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Abstract

There is a vast body of work onimplementinganonymous communication. In this paper, we study
the possibility of using anonymous communication as abuilding block, and show that one can leverage
on anonymity in a variety of cryptographic contexts. Our results go in two directions.

• Feasibility. We show that anonymous communication overinsecurechannels can be used to im-
plement unconditionally secure point-to-point channels,and hence general multi-party protocols
with unconditional security in the presence of an honest majority. In contrast, anonymity cannot
be generally used to obtain unconditional security when there is no honest majority.

• Efficiency. We show that anonymous channels can yield substantial efficiency improvements for
several natural secure computation tasks. In particular, we present the first solution to the problem
of private information retrieval (PIR) which can handle multiple users while being close to optimal
with respect toboth communication and computation. A key observation that underlies these
results is thatlocal randomizationof inputs, via secret-sharing, when combined with theglobal
mixingof the shares, provided by anonymity, allows to carry out useful computations on the inputs
while keeping the inputs private.

1 Introduction

There are many scenarios in which anonymous communication can be implemented at a low cost, either
via physical means (e.g. in wireless networks, or small wired networks) or by means of special-purpose
protocols. Indeed, a lot of systems work has been done on implementing anonymous communication (see [1,
12, 51, 7] and references therein). Anonymizing web browsers and anonymous email accounts are already
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widely available. In this work, we ask the question: If anonymity is already out there, can we harness its
power for other purposes? To what extent can anonymity be used as abuilding blockfor obtaining better
solutions to other important cryptographic tasks? We elaborate on this question below.

Anonymity vs. privacy. Anonymous communication allows users to send messages to each other without
revealing their identity. However, in contrast to popular misconception, anonymity is far from answering
all concerns of “privacy”.1 Conceptually, anonymity is aimed at hidingwhoperforms some action, whereas
full privacy requires additionally hidingwhat actions are being performed. In the context of distributed
computation, anonymity allows hiding which users hold which local inputs, whereas privacy requires hid-
ing all information about the inputs except what follows from the outputs. In a sense, the relation between
anonymity and privacy is analogous to the relation between unpredictability and indistinguishability: while
the former notions of security might be sufficient for some applications, they are generally considered inad-
equate; in particular, they are vulnerable to attacks that exploit a-priori information about the secrets.

The aim of the current work is to study the extent to which anonymity can be useful as aprimitive. Can
the gap between hiding theWhoand theWhatbe closed at a small additional cost?

A toy example. As a simple motivating example, consider the following scenario. Two players,A andB,
wish to agree on an unconditionally secret random bit (a “key”). Their only means of communicating is by
posting anonymous messages on apublic internet bulletin board. (In this example, we assume that the board
operator, as well as the users, are “honest but curious”.) The key agreement protocol proceeds as follows.
Each playerP ∈ {A,B} independently picks a random50-bit integerrP , and posts the message (“AB”,rP )
on the board. The common bit is taken to be0 if rA > rB and1 if rA < rB. (In the unlikely event of a tie,
the protocol aborts.) Note that since each playerP knows its integerrP they can both compute the (same)
common bit, whereas other users (as well as the board operator) cannot distinguishrA from rB and thus
learn nothing about the common bit. Of course, the 1-bit key can now be used byA andB to communicate
a bit with unconditional secrecy using the public bulletin board.

1.1 Our Contribution

We demonstrate the usefulness of the “cryptography from anonymity” paradigm in two settings: (1) Estab-
lishing feasibility results for traditional cryptographic tasks unconditionally, based solely on the assumption
of public anonymous channels. (2) Showing that anonymous channels can lead to much moreefficient
solutions to several cryptographic problems. We now provide a detailed account of both types of results.

1.1.1 Feasibility results using anonymity

We start by studying which tasks can be implemented withunconditionalsecurity based on anonymous
communication. To this end, we consider the following weak model of anonymity overpublic channels.
In each round each player can send a message to a chosen destination. The adversary can learn, for every
player in the network (including uncorrupted players), themultisetof all messages received by that player.
The adversary doesnot learn the identity of the senders, except when the sender itself is corrupted. In

1The term “privacy” has different interpretations. Our usage of this term below follows the common terminology in the literature
on cryptographic protocols.
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addition to such anonymous channels, we also assume that theplayers can communicate via authenticated
but public point-to-point channels, and (in some cases) a public broadcast channel2.

One of the challenges that need to be faced when attempting toexploit such a network is the fact that
anonymity can also serve as ashelter for malicious players. For instance, if the protocol instructs only
some strict subset of the players to (anonymously) send messages to the same receiver, malicious players
outside this set can interfere by sending their own messages. Note that one cannot make a direct use of
authentication to distinguish “legitimate” messages fromillegitimate ones, as this would violate anonymity.

In the above model, we show how to realize the following primitives:

1. Privateanonymous channels, allowing the adversary to learn only messages sent or received by cor-
rupted players. This construction can tolerate an arbitrary number of malicious players assuming the
availability of a broadcast channel.

2. Secure point-to-point channels with unconditional security against an arbitrary number of malicious
players. (This protocol strengthens the simple key agreement protocol described above in that it is
resilient against “Denial of Service” attacks mounted by malicious players.) This result does not
require a broadcast channel.

3. General multi-party protocols with unconditional security against any minority of malicious players.
This result assumes the existence of a broadcast channel in addition to the public anonymous channel,
and follows from [50] and the result above.

The above results do not rule out the possibility that anonymous communication can be used to solveany
cryptographic task with an arbitrary level of security. However, we show that this is not the case: anonymity
cannot be used to build an oblivious transfer protocol with unconditional security against half or more of the
players. Thus, the above general feasibility result achieves an optimal level of security.

1.1.2 Efficiency improvements based on anonymity

We now turn the attention to the question ofefficiency, attempting to identify natural cryptographic tasks for
which anonymity can give rise to substantial efficiency gains. In contrast to the feasibility results discussed
above, here we do not restrict ourselves to unconditional results. In particular, we would like to improve
over the best known solutions underanycryptographic assumption.

A key observation, that underlies our protocols in this setting, is thatlocal randomizationof inputs, via
secret-sharing, when combined with theglobal mixingof the shares, provided by anonymity, allows us to
keep the inputs private and, at the same time, allows us to carry out some useful computations on the inputs.
We elaborate below.

“Split and Mix” approach. Consider a scenario in which several clients want to access or query a central
server without revealing their sensitive data to the server. For instance, the clients may want the server to
compute some global function of their joint queries (e.g., average salary of employees), or alternatively to
respond to each query separately (as in the case of retrieving data from a central database). As discussed

2We note that the conference version of this paper [36] suggested that public anonymous channels implied broadcast. In fact,
the protocol given in [36] for constructing private anonymous channels from public anonymous channels needs broadcastchannels.
We fix this by making an explicit use of broadcast as a primitive.
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above, anonymity alone does not provide a good solution to this problem. While the mixing effect achieved
by anonymity eliminates some information about the query made by each client, most information remains.
Our key idea is to boost the effect of anonymity by using localrandomization as acatalyst. (Indeed, in our
analysis it will be useful to view the local randomization asa seed to a randomness extractor, and the partial
randomization provided by anonymity as an imperfect source.) More concretely, our approach is to first have
each client locallysplit its query into few randomized sub-queries, e.g. via the use of secret-sharing, and
then let the clientsmix all their sub-queries by anonymously sending them to the server. (Here we assume
that all sub-queries are mixed together, so that the server cannot tell whether two sub-queries were sent
by the same client.) The hope is that the mixed sub-queries can totally eliminate unnecessary information
about the queries, either statistically or computationally. Moreover, the splitting should be done in a way
that allows carrying out the desired computation on the original queries based on the mixed sub-queries. We
stress that neither mixing nor splitting alone can provide an adequate level of privacy; but as it will turn out,
their combination is surprisingly powerful. We demonstrate the usefulness of this “split and mix” approach
in several contexts, described below.

