Granting a pseudonym or verifying a proof are currently de-
fined to be unprotected resources; the ResourceDescription
could easily be extended to make also these requests subject
to conditions.

In an operational system, rules and conditions can be com-
municated dynamically (as a result of a resource request)
from OrgApp to UserApp; or it can be part of the organi-
zation’s publicly distributed information and stored by the
users (as described in Section 4.5). They parameterize the
granting decision of the organization’s RequestGranter (Sec-
tion 4.6.2).

4.6.2 RequestGranter
An extendable RequestGranter class contains default im-

plementations of the methods that grant different requests.
Calls to the RequestGranter class are parametrized with the
Rules set, the persistent Transcript storage (Which creden-
tials did the user owning this nym show in the past?) and
with non-persistent OrgSession storage (Which credentials
did the user show in this session?)

The default RequestGranter cannot evaluate External-
Conditions and will consider them unfulfilled by default.
An application can provide additional methods in its own
extension of RequestGranter (MyRequestGranter in Fig-
ure 6), overriding the isFulfilledExtCond() method of Re-
questGranter.

4.6.3 OrgRequestProcessor
A default OrgRequestProcessor module, extending

OrgSyncNymSys, deals with incoming requests and extracts
the appropriate arguments for the OrgSyncNymSys meth-
ods. This default OrgRequestProcessor does not know how
to handle application-specific resource requests or requests
that deal with fulfilling an ExternalCondition (e.g., show-
ing a credit card receipt). An application-specific extension

(MyOrgRequestProcessor) can override the (by default fail-
ing) handleExtResourceRequest() and handleShowExtRe-
quest() methods.

4.7 Performance

Protocol Options Time (sec)
RegNym 0.2-0.3
GetCred any option 3.4-4.9
ShowCred no option, or w.r.t. pseudonym 7.8-8.2
ShowCred + one show (on-line or off-line) + 0.6-1.0
ShowCred + exp date + 2.9-3.2
ShowCred + local revocation enable + 6.5-7.2
ShowCred + local revocation enable + 6.5-7.2
ShowCred all options on 24.8-25.3

Table 1: Performance using 1024 bit moduli.

Table 1 lists the execution times of the different opera-
tions. The measurements were made on IBM T23 laptop
machines (1.1 MHz Pentium III) running Debian Linux us-
ing Java 1.3.1 (Blackdown). The “+”-signs in the ShowCred
entries mean that if one switches on an option in the Show-
Cred protocol, then execution time will increase by the given
time.

These execution times are for a preliminary version of
the NymSystem where no optimization for multi-based ex-
ponentiation is used. We are currently implementing such
optimizations. First tests indicate that a speed-up by a fac-
tor of about 4-5 can be obtained. Furthermore, the cryp-
tographic protocols are currently such that first the users
does lots of computations, sends the result to the verifying
organization, and then the verifying organization does lots
of computations. We plan to optimize the protocols in this
respect also, which should provide a speed-up by a factor of
a little less than 2.

5. AN EXAMPLE SCENARIO: AN ANONY-
MOUS SUBSCRIPTION TO THE NEW
YORK TIMES

In this section, we demonstrate the use of the prototype
by user and organization applications. We define four orga-
nizations: a Root Pseudonym Authority (PA), a bank (AR-
GENTIX), the New York Times news subscription service
(KIOSK), and the New York Times news service (NYT).
NYT serves items in its cartoons section only upon verifica-
tion of a subscription credential issued by KIOSK; KIOSK,
in turn, issues such a credential upon verification of a (one-
show) $10 credential; ARGENTIX issues such a credential
based on proof of an (non-anonymous, idemix -external) pay-
ment, combined with the verification of a PA root credential.
PA unconditionally grants root pseudonyms and credentials
(In a more realistic scenario, a user could be required to show
an external certificate when registering a root credential, as
discussed in Section 6.3).

5.1 Creating and Configuring the User and
Organizations

A demo setup program uses the NymSystem user and or-
ganization creation facilities to create one user and four or-
ganizations. It assigns IP addresses and port numbers to
the four organizations, as well as SSL Certificates which are
created using the KeyMan [14] PKI management tool. It
also creates rules for the three organizations (see below).
The initialization program creates persistent data sets for
each of the four entities, and initializes each of the orga-
nization’s data sets with its own OrgNymSystemData key
material. The user’s data set is initialized with the user’s
UserNymSysData key information, as well as all the orga-
nizations’ public information (idemix public key, addresses,
SSL certificates, rules).

PA and KIOSK use the default RequestGranter and Or-
gRequestProcessor as they do not deal with ExternalCon-
ditions or ExternalResources; ARGENTIX implements its
own ArgentixRequestGranter defining the verification of
the credit card receipt; NYT, finally, implements its own
NYTRequestProcessor with handleResourceRequest() map-
ping a resource request (URL) into the actual contents of a
web page.

5.2 User Credential Manager and Browser
Plug-In

Based on the idemix prototype, [25] describes the design
and implementation of a Credential Manager implemented
as a plug-in to a WBI [1] browser proxy. Figure 7 shows an
instance of the Credential Manager in a scenario with the
four organizations initialized as described above. This Cre-
dential Manager popped up after a user entered a “http://-
www.nyt.com/cartoons” URL in his browser URL window.
The Credential Manager then allows the user to view the
relevant condition tree applying to the request, the condi-
tions for which he has the necessary credential or external
proof (tick-off symbol) and the credentials he already owns
in his credentials purse. E.g., he already has a credential
from PA.

The two conditions by ARGENTIX are related to (1) a
ShowCondition: showing the credential from the PA, and
(2) an ExternalCondition giving a reference to a credit-card
payment. This reference is implemented by, e.g., a serial

number of the payment. The ExternalCondition shows up
in the condition tree; but as the payment reference is not
an idemix credential, there is no corresponding credential in
the credentials purse.

When clicking on a condition in the tree, the details are
shown in the selected condition window, e.g., the KIOSK
requires a one-show credential (multi-show = false) issued
by ARGENTX with subtype = 10. It also allows the
user to chose local identifiers (e.g., “kiosknym”) for the
pseudonyms he establishes with the different organizations,
and to GET and SHOW credentials. After fulfilling all the
conditions, the requested contents (cartoons page) show up
in the browser window.

6. DEPLOYMENT CONSIDERATIONS
In this section, we discuss some issues related to the de-

ployment of idemix.

6.1 Deploying idemix as a Privacy-Enhanced
Public-Key Infrastructure with External
Certification

In an operational system, public information about orga-
nizations (whether or not regularly updated) needs to be
certified: users need authenticated information about where
to get or show a credential, what is the idemix public key
of an organization, and what is its SSL certificate. Also,
a real Root Pseudonym Authority can only guarantee to-
tal accountability (global anonymity revocation) if a user’s
real-world information was authenticated upon registering
the root pseudonym.

A deployment environment using idemix credentials as a
(privacy-enhanced) Public-Key Infrastructure needs to pro-
vide hooks for an external Public-Key infrastructure (PKI).
In this external PKI, users and organizations have public-
key certificates issued by a Certification Authority. We
call this authority Certifix, although it may be an exist-
ing Certification Authority; the only requirement being that
it can issue organizations’ “idemix certificates” certifying
the whole set of an idemix organization’s authenticated in-
formation. Depending on implementation and deployment
choices, such an organization’s idemix certificate may con-
tain idemix keys, address and SSL information, and access
rules.

Users also have Certifix certificates and use them to au-
thenticate “real-world” information during root pseudonym
registration.

6.2 The Role of Authenticated Communica-
tion in Linking Transactions Based on
idemixAuthentication

Authenticated communication (e.g., using SSL server au-
thentication) allows users to authenticate organizations with
which they register a pseudonym, to which they show a cre-
dential or from which they obtain a credential. When several
protocol executions (including application-level resource re-
quests) are linked by an authenticated communication chan-
nel, this also allows servers to securely link idemix authen-
tication (who showed the correct credential) with providing
the resource (who gets the data).

condition tree����)

nym identifierPPPPPPPPPPPPPPPi

selected condition�

credentials purse
�

�
�

�
�

�/

Figure 7: UserCredential Manager

6.3 Infrastructural Issues: User Registration
and Organization Updates

In a real deployment environment, users and organizations
dynamically join the system, and organizations may period-
ically update public information such as rules, public keys,
addresses, or SSL information (their idemix certificates).