Non-interactive private statistics.We consider the case where two or more clients holdm-bit integers and
wish to reveal to a server thesumof their inputs (and nothing else) by simultaneously sending anonymous
messages to the server. (Note that without anonymity, it is impossible to solve this problem in a completely
non-interactive way as we require, regardless of efficiency.) A simple but inefficient solution is to let each
client i, holding an integerxi, anonymously sendxi distinct dummy messages to the server. The server can
now compute the sum of all inputs by simply counting the number of messages it received. This simple
solution provides perfect privacy, but does not scale well with the bit lengthm. Towards a more efficient
solution, we use the split and mix approach in the following natural way. Each client locally splits its input
into O(m) shares via the use ofadditivesecret-sharing, and anonymously sends its shares to the server. The
server can now recover the sum of the inputs by adding up all the shares it received. We show that with this
choice of parameters, the mixed messages reveal only a negligible amount of information about the inputs
(other than their sum). This basic integer summation protocol can be used as a building block for computing
other kinds of useful statistics on distributed data. We also show an application of this protocol in a general
context of two-party computation, where each client wants to privately compute a function of its own input
and the server’s input.

Optimal amortized PIR. In the problem of Private Information Retrieval (PIR) [15, 41] the server holds a
(large) database of sizen, and each client wants to retrieve a specific item from this database while hiding
what it is after. This can be trivially done by having the server communicate the entire database to each client,
but this solution is prohibitively expensive. In recent years, there has been a significant body of work on
improving the communication complexity of PIR, either in the above single-server scenario [41, 10, 42, 26]
or using multiple servers [15, 3]. Given the low (and essentially optimal) communication complexity of the
best known PIR protocols, the efficiency bottleneck shifts to thelocal computationperformed by the server.
Indeed, it is not hard to see that even in the case of a single query, the server must read every bit of the
database in order for full privacy to be maintained. Thus, the best one could hope for is to amortize this cost
over multiple queries.

The question of amortizing the computational cost of PIR hasbeen previously considered in [4, 35].
However, all previous solutions to this problem either require multiple servers (and fail to protect against
colluding servers) or only allow to amortize the cost of several simultaneous queries thatoriginate from the
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same client.3 A remaining open problem in this area is to obtain solutions to PIR that are close to optimal
with respect tobothcommunication and computation even in the case where queries originate from different
clients. We suggest a solution to this problem using (two-way) anonymous communication, and assuming
that the queries are made simultaneously by the clients. Oursolution applies the “split and mix” technique
as follows. First, each client randomizes its query into a small number of sub-queries by simulating an
appropriatemulti-serverPIR protocol (with privacy threshold equal to the security parameter). Then, all
sub-queries are anonymously sent to the server, who responds to each sub-query separately without knowing
which client it originates from. Each client can recover theanswer to its query from the server’s answers
to its sub-queries as in the underlying multi-server PIR protocol. The computation in this protocol can be
amortized by choosing the parameters so that the space of allpossible sub-queries is of polynomial size.
This enables precomputing the answers to all possible sub-queries.

The security of our PIR protocol relies on an intractabilityassumption related to the hardness of recon-
structingnoisylow-degree curves in a low-dimensional space. A similar assumption for the two-dimensional
case was introduced by Naor and Pinkas [45]. Roughly speaking, the original assumption from [45] asserts
that noisy two-dimensional curves cannot be reconstructedin a much better way than using the Guruswami-
Sudan list decoding algorithm [30]. Our generalized assumption asserts that, in the low-dimensional case,
one cannot do much better than the Coppersmith-Sudan algorithm [17] (which, in a sense, extends [30]
to the multi-dimensional case). We note that this assumption does not seem to be affected by the recent
progress in the field of list-decoding [47, 29, 28]. It is alsoinstructive to note that this assumption (as well
as the one from [45]) is not known to imply public-key encryption, let alone PIR, in the standard setting.
Accordingly, in the basic version of our protocol thetotal communication with all clients must be larger than
the database size (yet the amortized cost per client becomeslow when the number of clients grows). We
show how to get around this limitation by combining our basicprotocol with a standard single-server PIR
protocol. The resulting protocol is close to optimal with respect to both communication and computation
even when the number of clients is smaller than the database size.

Finally, we observe that the special structure of the above PIR protocol allows to distribute the role
of the server between many different users without compromising efficiency or privacy. This gives rise to
conceptually attractive distributed storage systems (e.g., in a peer-to-peer environment) which are simulta-
neously close to optimal with respect to communication, computation, load balancing, storage, robustness,
and privacy.

On relaxing the anonymity assumption.While we assume for simplicity that the network providesperfect
anonymity, this assumption can be relaxed. Most of our protocols only require “sufficient uncertainty” about
the origins of messages to maintain their full security, at amodest additional cost. Thus, our approach is quite
insensitive to imperfections of the underlying network, and can be applied even in more realistic scenarios
where only some crude form of anonymity is available. See Appendix A for further discussion.

1.2 Related Work

A variant of the toy example presented above (for key agreement using anonymity) was suggested by Alpern
and Schneider [2]. A similar idea was previously used by Winkler [55] for establishing secure channels in

3In [4] it was demonstrated that the computational cost of PIRcan beslightlyamortized even in the case of queries that originate
from different clients.
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the game of Bridge. Our work, in contrast, achieves key agreement in the presence ofmaliciousparties, a
problem that was posed and left open in [2]. The related problem of obtaining key agreement fromrecipient
anonymity, which hides the identity of the receiver rather than that ofthe sender, was considered in [48].
Pfitzmann and Waidner [49] use a variant of private anonymouscommunication as an intermediate step for
obtaining highly resilient broadcast protocols. Finally,Anonymous communication has also been exploited
in the context of practically oriented applications such asvoting [13] and electronic cash [53].

Our work can be cast in the setting of investigating secure reductions between different multiparty func-
tionalities: An anonymous channel can be modelled by such a functionality, and we are investigating what
other functionalities can be realized using this functionality (and how efficiently). This area has a rich his-
tory (see [39, 40, 23, 31, 5, 25, 44] and references therein).However, most of the work in this area has been
restricted to the two-party setting, and known results for the multi-party setting are not general enough to
apply to the case of the anonymity functionality. Moreover,relatively little attention has been paid to the
efficiencyof such reductions.

Finally, our approach is also reminiscent of work on data privacy through dataperturbation(cf. [19, 14,
54]). These works examine privacy through “blending in withthe crowd” [14], obtained via the perturbation
of data revealed to the adversary. In our work, we also examine how privacy can be achieved by blending in
with the crowd, but viamixing rather than perturbation.

Organization. In Section 2, we provide some necessary background and definitions. In Section 3, we apply
anonymity for obtaining new feasibility results and, in Section 4, we apply anonymity for improving the
efficiency of cryptographic protocols.

2 Preliminaries

Notation. We denote by[n] the set{1, 2, . . . , n} and by
([n]

k

)

the collection of all subsets ofn of size
k. We uselog to denotelog2, the logarithm to the base 2. We denote bySD(X,Y ) the statistical distance
between probability distributionsX,Y , defined as the maximal advantage of a (computationally unbounded)
distinguisherA in telling X andY apart. That is,SD(X,Y ) = maxA |Pr[A(X) = 1] − Pr[A(Y ) = 1]|.
We denote byH∞(X) the min-entropy ofX defined byH∞(X) = minx(− log Pr[X = x]), where the
minimum is taken over allx in the support ofX.

We rely on the following version of the Leftover Hash Lemma [33], asserting that a pairwise independent
hash function can be used as a strong randomness extractor [46].

Lemma 2.1 (Leftover Hash Lemma) LetH be a family of pairwise independent hash functionsh : A →
B and letH denote a uniformly randomh ∈R H. LetV be a random variable overA such thatH∞(V ) ≥
log |B| + σ andU be a random variable uniformly distributed overB, independently ofH. Then,

SD((H,H(V )), (H,U)) ≤ 2−Ω(σ).

2.1 Network Model

In what follows, we define the network model that we use in thispaper. Then, we discuss the various notions
of anonymity that we consider. We denote byN the number of players in the network. In all variants of
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anonymity, we start with a standard network that allows, foreach pair of playersPi, Pj , communication
over anon-privatepoint-to-point authenticated channel. (By “non-private”we mean that the adversary
learns all messages sent over the channels.) Then, we augment this network by some form of anonymous
point-to-point communication.

The main type of anonymity we consider in this work is that ofsender anonymity, where the sender of
each message is hidden from the adversary (but both its content and its designated receiver are known). We
distinguish between the basicone-way anonymous channel, where the receiver of a message has no way to
“answer” a message, andtwo-way anonymous channelwhere the anonymity mechanism allows “feedback”,
i.e., answering the sender of a message while still keeping the sender’s identity secret.

More specifically, our default model allows onlyone-wayanonymous communication: at each round,
each playerPi may send a single message to some playerPj .4 The adversary learns the contents ofall
messages exchanged between the players, including the destination of each message but not its source. We
denote this basic anonymity functionality byAnon. Alternatively, one could assume that the adversary
only learns messages received by corrupted players; we callsuch a primitiveprivate-anonymous channel
and denote the corresponding functionality byPrivAnon. We will show in Section 3.1 how to construct
the latter, stronger primitive from the former. We stress that in both cases, the adversary cannot learn any
information about the sources of messages that originate from uncorrupted players. A formal definition of
the functionalitiesAnon andPrivAnon appears in Appendix B. Our definitions allow the adversary tobe
rushing, namely to choose the messages it sends depending on messages received by corrupted players.

We also consider two-way anonymous communication. In this model, each invocation consists of two
rounds, allowing each playerPi to anonymously send a message to any playerPj and to receive a reply
to its message. For each such message-reply pair sent from playerPi to Pj and back, the adversary learns
the identity of the destination playerj, but not the identity ofi; it can also tell that the second message is
a reply to the first. Most physical or algorithmic implementations of anonymity support this two-way com-
munication (cf. [12, 7, 52]). As before, this can be formalized as an interactive functionality, as described in
Appendix B.

It is easy to implement two-way anonymous channels from one-way anonymous channels and a public
broadcast channel: each sender sends its messagem to the desired receiver (using one-way anonymous
channel); each receiver broadcasts a list(mi,m

′
i), wherem′

i is the answer to messagemi. (Note that the
answerm′

i should depend only on the content of the querymi and not on the identity of the sender; thus, the
receiver only needs to provide one answer to duplicate queries.) The problem with this reduction is that it is
generally inefficient. Thus, in our applications that rely on two-way anonymous communication we assume
that the network provides an efficient direct realization ofthis primitive.

Finally, in some of our applications we will consider scenarios where the players are partitioned into
two or moreclientsand a singleserver, so that each client only needs to interact with the server and not with
other clients. Clearly, the above definitions apply to such asetting as well.

Secure reductions.Our results can be viewed as reductions between cryptographic primitives; namely, they
show how to implement a certain primitive (or functionality) g given a black-box access to a functionality
f , wheref is typically an anonymity functionality. By at-secure reduction fromg to f we refer by default
to a statistically t-secure protocol forg in the so-calledf -hybrid model (i.e., in a model where players

4We can extend this basic definition by allowing each player tosend up toλ messages at each round, for some parameterλ.
Note that without such a bound the adversary may “flood” the network with anonymous messages.
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have access to a trusted oracle computingf ). For a formal definition of “statisticallyt-secure protocols”,
see [11, 27]. For simplicity we considernon-adaptiveadversaries, who choose the set of corrupted players
in advance.

3 Feasibility Results Using Anonymity

In this section, we present unconditionally secure implementations of several cryptographic primitives based
on anonymous communication over public channels.

3.1 From Public to Private Anonymity

We start by showing how to realize the private anonymity functionality PrivAnon using the basic (non-
private) anonymity functionalityAnon, together with broadcast.

The above goal is nontrivial even if we were additionally given private (non-anonymous) point-to-point
channels. Indeed, there is no obvious way to combine the advantages of non-private but anonymous chan-
nels and private but non-anonymous channels. Instead, we suggest the following direct implementation of
PrivAnon based onAnon.

Assume for now that there are only 3 players,A, B (senders) andR (receiver); see Remark 3.2 below for
the generalization to theN -party case. We wish to construct a protocol allowingA andB to send messages
to R with the following properties: (1) IfA andB are honest then their anonymity is preserved. (2) If the
adversary corrupts only one sender, then it cannot violate the privacy or the correct delivery of the message
sent by the other sender, nor can it correlate its own messagewith the other message.

Below, we writeAEK(m) to denote a (statistically secure) one-time authenticatedencryption of the
messagem using the keyK. Such an encryption can be decrypted and authenticated using the secret key
K. It can be implemented by using a one-time pad for encryptingand an unconditionally-secure MAC for
authenticating. We letk denote a statistical security parameter. The protocol proceeds as follows:

1. Repeat2k times sequentially (each iteration is referred to as a “session”):

(a) Each ofA,B andR sends a randomk-bit number toR, using anonymous (non-private) channels.
(With overwhelming probability, the honest players choosedistinct numbers. The adversary may
send its own numbers and, being rushing, may duplicate numbers sent by honest players.)

(b) R considers the numbers received in the previous step, ignoring repetitions, and chooses 2 out
of these numbers, including its own.R sends these 2 numbers in lexicographic order to both
playersA andB via the authenticated broadcast channel. The order of these2 numbers defines
a (secret) bit betweenR and eitherA or B according to who’s number is chosen.

2. Each ofA andB sends toR, via non-private anonymous channels, a list of the firstk session numbers
in which they obtained shared bits. (Note that, with overwhelming probability, each honest sender
obtained at leastk shared bits.) This results in the definition of twok-bit secret keysKA andKB .
The receiver,R, knows both keys, but does not know which of them belongs toA and which belongs
to B (i.e., fromR’s perspective they are two keys{K1,K2} = {KA,KB}).

8



3. To send private anonymous messagesmA andmB to R, the two playersA andB sendAEKA
(mA)

and AEKB
(mB), respectively, via the non-private anonymous channel toR. The receiverR au-

thenticates and decrypts each message using the keysK1 and K2 (this allows identifying the key
corresponding to the message).

Theorem 3.1 The above protocol defines a statistically secure reductionfrom the private anonymity func-
tionality, PrivAnon, to the basic non-private anonymity functionality,Anon.

Proof sketch: If any two players are dishonest, the protocol does not need to provide any security
guarantees to the remaining honest player.

If the receiverR is dishonest, but bothA andB are honest, then we must guarantee anonymity ofA and
B. This follows from the symmetry of the protocol and the use ofthe broadcast channel.

If the receiverR and one sender,A, are honest, but the other senderB is dishonest, we must guarantee
privacy, integrity, and independence ofA’s message toR. By the properties of the authenticated encryption
AE, this is guaranteed as long as we can prove thatB’s view contains no information about the keyKA

established betweenA andR. This is demonstrated by giving a family of3k bijections on the randomness
used by honest playersA andR, that preserveB’s view. Bijectioni works by swapping the random numbers
generated byA andR in thei’th invocation of Step 1 (but leaving all other random choices intact). SinceB
only observes thesetof values sent anonymously toR (which includes of messages fromA andR itself),
the view before the application of any bijection is identical to the view after the application of the bijection.
The existence of these bijections shows that all possible values ofKA are equally likely for any view of the
adversary.

Remark 3.2 The following changes should be applied to the above protocol, when dealing with anN -player
network (a receiverR andN − 1 potential senders). In such a case, we increase the number of“sessions”
to 2Nk which guarantees that the numbers chosen by each sender appear in the pairs selected byR at least
k times (also,k is sufficiently large so that in each session all the numbers chosen by honest players are
distinct). This allows each sender to send a list ofk session numbers for which it knows the corresponding
secret bit. The resulting protocol is a statisticallyN -secure reduction fromPrivAnon to Anon.