A user joining the system may not only need to authenti-
cate using their real-world certificate when registering a root
pseudonym with the root pseudonym authority; he may also
have to prove registration (or payment of a license). This
may be realized by the Root Pseudonym Authority checking
an additional condition.

Also, organizations’ idemix certificates need to be dis-
tributed and updated in an efficient way. A separate InfoS-
erver entity may serve as a central repository for up-to-date
organizations’ idemix certificates. Organizations post their
idemix certificates to the InfoServer; a certificate update
may update whole or part (e.g., only new rules set) of an
organization’s idemix information. Revocation issues may
be dealt with by Certificate Revocation Lists (CRLs) issued
by the InfoServer; or avoided by issuing short-lived idemix
certificates.

6.4 Idemix, Trust Management and Attribute-
Based Access Control

Decentralized trust management, a term introduced by
Blaze, Feigenbaum and Lacy [4], deals with access control
and authorization in distributed environments. Different
trust management systems and languages have been pro-
posed, e.g., [3, 21, 20, 19, 23, 22, 15]; a credential or cer-
tificate modeled by those systems binds a public key to at-
tributes and/or authorizations. Access control and trust
establishment policies controlled by resource owners allow
authorization decisions based on these attributes and au-

thorizations, or on derived role assignments. Trust between
the verifier and the issuer of a credential can be modeled
through delegation of attribute authority, which allows a
resource owner to delegate authority over an attribute to
another entity. Some work also deals with automatic collec-
tion or discovery of (part of) certificate chains (e.g., [23, 22,
19]).

The access control rules and conditions language intro-
duced in Section 4.6.1 was designed to illustrate the ca-
pabilities and usage of idemix for configuring anonymous
attribute-based access control in a prototype application
environment. However, as idemix certificates can be used
to formulate any assertion (also identity assertions, if re-
quired), idemix attribute-based authentication can support
any of the trust management models mentioned; also, in a
distributed system where credential verifiers do not know
credential issuers (and their keys) on beforehand, credential
verification conditions and rules can be modified to express
more general authority delegation and trust management
policies (e.g., “I accept a credential issued by an issuer sat-
isfying trust or delegation condition Y” instead of “I accept
a credential from issuer X.” As the issuers in a certificate
chain can be publicly known entities, also automatic certifi-
cate chain collection could be realized.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the design and imple-

mentation of the idemix anonymous credential system. The
high-level primitives that were introduced to define the sys-
tem’s interfaces are easy to use and understand, and easy
to extend to include new options and features. We also pre-
sented an example infrastructure for applications to exploit
idemix authentication in an access control infrastructure.

The idemix system as implemented and presented here,

does not yet include features such as all-or-nothing non-
transferability, or use for signature generation. A new
NymSystem library is being implemented which will incor-
porate these additional features.

Deployment of idemix as a privacy-enhanced PKI also re-
quires features supported by the core NymSystem, such as
changing of organizations’ public idemix keys, or for efficient
revocation of credentials. We are currently developing the
protocols supporting these features.

Acknowledgements
The authors are grateful to Marco Bove, Endre Bangerter,
Roger Mathys, Martin Schaffer, and Dieter Sommer for their
amazing Java programming making the idemix prototype
reality.

8. REFERENCES
[1] R. Barrett, P. P. Maglio, and D. C. Kellem. WBI

development kit.
http://www.almaden.ibm.com/cs/wbi/.

[2] S. Bellovin and P. Metzger. Simple Public Key
Infrastructure (SPKI) Charter.
http://www.ietf.org/html.charters/spki-charter.html.

[3] M. Blaze, J. Feigenbaum, and A. D. Keromytis.
Keynote: Trust management for public-key
infrastructures. In 1998 Security Protocols
International Workshop, vol. 1550 of LNCS, pp.
59–63, 1998.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. Research in Security and Privacy,
1996. IEEE Computer Society, Technical Committee
on Security and Privacy.