3.2 Secure Point-to-Point Channels

In this section, we describe a variant of the protocol from the previous section. This protocol uses public
anonymous channels to realize secure point-to-point communication. Recall that the simple key agreement
protocol described in the Introduction (as well as a similarprotocol from [2]) allowsA andB to agree on a
secret random keyr by posting messages on an anonymous bulletin board. This protocol assumes that the
bulletin board operator as well as the other users in the system are honest-but-curious.

We now describe a key-agreement protocol that works in our standard model, namely where the players
A,B are just two players in a network ofN , possibly malicious, players. The main difficulty in utilizing
anonymity in this case is that when one of the players needs tosend an anonymous message, corrupted play-
ers may attack the protocol by also sending messages over theanonymous channel. Our protocol prevents
this attack, even if all otherN − 2 players are malicious.

1. Repeat2Nk times sequentially (each iteration is referred to as a “session”):
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(a) Each ofA,B sends a randomk-bit number toB, using anonymous (non-private) channels.
(With overwhelming probability, the honest players choosedistinct numbers. The adversary
may send its own numbers and, being rushing, may duplicate numbers sent by honest players.)

(b) B considers the numbers received in the previous step, ignoring repetitions, and chooses two out
of these numbers, including its own.B sends these two numbers in lexicographic order toA via
an authenticated (but non-private) point-to-point channel.

(c) A reports toB, over an authenticated channel, whether its number was included in the pair sent
by B. In such a case, the order of the two numbers defines a secret bit betweenA andB.

2. If there are at leastk successful sessions, the firstk such sessions define a sharedk-bit key between
A andB which both players output. Otherwise,A andB output independently randomk-bit strings.
[If both A andB are honest, the latter event will occur with negligible probability.]

Theorem 3.3 The above protocol defines a statisticallyN -secure reduction from the key agreement func-
tionality to the public anonymity functionalityAnon.

Proof sketch: We only need to guarantee security of the protocol when both Aand B are honest. In this
case, we can condition on the event that A and B always generate distinctk-bit numbers in every session,
since this event will happen with all but negligible probability. We need to argue that in such a case: (1)A
andB will eventually output the samek-bit key (except with negligible probability), and (2) thatthis key is
hidden from the adversary.

(1) follows from the fact that in each session the adversary can send at mostN−2 messages that interfere
with the two messages sent byA andB, and thus the success probability of each session is at least1/N .

(2) follows from the fact that in each successful session, the adversary learns no information about the
bit shared byA andB due to the anonymity of the channel.

In Appendix C we discuss an alternative means for obtaining key-agreement protocols in our setting via
a reduction to the problem of key agreement using a deck of cards [22] (see also [43]).

3.3 General Secure Multiparty Computation

We turn to the question of basing general secure multiparty computation (MPC) on anonymity. Combined
with the implementation of private point-to-point channels from the previous section, one can then apply
known MPC protocols (e.g., [50] or [18]) and obtain generalt-secure MPC witht < N/2 when given a
broadcast channel.

Theorem 3.4 For anyN -party functionalityf , there is a statisticallyt-secure reduction off to Anon and
broadcast for anyt < N/2.

We now argue that the boundt < N/2 in Theorem 3.4 is tight.

Claim 3.5 There is no statisticallyt-secure reduction fromN -party OT to anonymity fort ≥ N/2.
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Proof sketch: Consider anN -party OT functionality, in which playerA acts as a sender andB as a
receiver. (The remainingN − 2 players have no inputs or outputs.) Suppose towards a contradiction that
there is an unconditionally⌈N/2⌉-secure protocolπ realizing this OT functionality given oracle access to
the anonymity functionality. Now, letA be a set of⌈N/2⌉ players such thatA ∈ A andB 6∈ A and
B = [N ] \A. Consideringπ as a protocol between players inA and players inB, we get a 2-party 1-private
protocolπ′ for OT over an anonymous 2-player network. The key observation is that anonymity is useless
(for the purpose of implementing OT) in the case of two players. More precisely, the 2-party functionality
induced by partitioning the players of then-party anonymity functionality into two sets can be reducedto
the secure channel functionality. Since unconditionally secure two-party OT cannot be based on a secure
channel alone, the claim follows.

The proof of Claim 3.5 can be extended to obtain similar negative results for other primitives, such as
(N -party versions of) coin-flipping or bit commitment.

The above results imply that the anonymity functionality wedefined isnontrivial in the sense that it
allows key agreement, but on the other hand it is notcompletefor all N -party functionalities with respect to
N -secure reductions.

4 Efficiency Improvements Using Anonymity

In this section we consider different scenarios in which anonymous communication can yieldefficiency
improvements over the best known solutions (even ones that rely on cryptographic assumptions).

4.1 Non-interactive Private Statistics

We show hown ≥ 2 clients can privately compute statistics (such as mean, standard deviation, correlations)
on their combined inputs by each sending few anonymous messages to a central server. Our protocols only
require one-way anonymous communication and are private with respect to an adversary corrupting the
server along with an arbitrary number of clients.5 Note that it is impossible to obtain such non-interactive
protocols in the standard model, even if one settles for computational privacy. (It is possible to solve this
problem in the non-interactive model of [20]; however, sucha solution requires setup assumptions and
provides a weaker security guarantee.)

Our basic building block is a protocol for integer summation. We assume that each clientPi holds an
integerxi, where0 ≤ xi < M . We want to design a protocol in which each client sends a small number
of anonymous messages to the server, from which the server can recover the sum of all inputs without
learning additional information about the inputs. This basic building block for privately computing the sum
immediately allows privacy-preserving computation of themean of a distributed set of data, and can also
be applied to privately compute “suites” of statistics suchas: (1) both the mean and variance of a set of
numbers, and (2) the means of and covariance between two or more sets of numbers (where each player
holds corresponding elements from the sets).6 The sum protocol can also be used to efficiently compute

5We provide no guarantee of correctness in the presence of malicious clients. However, in most applications of the kind
considered here malicious clients can cause nearly as much damage also in an idealized implementation involving a trusted party.

6It is important that a suite of statistics are being computed– for instance, in example (1) above, we cannot use the sum protocol
to privately computeonly the variance, without revealing the mean. However, it is most often desirable to compute both the mean
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randomized linearsketchesof the data that reveal approximate statistics (e.g., an approximate histogram).7

As discussed in the Introduction, a simple solution to the integer summation problem is to let each client
Pi sendxi messages to the server (each containing an identical default value), and let the server output the
total number of messages it received. This protocol provides perfect privacy, but is prohibitively inefficient
when the inputsxi are large. An additional disadvantage of this simple approach is that it does not support
private addition over finite groups, which is particularly useful for computing randomized sketches of data.

Our goal is to obtain a (statistically) private protocol in which the communication complexity is essen-
tially optimal: the total number of bits sent by each player depends only logarithmically onM .

The protocol SUM. We present a protocol for addingn inputs in a finite groupG of sizeL. (The above
integer summation problem reduces to addition overG = ZL, whereL = nM .) To compute the sum of the
inputs, each playeradditively sharesits input intok shares inG (wherek will be specified later) and sends
each share toS in a separate anonymous message. The server can recover

∑

xi by adding up (inG) thekn
messages it received.

Analysis. We now analyze the parameters for which mixing additive shares hides the values of the shared
secrets.8 We start with the case ofn = 2 players and consider the experiment of running the above protocol
with uniformly chosen inputs inG. Let (X,Y ) denote the players’ random inputs andV denote the mixed
shares received byS. Let V (x, y) denote the distribution ofV conditioned onX = x, Y = y andV (x)
denote the distribution ofV conditioned onX = x. Finally, letU be a random variable uniformly distributed
in G, independently ofV .

Lemma 4.1 Supposelog
(2k

k

)

> ℓ + σ. Then,SD((V,X), (V,U)) ≤ 2−Ω(σ).

Proof: For a ∈ G2k andπ ∈
([2k]

k

)

let ha(π) =
∑

i∈π ai. Note thatha defines a family of pairwise

independent hash functions from
([2k]

k

)

to G. (Pairwise independence follows from the fact that eachai is
an independent element of the group.) Also note that(V,X) is distributed identically to(V, hV (Π)), where
Π is the uniform distribution over all sets in

([2k]
k

)

independently ofV . This follows from the fact that, by
symmetry, every possiblek-subset of shares is equally likely to coincide with the shares ofX. Finally, the
Leftover Hash Lemma [33] (see Lemma 2.1) guarantees thatSD((V, hV (Π)), (V,U)) ≤ 2−Ω(H∞(Π)−ℓ) =

2−Ω(log (2k
k )−ℓ) from which the lemma follows.

Lemma 4.2 SupposeSD((V,X), (V,U)) ≤ ǫ. Then, for allx, y, x′, y′ ∈ G such thatx + y = x′ + y′, we
have

SD(V (x, y), V (x′, y′)) ≤ 2|G|2 · ǫ.

Proof: If SD((V,X), (V,U)) ≤ ǫ then, by Markov’s inequality, for everyx ∈ G we have

SD(V (x), V ) ≤ |G| · ǫ.

and variance together.
7In general, the approximate output together with the randomness used to generate the sketch may reveal a few bits of additional

information that do not follow from the exact output (see [21]). However, in most applications of sketching, this privacy loss is
either insignificant or non-existent.

8A somewhat simpler variant of the problem we consider here was implicitly considered in the context of constructing pseudo-
random generators based on subset sum [32].
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By the triangle inequality, for everyx, x′ we haveSD(V (x), V (x′)) ≤ 2ǫ|G|.
To complete the proof we show that aδ-distinguisherD betweenV (x, y) andV (x′, y′), wherex + y =

x′ + y′, can be turned into aδ/|G|-distinguisherD′ betweenV (x) andV (x′). Such a distinguisher can be
implemented as follows. Letz = x + y(= x′ + y′). Given a challengev (a vector of2k mixed shares),D′

checks whether the shares add up toz and if so invokesD on v; otherwise it outputs 0.
From these two lemmas, we immediately conclude that the protocol privately computes the sum for

n = 2 players, with the appropriate setting ofk:

Theorem 4.3 Letk = 1.5ℓ+σ. Then, protocolSUM privately computes the sum ofn = 2 inputs in a group
G, where|G| < 2ℓ, with statistical error2−Ω(σ).

The following theorem extends the analysis to the case ofn > 2 clients.

Theorem 4.4 Let k = 1.5ℓ + σ + log n. Then, protocolSUM privately computes the sum ofn inputs in a
groupG, where|G| < 2ℓ, with statistical error2−Ω(σ).

Proof: First we note that if the adversary corruptsq out of then players and learns their secrets, then, since
all other shares remain independent and uniformly mixed, the problem reduces to the case of an adversary
that has made no corruptions amongn − q players. Therefore, without loss of generality, we may assume
that the adversary knows none of the secrets of then players (but of course he knows the sum).

Let x, y ∈ Gn be two distinct sets of player inputs such that
∑

xi =
∑

yi. We will argue that the
adversary cannot distinguish (statistically, to within2−Ω(σ) error) between its view whenx defines the
inputs, or wheny defines the inputs.

We define a “basic step fromx” to be a vectorx′ such that there exist two indicesi, j ∈ [1, n] and a
valuea ∈ G, such thatx′

i = xi +a andx′
j = xi −a. Then, it is easy to see that to reachy from x requires at

mostn − 1 basic steps. Thus, by a standard hybrid argument, we need only show that the adversary cannot
distinguish betweenx andy, wheny is a basic step fromx. Let the indicesi andj be fixed to reflect this
basic step.

We now argue that if there exists an adversaryA that can distinguish its view based onx from its view
based ony, then there is an adversaryA′ for then = 2 case that can distinguish its view when the secrets are
(xi, xj) from its view based on(yi, yj). The reduction is simple: Sincex andy agree on all other coordinates
excepti andj, the adversaryA′ (which will have all other coordinate values ofx built into it) can generate
shares for allxu(= yu) for u 6= i, j, and mix these shares uniformly into the2k shares it obtains as input, in
order to perfectly simulate the views of the adversaryA when given eitherx or y. Thus, ifA succeeds, then
so doesA′ with precisely the same probability of success. But since weknow by the previous theorem that
no suchA′ can exist, we conclude that no suchA can exist, and the theorem is established. The parameter
values needed follow naturally from this argument.

The above analysis (specifically, the proof of Lemma 4.1) does not require perfect anonymity. Rather,
we consider the adversary’s uncertainty about which of the shares it sees could be shares of any particular
secret; because we are in the statistical case of unbounded adversaries, we can model this as a distribution
over sets (a distributionΠ over

([2k]
k

)

). As long as this distribution has enough min-entropy, our argument
applies. Thus, the level of anonymity needed is only as much as needed to guarantee high min-entropy in
the adversary’s uncertainty distribution. In particular,the protocol remains secure even if the server can
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partially correlate messages sent from the same client, e.g., by grouping messages according to their exact
time of arrival.

Note that our analysis requires the amount of communicationper client to grow with the number of
clients. This might seem counter-intuitive, since a largernumber of clients should intuitively make it easier
to “blend in the crowd”. Recall, however, that we require security to hold against an adversary who may
corrupt the server andan arbitrary number of clients. Considering an adversary who corrupts the server
and all but two clients, the communication per client in the case ofn clients cannot be smaller than in the
case of just two clients. We also note that the additivelog n term in the complexity is not just an artifact of
the analysis; it can be shown that the communication involving each client has to grow to infinity with the
number of clients.

4.2 Secure Two-Party Computation

In Appendix D we describe an application of the summation protocol for realizing general secure two-party
computation between the server and each client, albeit in a rather weak security model.

4.3 Private Information Retrieval

In this section, we use anonymous channels to obtain a PIR protocol which allows a server to handle queries
that may originate from many different clients using a nearly optimal amount of communication and com-
putation. In contrast to previous protocols presented in this work, the current protocol only providescompu-
tational client privacy. Its privacy relies on a natural generalization of a previous intractability assumption
from [45] related to noisy polynomial reconstruction.

The model. We consider a system with a single server, holding a databasex ∈ {0, 1}m, and several
(typically many) clients. Each client holds a selection index i ∈ [m] and wishes to learnxi without revealing
i to the server. The protocol requires only a single round of queries and answers. Each client can send
several (simultaneous) anonymous queries to the server andreceive a separate answer for each query. Thus,
the interaction between the clients and the server is captured by a single invocation of the two-way anonymity
functionality defined in Appendix B (generalized to allow several queries from each client).9 We stress that
in our protocol the clients do not need to interact with each other. Our protocol will provide the following,
somewhat unconventional, security guarantee. An adversary corrupting the server and a subset of the clients
will be unable to learn the inputs of the remaining clients, in the sense that different choices for these inputs
induce computationally indistinguishable views, provided that the number ofuncorruptedclients exceeds
some given threshold. (More precisely, it will suffice that the total number of queries originating from
uncorrupted clients exceeds this threshold.) The value of the threshold will depend on the database size and
the security parameter, but not on the number of clients. Thus, the fraction of corrupted parties that can be
securely tolerated by the protocol tends to 1 as the number ofclients grows.

9While we assume for simplicity that all clients send their queries simultaneously in a synchronous way, this requirement is not
essential. As in other protocols presented in this work, thesecurity of the PIR protocol relies on having sufficient uncertainty (from
the adversary’s point of view) about the origin of queries sent by uncorrupted clients. To guarantee privacy even when there is only
a small number of active clients, one can employ “dummy clients” that generate and send sufficiently many random queries to the
server.
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Overview of construction. We take at-server information-theoretic PIR protocol in which the client’s
privacy is protected against collusions ofk servers. (In our typical choice of parameters, we letk serve as
the security parameter andt = O(k ·mǫ).) Thet queries sent by the client in this protocol can be viewed as
points on a degree-k curve in a low-dimensional space. Anyk of theset points jointly reveal nothing about
the client’s selectioni, whereas anyk +1 of them completely determinei. A natural approach that comes to
mind is to (computationally) hide the curve encodingi by adding random noise. As it turns out, the required
amount of noise is very large – it has to be at least of the orderof magnitude ofm, the database size, in
order to defeat an attack by Coppersmith and Sudan [17].10 Thus, the approach is entirely useless in case of
a single client accessing the database. The key observationis that the same amount of noise would suffice
to hide an arbitrarily large number of curves, possibly originating from different clients. Thus, the use of
anonymity allows to amortize the required noise over multiple clients. When the number of uncorrupted
clients is sufficiently large, the amount of noise each client needs to contribute is small.