[5] M. Bove. Key management, setup and implementation
of an anonymous credential system. Master’s thesis,
2001.

[6] J. Camenisch and A. Lysyanskaya. Efficient
non-transferable anonymous multi-show credential
system with optional anonymity revocation. In
EUROCRYPT 2001, vol. 2045 of LNCS, pp. 93–118.
Springer Verlag, 2001.

[7] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–88, Feb. 1981.

[8] D. Chaum. Security without identification:
Transaction systems to make big brother obsolete.
Communications of the ACM, 28(10):1030–1044, 1985.

[9] D. Chaum and J.-H. Evertse. A secure and
privacy-protecting protocol for transmitting personal
information between organizations. In CRYPTO ’86,
vol. 263 of LNCS, pp. 118–167. Springer-Verlag, 1987.

[10] D. Chaum, A. Fiat, and M. Naor. Untraceable
electronic cash. In CRYPTO ’88, vol. 403 of LNCS,
pp. 319–327. Springer Verlag, 1990.

[11] Consultation Committee. X.509: The Directory
Authentication Framework. International Telephone
and Telegraph, International Telecommunications
Union, Geneva, 1989.

[12] I. B. Damg̊ard. Payment systems and credential
mechanism with provable security against abuse by
individuals. In CRYPTO ’88, vol. 403 of LNCS, pp.
328–335. Springer Verlag, 1990.

[13] C. Dwork, J. Lotspiech, and M. Naor. Digital signets:
Self-enforcing protection of digital information. 1996.

[14] T. Eirich. KeyMan.
http://www.alphaworks.ibm.com/tech/keyman.

[15] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate Theory.
Internet Engineering Task Force RFC 2693.

[16] A. Fiat and A. Shamir. How to prove yourself:
Practical solution to identification and signature
problems. In CRYPTO ’86, vol. 263 of LNCS, pp.
186–194. Springer Verlag, 1987.

[17] O. Goldreich, B. Pfitzman, and R. Rivest.
Self-delegation with controlled propagation — or —
what if you lose your laptop. In CRYPTO ’98, vol.
1642 of LNCS, pp. 153–168, 1998. Springer Verlag.

[18] D. M. Goldschlag, M. G. Reed, and P. F. Syverson.
Onion routing for anonymous and private internet
connections. Communications of the ACM,
42(2):84–88, February 1999.

[19] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and
Y. Ravid. Access control meets public key
infrastructure, or: Assigning roles to strangers. In
Proceedings of the 2000 IEEE Symposium on Security
and Privacy, pp. 2–14, 2000. IEEE Press.

[20] N. Li, B. Grosof, and J. Feigenbaum. A practically
implementable and tractable delegation logic. In
”Proceedings of the 2000 IEEE Symposium on
Security and Privacy”, pp. 27–43, 2000.

[21] N. Li, B. N. Grosof, and J. Feigenbaum. A logic-based
knowledge representation for authorization with
delegation. In ”Proceedings of the 12th IEEE
Computer Security Foundations Workshop”, 162–174.

[22] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a role-based trust-management framework. In
”Proceedings of the 2002 IEEE Symposium on Security
and Privacy”, pp. 114 – 130, 2002. IEEE Press.

[23] N. Li, W. H. Winsborough, and J. C. Mitchell.
Distributed credential chain discovery in trust
management: extended abstract. In 8th ACM CCS,
pp. 156–165. ACM Press, 2001.

[24] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. In Selected Areas in
Cryptography, vol. 1758 of LNCS, 1999.

[25] R. Mathys. New idemix client handbuch. Technical
report, December 2001.

[26] A. Pfitzmann, B. Pfitzmann, and M. Waidner.
Isdnmixes: Untraceable communication with very
small bandwidth overhead, 1991.

[27] M. K. Reiter and A. D. Rubin. Crowds: anonymity for
Web transactions. ACM Transactions on Information
and System Security, 1(1):66–92, 1998.

[28] S. G. Stubblebine, P. F. Syverson, and D. M.
Goldschlag. Unlinable serial transactions: Protocols
and applications. ACM Transactions on Information
and System Security, 2(4):354–389, Nov. 1999.