The original polynomial reconstruction (PR) intractability assumption, introduced by Naor and Pinkas [45]
(see also [38]), asserts roughly the following. For an appropriate choice of parameters, the output of the
following experiment keeps a secret field elements ∈ F semantically secure with respect to a security
parameterk: (1) pick a random polynomialp(·) of degree≤ k such thatp(0) = s; (2) pick t distinct eval-
uation pointsa1, . . . , at ∈ F andn random noise coordinatesr1, . . . , rn ∈ F ; (3) output the good points
(aj , p(aj)) along with noise points(rj , bj) in a random order (where eachbj is random and independent of
all ri).11

The Guruswami-Sudan list decoding algorithm [30] implies that the above assumption does not hold
whent >

√

(n + t)k. Thus, the assumption becomes plausible only when the amount of noise is higher,
say whenn ≫ t2/k. We rely on the following multi-dimensional variant of the above assumption: the secret
s is replaced by a vector ofc field elementss = (s1, . . . , sc) and the polynomialp by a(c + 1)-dimensional
curve, namely by a vector ofc polynomialsp = (p1, . . . , pc). The above experiment can then be generalized
in a natural way to the multi-dimensional case. Formally, the assumption is defined as follows.

Definition 4.5 (Noisy Curve Reconstruction (CR) Assumption) Let k denote a degree parameter, which
will also serve as a security parameter. Given functionsF (k) (field), c(k) (dimension),t(k) (points on
curve), andn(k) (noise), we say that theCR assumptionholds with parameters(F, c, t, n) if the output of
the following experiment keeps a secrets ∈ F (k)c(k) semantically secure (with respect to security parameter
k):

• Pick random polynomialsp1(·), . . . , pc(·), s.t. eachph is of degree≤ k and

p(0)
def
= (p1(0), . . . , pc(0)) = s;

10An attempt to base PIR on a stronger version of our intractability assumption was made in [37]. This assumption was broken
by the Coppersmith-Sudan algorithm (see also [8]). Our protocol relies on a much more conservative choice of parameters, that is
not known to imply PIR in the standard model.

11The corresponding assumption in Definition 2.3 of [45] differs in that it requires the noise pointsrj to be distinct from the good
pointsbj . Our variant of the assumption is slightly stronger, since the choice of points reveals a small amount of information about
the locations of the pointsaj (to an extent which diminishes with the field size). This information can be eliminated by picking
the pointsaj in a completely independent way (i.e., with repetition), replacing multiple occurrences of a good pointaj with noise
points. We prefer the above variant because it simplifies theformulation of our protocol.
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• Pick t distinct evaluation pointsa1, . . . , at ∈ F \ {0} andn random noise coordinatesr1, . . . , rn ∈
F \ {0};

• Output the good pointsp(aj) along with random noise points(b1
j , . . . , b

c
j) ∈R F c, in a random order.

Towards relating the CR assumption to known attacks, it is convenient to consider an augmented (and
“more adversarial”) experiment which outputs the evaluation pointaj along with eachc-tuplep(aj) and a
random element ofF along with each noise pointbj . Clearly, if the augmented CR assumption (i.e., the CR
assumption with respect to the augmented experiment) holdsthen it also holds with respect to the original
experiment. The algorithm from [17] breaks the augmented CRassumption whent > ((n + t)kc)1/(c+1) +
k +1. Thus, whent = o(nkc)1/(c+1) or equivalentlyn = ω(t · (t/k)c) the augmented assumption (let alone
the original one) remains plausible. We stress that the assumption does not seem to be affected by the recent
progress in the field of list-decoding [47, 29, 28].

Our protocol uses the following choice of parameters. Letc > 1 be a constant. (The amortized complex-
ity per client will be of the order ofn1/c.) We view the entries of a databasex ∈ {0, 1}m as the coefficients
of a c-variate polynomialqx of total degree at mostd = O(m1/c) over a fieldF , where the size ofF will
be specified later. This allows to associate with each selection index i ∈ [m] a pointzi ∈ F c such that
qx(zi) = xi (see, e.g., [15]).

The protocol. Each client, holding selection indexi, picks a random degree-k curvep = (p1, . . . , pc) such
thatp(0) = zi, as well ast = kd + 1 random distinct evaluation pointsaj ∈ F \ {0}. It anonymously sends
to the server thet queriesvj wherevj = p(aj) ∈ F c. In addition, the client anonymously sends a number
of random noise points of the formbj ∈R F c, so that the total number of noise points sent by all clients is at
leastn. (The security of the protocol will be guaranteed as long as the total number of noise points sent by
uncorruptedclients is at leastn.) The server replies to each query with an answersj = qx(vj). (If all values
of qx were precomputed, this is done via a table lookup.) Finally,the client can recoverxi by interpolating
the degree-kd univariate polynomial defined by the points(aj , sj). For this interpolation to be possible, we
need|F | > t + 1, though a largerF is desirable for enhancing the security.12

Privacy. The following lemma guarantees that ifn points of noise are sufficient to (computationally) hide
the selection of a single client, then this is also the case for an arbitrary polynomial number of clients.

Lemma 4.6 Letk denote a security parameter letu(k) be a polynomial. LetA(k) = (A1(k), . . . , Au(k)(k))
be a distribution ensemble, whereA(k) is a sequence ofu(k) independentdistributions overmultisetsof
elements from a domainD(k). Let B(k) = (B1(k), . . . , Bu(k)(k)) be another distribution ensemble as
above, and letR(k) be a random multiset ofn(k) elements fromD(k). Moreover, suppose that for every
index sequencej(k), 1 ≤ j(k) ≤ u(k), we haveAj ∪ R

c
≈ Bj ∪ R. (Here

c
≈ denotes computational

indistinguishability with respect to polynomial-size circuits, and the dependence of all parameters onk is
implicit in the notation.) Then,A1 ∪ . . . ∪ Au ∪ R

c
≈ B1 ∪ . . . ∪ Bu ∪ R.

Proof: Suppose the contrary. By a hybrid argument, there is a sequencej(k) such thatA1 ∪ . . .∪Aj−1 ∪
Bj ∪ . . . ∪ Bu ∪ R can be distinguished fromA1 ∪ . . . ∪ Aj ∪ Bj+1 ∪ . . . ∪ Bu ∪ R with non-negligible

12The problem with letting|F | ≈ t is that the good points are likely to share the sameX-coordinates with many noise points. In
such a case, PR-type assumptions are susceptible to lattice-based attacks [9].
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advantage. The corresponding distinguisherT can be used to get a distinguisher betweenAj∪R andBj∪R:
given a multisetS, take the union ofS with a sample fromA1 ∪ . . . ∪Aj−1 ∪Bj+1 ∪ . . . ∪Bu, and invoke
T on the result.

Note that the CR assumption guarantees that the queries of asingleclient, when combined withn points
of noise, keep the client’s selection computationally private. Thus, Lemma 4.6 establishes the privacy of the
protocol for an arbitrary number of clients, with the same amount of noise as that required for the privacy of
a single client:

Theorem 4.7 If the CR assumption (Definition 4.5) holds with parameters(F (k), c(k), t(k), n(k)), then
the above anonymous PIR protocol remains computationally private for an arbitrary (polynomial) number
of clients, as long as the total amount of noise contributed by uncorrupted clients is at leastn(k).

Parameters.Recall that we setc to be a constant andt = O(km1/c). As noted above, a good choice of the
noise parameter for the CR assumption isn = ω(t ·(t/k)c) = ω(k ·m1+1/c). Thus, the total amount of noise
is comparable to the database size. Finally, we argue that the query space is polynomial, so that the answers
to all queries can be precomputed by the server. Recall that we require that|F | = Ω(t) = Ω(km1/c) but, as
discussed above, it is safer to avoid many collisions and thus let |F | be larger thann. Either way, the query
space|F |c is polynomial inm.

Using the above choice of parameters, we get:

Corollary 4.8 Letm(k) be the size of the database as a function of the security parameter. Letc be a posi-
tive integer andǫ > 0 a constant such that the CR assumption holds with parameters(F (k), c, t(k), n(k)),
wheret = O(k ·m1/c), n = O(k ·m1+1/c+ǫ), and|F (k)| = O(k ·m1/c+ǫ). (A larger value ofǫ represents a
more conservative assumption.) Then, assuming two-way anonymous communication, there is a one-round
PIR protocol involving a single server and multiple clientsin which the amortized communication and com-
putation per query arẽO(t) = Õ(km1/c). The protocol is computationally private as long as uncorrupted
clients maketogetherat leastn(k) random noise queries.

Achieving sublinear communication.While the PIR protocol given by Corollary 4.8 has a low complexity
per client when the number of clients is large, it requires the total communication with all clients to be bigger
than the database size. Indeed, a protocol with a sublinear total communication would imply a PIR protocol
and hence key agreement in the standard model, which is not known to be implied by the CR assumption.
We now briefly sketch a way for combining the protocolP of Corollary 4.8 with any standard (single-
server) PIR protocolP ′ in order to reduce the communication complexity when the number of clientsu(k)
is smaller than the database sizem(k).

Let m′(k) be a database size for whichP remains secure if each of theu clients contributes a single
noise query. (Note thatm′(k) should always be smaller thanu(k), to an extent that depends on the strength
of the CR assumption; whenc is big andǫ is small,m′(k) is close tou(k).) We parse them bits of the
original databasex as anm′ × ℓ matrix X whereℓ = ⌈m/m′⌉. Each client, who wishes to retrieve entry
(i, j) of X, invokes the protocolP as if it is retrieving thei-th bit from a database of sizem′. Along with
each of the sub-queries inP, it sends a (standard) PIR query pointing to thej-th entry of a database of
ℓ entries, generated according toP ′. (An independent invocation ofP ′ is used for each sub-query.) For
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each sub-query received from a client, the server obtainsℓ answers, each resulting from applyingP to
the corresponding column ofX, and then computes a single response by applyingP ′ to the database ofℓ
answers. The resulting protocol has a low communication complexity if so doP andP ′. Excluding the
cost of pre-processing, the amount of server computation per client is typically of the order ofℓ, resulting
in a total amount of computation that is close toℓ · m′ = m whenm′ is close tou. Thus, a good choice of
parameters yields a protocol which is close to optimal with respect to both communication and computation,
regardless of the number of clients.

4.4 “PIR to Peer”

The feasible query domain of the above protocol allows to distribute the role of the server between many
users without compromising efficiency or security. This gives rise to the following, conceptually attractive,
type of distributed storage systems.

We envision a peer-to-peer community in which a large numberof users are willing to share their re-
sources. In such a community, each user may play three distinct roles: adatabase owner, holding some
data to which it wishes to provide private access; aserver, making its small share of contribution for each
database owner in the system; and aclient, wishing to privately retrieve data from other database owners.

The efficiency of such systems is measured by three main parameters. A first parameter is thecommu-
nication complexityrequired for retrieving an item from a database, which we require to be sublinear in the
size of the database. Note that achieving this in our settingimplies that only a small fraction of the servers
should be involved in each PIR invocation. A second efficiency parameter is the (expected) totalload on
the servers for each query made by a client. We would like the load of answering the clients’ queries to be
distributed evenly between the servers, even if there is a “popular” item requested by many clients. Finally,
we would like the storage overhead to be small, and evenly distributed between the servers. In terms of
security, we would like to ensure that (assuming that the network provides a reasonable level of anonymity)
the privacy of each query made by the client is protected evenwhen almost all users are corrupted. Finally,
we would like the system to berobust in the sense that it maintains its functionality even if a large number
of users are adversarially corrupted.

To the end of implementing such a system we distribute the role of the single server in the anonymity-
based PIR protocol described above. To store a database in the system, the (preprocessed) string containing
the list of all possible PIR answers for this database is broken evenly between many different users, acting as
servers. (Ideally, the number of users is sufficiently largeso that each user receives at most a single element
of F for each database in the system.) To access theith entry in a databasex, a user first computes a set of
(randomized) queries as in the above PIR protocol, and then fetches the answers byanonymouslycontacting
the users that hold the answers to these queries. This schemehas the same (nearly optimal) efficiency
and privacy features as in the single-server setting, except that here we additionally get the followingload
balancingfeature: the load of answering the queries is evenly distributed between users regardless of the
multiset of queries being asked. In particular, even if all users in the system try to access the same data item,
the (expected) load on each user remains the same. This feature is due to the randomness of the PIR queries.
The randomness of the PIR queries also makes the systemrobust to denial-of-service attacks involving a
large fraction of the users. We note that without the use of anonymity the system would still enjoy most of
the above features, except that privacy would only hold against small collusions of users (rather than against
collusions involving “almost all” users).
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A On Using Imperfect Anonymity

While we assume for simplicity that the network providesperfectanonymity, this assumption can be relaxed.
In fact, most of our protocols only require “sufficient uncertainty” about the origins of messages to maintain
their full cryptographic security, at a modest additional cost.

For instance, consider the following generalization of thesimple key agreement protocol described in
the Introduction. Instead of posting a single message on thebulletin board, each player postsm random and
independent messages. (To prevent the adversary from linking different messages sent by the same player,
the timing of the messages is randomly spread within some fixed time interval.) As a result, both players
learn a random subsetS ⊆ {1, 2, . . . , 2m} of sizem, consisting of the positions of messages posted byA.

Now, suppose that an adversary can partially break the anonymity and obtain some partial information
about the setS. We argue that as long as there is sufficient uncertainty about S from the adversary’s
point of view, a random secret key can be obtained by making a standard use of privacy amplification [6].
Specifically, suppose that the adversary cannotpreciselytraceall messages to their origin, except with2−k

success probability. (Still, it might be the case that the adversary can trace 99% of the messages with absolute
certainty.) Applying a random (pairwise independent) hashfunction to the setS, the players can agree on
a key of lengthk′ = k − σ which given the adversary’s view is within statistical distance2−Ω(σ) from
random. A similar approach can be applied to obtain robust versions of other protocols we present. (In fact,
such robustness is already built into some of the protocols,like the private sum protocol described above.)
Thus, our approach is quite insensitive to imperfections ofthe underlying network, and can be applied even
in more realistic scenarios where only some crude form of anonymity is available.

B Anonymity Models

We now present some formal definitions of the anonymity functionalities described in Section 2. We start
by defining the functionalityAnon that captures our basic model of non-private anonymous communication.
A first attempt to define this functionality is as follows:

• INPUT: each playerPi provides the functionality with a pair(mi, di), where eithermi is a message
(string) anddi ∈ [N ] is its destination,13 or mi = di =⊥ (indicating thatPi has no message to send).

• OUTPUT: each playerPj outputs themultisetof all valuesmi for whichdi = j.
The adversary’s output includes, foreveryj, the multiset of messages received by playerPj (i.e., the
adversary learns the content of all messages at each receiver but does not get any information as for
the sender of each message).

(Note that since the output of a playerPj is just a multiset then, in particular, this output reveals no infor-
mation about the identities of the senders of these message.)

The above formulation of the functionalityAnon is not satisfying as it does not allow to deal with a
rushingadversary; as such, this makes the primitive of anonymous channels too powerful. We modify the
definition so as to allow the adversary to see first the contentof all messages sent by players which are not

13Note that we allow, and in fact in certain cases also use, the possibility thatdi = i; i.e., a player may send an anonymous
message to itself (clearly, this is useful only for confusing the adversary regarding the messages sent in the network).
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under its control (excluding, of course, the identity of thesender of each of these messages) and only then
to decide on its own messages. The definition ofAnon is therefore described as a two-stage process, as
follows:

• INPUT ROUND 1: each playerPi provides the functionality with a pair(mi, di), where eithermi is
a message (string) anddi ∈ [N ] is its destination, ormi = di =⊥ (indicating thatPi has no message
to send or thatPi is under the adversary’s control).

• OUTPUT ROUND 1: No player has an output; the adversary’s output includes, for everyj, the
multiset of messages sent to playerPj .

• INPUT ROUND 2: No player has an input; the adversary’s input includes a set of pairs of the form
(m,d), wherem is a message andd is its destination; the number of these pairs is bounded by the
number of players under the adversary’s control.

• OUTPUT ROUND 2: each playerPj outputs themultisetof all valuesmi for which di = j (inserted
as inputs in any of the two input rounds).

We will also consider a “private” version ofAnon, denotedPrivAnon. This functionality is defined
similarly to Anon, except that the adversary only learns the contents of the messages sent to corrupted
players, rather than the contents of all messages sent in thenetwork.

Next, we define two-way anonymous communication. As before,this can be formalized as an interactive
functionality as follows.

• INPUT ROUND 1: each playerPi provides the functionality with a pair(mi, di), as above.

• OUTPUT ROUND 1: each playerPj outputs thesetSj of all valuesmi for whichdi = j.

• INPUT ROUND 2: each playerPj (after performing some local computation) provides the function-
ality with a vector of valuesm′

i, one value for eachmi ∈ Sj.

• OUTPUT ROUND 2: each playerPi, for which mi 6=⊥, outputs the messagem′
i, corresponding to

the messagemi thatPi sent toPj (in ROUND 1).

In the above definition we ignore, for simplicity, the issue of rushing. We do so because the applications
in which we usetwo-wayanonymous channels are not sensitive to the issue of rushing; in any case, the
definition can be easily modified to deal with rushing in the same way as we did above for the one-way case.

C An alternative Key-Agreement protocol

An alternative means for obtaining key-agreement protocols using anonymity is via a reduction to the prob-
lem of key agreement using a “deck of cards” [22] (see also [43]). In this problem, there is a deck of cards,
where a set of cardsC1 is given to playerA, another (disjoint) set of cardsC2 is given to playerB, and the
remaining cards are revealed to the adversary. Fischer and Wright show how to take advantage of the mutual
information betweenA andB so as to agree on a secret key. Below we sketch how to use their protocol in
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a setting whereA,B have access to a public anonymous channel (i.e., this protocol doesnot require private
anonymity). The reduction proceeds as follows.A andB both send toB, using the public anonymous
channel,ℓ random “cards” from an exponentially large domain. (Malicious players can possibly inject their
own uncalled-for values.) Then,B sends back toA the set ofm ≥ 2ℓ received values, eliminating possible
duplicates. The received values define a “deck of cards” fromwhich each ofA andB knowsℓ (random)
cards and the adversary knows the rest. Now,A andB can agree on a key by using the methods of [22].

D Secure Two-Party Computation

In this section as we consider the following scenario. Therearen clients who communicate with a server
S via two-way anonymous channels. The server holds an inputx and each clienti an inputqi. The goal is
for each client to learn the valuef(qi, x) for some functionf , while keepingqi private from the server and
preventing clients from learning additional information aboutx. We refer to these two privacy properties as
client privacyandserver privacy, respectively.

A first observation is that we cannot generally hope to obtainunconditional privacy against arbitrary
collusions of parties. Indeed, this would contradict the impossibility of OT discussed in Section 3.3. Thus,
we will settle for the following relaxed notion of privacy. First, the server’s privacy will only be guaranteed
against a single,semi-honestclient. As to the privacy of the clients, we will have the following guarantee:
the statistical advantage of a (potentially malicious) adversary corrupting the server and a subset of the
clients is exponentially small in the number of uncorruptedclients. Thus, our security model is best suited
to scenarios in which protecting the privacy of the clients is the main concern.

Note that, unlike the non-interactive protocol for secure summation, here we inherently need to have a
two-way interaction between the clients and the server. Thus, in this setting it is possible to obtain (compu-
tational) security without anonymity at all, assuming the existence of oblivious transfer. The advantage of
using anonymity is in obtaining a light-weight protocol that avoid the need for public-key operations. Our
protocol can either obtain unconditional security (for restricted function classes) or computational security
based on the existence of one-way functions (for arbitrary functions).

Linear functions. Suppose thatf(q, x) = x · q, wherex is a matrix held by the server andq a vector
held by the client. For this case, consider the following protocol. (1) each client breaks his input vectorq
to k additive sharesq1, . . . , qk and anonymously sendsk messages of the form(j, qj) to S; (2) S replies
to each message of the form(j, qj) with X · qj + rj , where therj are random masks that add to 0. Each
client can now recover its output by adding up thek messages it received. Note that by the choice of the
masksrj , each individual client will learn no information about theoutput. As to the clients of the privacy,
here we can prove the following property: with an appropriate choice ofk (see below), any collusion of the
server with a subset of the clients will only be able to learn thesumof the inputs of the uncorrupted clients.
(We will later show how to eliminate this extra information when there are many uncorrupted clients.) This
follows by a similar analysis to the sum protocol, lettingk = O(|q| + log n + σ) (whereσ is a statistical
security parameter). The only difference is that now the shares obtained by the servers are labelled by indices
j. This decreases the entropy of the server’s uncertainty by asmall (logarithmic) factor that can be easily
compensated by a larger choice ofk.

General functions.Using known reductions, it is possible to reduce any secure two-party computation task
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to a matrix-vector product of the formf(q, x) = x · q, whereq is determined by the client’s input andx is
a randomlychosen matrix based on the server’s input. This reduction can efficiently support information-
theoretic server privacy for functions with small formulasor branching programs (e.g., using [34]), and
computational server privacy for general functions (e.g.,using [56]). Combined with the above protocol for
linear functions, this gives us the desired result, except for the fact that thesumof the client’s (transformed)
inputs is now revealed. We eliminate this extra informationby using additional (local) randomization of
both the clients’ inputs and the server’s input.

We illustrate this using the simple case of the AND function.This would give the general result, as
securely computing this function can be usedin parallel for computing arbitrary functions using randomiza-
tion techniques from [56, 34]. In the case of the AND function, the server holds a bitx. Each clienti holds
a bit qi and would like to learnx AND qi (namely learnx only if qi = 1). Applying the above protocol for
linear functions over GF(2) (wherex is viewed as a1 × 1 matrix), we get a protocol in which the server
can learn the exclusive-or of all inputs. One simple approach for eliminating this extra bit of information is
by assuming that among the uncorrupted clients there is at least one “helper” client who picks its input at
random. Note, however, that we cannot let a client holding aninput qi serve also as a helper client, since
such a client will be able to recoverx from the2k answers even ifqi = 0.

Instead, we use the following randomization approach. The server breaks his secret bitx into 3 shares
(x1, x2, x3) such that a single share gives no information aboutx and any pair of shares completely reveals
x. Each client holding an input0 will transform its input to a random vector from the set{(0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1)}. Similarly, a client holding an input1 will transform its input to a random vector from
the set{(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}. Now the clients and the server engage in parallel invocations
of the basic AND protocol, resulting in each client learningthe sharesxi corresponding to the positions in
which its chosen triple contains1. Note that each client will be able to recoverx if its input is 1 and will
learn no information aboutx otherwise, as required. The server, on the other hand, will learn the exclusive-
or of all triples held by the clients. It can be shown using a Markov chain analysis that this exclusive-or
converges exponentially fast to the uniform distribution over{0, 1}3. Thus, the server’s advantage vanishes
exponentially with the number of uncorrupted clients. Notethat the above choice of triples is not completely
arbitrary; for instance, eliminating(0, 0, 0) from the first set would make the server’s view in the case all
clients hold 0 statistically far from the case all clients hold 1.
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