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Abstract

There is a vast body of work amplementinganonymous communication. In this paper, we study
the possibility of using anonymous communication dsi#gding block and show that one can leverage
on anonymity in a variety of cryptographic contexts. Ouufssgo in two directions.

e Feasibility. We show that anonymous communication owesecurechannels can be used to im-
plement unconditionally secure point-to-point channatg] hence general multi-party protocols
with unconditional security in the presence of an honesbnitgj In contrast, anonymity cannot
be generally used to obtain unconditional security wheretigeeno honest majority.

o Efficiency. We show that anonymous channels can yield substantialezfigiimprovements for
several natural secure computation tasks. In particupnesent the first solution to the problem
of private information retrieval (PIR) which can handle tiple users while being close to optimal
with respect toboth communication and computation. A key observation that diedethese
results is thatocal randomizatiorof inputs, via secret-sharing, when combined with ghabal
mixingof the shares, provided by anonymity, allows to carry oufulssmputations on the inputs
while keeping the inputs private.

1 Introduction

There are many scenarios in which anonymous communicatiorbe implemented at a low cost, either
via physical means (e.g. in wireless networks, or small dvinetworks) or by means of special-purpose
protocols. Indeed, a lot of systems work has been done orimgriting anonymous communication (see [1,
12, 51, 7] and references therein). Anonymizing web brogvaard anonymous email accounts are already

*An extended abstract of this paper appears in [36].
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widely available. In this work, we ask the question: If anamiy is already out there, can we harness its
power for other purposes? To what extent can anonymity be aseabuilding blockfor obtaining better
solutions to other important cryptographic tasks? We ektiecon this question below.

Anonymity vs. privacy. Anonymous communication allows users to send messageshootizer without
revealing their identity. However, in contrast to populaseonception, anonymity is far from answering
all concerns of “privacy™ Conceptually, anonymity is aimed at hidimgno performs some action, whereas
full privacy requires additionally hidingvhat actions are being performed. In the context of distributed
computation, anonymity allows hiding which users hold vithigcal inputs, whereas privacy requires hid-
ing all information about the inputs except what followsrfréhe outputs. In a sense, the relation between
anonymity and privacy is analogous to the relation betweagradictability and indistinguishability: while
the former notions of security might be sufficient for sompligations, they are generally considered inad-
equate; in particular, they are vulnerable to attacks tkglo@ a-priori information about the secrets.

The aim of the current work is to study the extent to which gmaity can be useful asprimitive. Can
the gap between hiding th®hoand theWhatbe closed at a small additional cost?

A toy example. As a simple motivating example, consider the following stcem Two players A and B,
wish to agree on an unconditionally secret random bit (a™k€lheir only means of communicating is by
posting anonymous messages gualic internet bulletin board. (In this example, we assume trebtard
operator, as well as the users, are “honest but curious”e KBy agreement protocol proceeds as follows.
Each playet € { A, B} independently picks a rando®i-bit integerr p, and posts the message (“AB’p)

on the board. The common bit is taken totbé 4, > rp and1 if r4 < rg. (In the unlikely event of a tie,
the protocol aborts.) Note that since each playdmows its integerp they can both compute the (same)
common bit, whereas other users (as well as the board opecatanot distinguishr4 from rp and thus
learn nothing about the common bit. Of course, the 1-bit kaymmow be used byl and B to communicate

a bit with unconditional secrecy using the public bulletoakd.

1.1 Our Contribution

We demonstrate the usefulness of the “cryptography fronrmgmndy” paradigm in two settings: (1) Estab-
lishing feasibility results for traditional cryptographic tasks unconditibndased solely on the assumption
of public anonymous channels. (2) Showing that anonymoasirodls can lead to much moedficient
solutions to several cryptographic problems. We now p@wadietailed account of both types of results.

1.1.1 Feasibility results using anonymity

We start by studying which tasks can be implemented withonditionalsecurity based on anonymous
communication. To this end, we consider the following weakdei of anonymity ovepublic channels.
In each round each player can send a message to a chosemtilastiThe adversary can learn, for every
player in the network (including uncorrupted players), tingtisetof all messages received by that player.
The adversary doesot learn the identity of the senders, except when the sendsdf isscorrupted. In

The term “privacy” has different interpretations. Our usagthis term below follows the common terminology in thetéture
on cryptographic protocols.



addition to such anonymous channels, we also assume thplalygrs can communicate via authenticated
but public point-to-point channels, and (in some cases)dipbroadcast chanrtel

One of the challenges that need to be faced when attemptiegploit such a network is the fact that
anonymity can also serve asshelterfor malicious players. For instance, if the protocol instsuonly
some strict subset of the players to (anonymously) sendagesgo the same receiver, malicious players
outside this set can interfere by sending their own messalgese that one cannot make a direct use of
authentication to distinguish “legitimate” messages fitbegitimate ones, as this would violate anonymity.

In the above model, we show how to realize the following ptives:

1. Private anonymous channels, allowing the adversary to learn onssagges sent or received by cor-
rupted players. This construction can tolerate an arlyitmamber of malicious players assuming the
availability of a broadcast channel.

2. Secure point-to-point channels with unconditional ség@against an arbitrary number of malicious
players. (This protocol strengthens the simple key agreemmtocol described above in that it is
resilient against “Denial of Service” attacks mounted bylior@us players.) This result does not
require a broadcast channel.

3. General multi-party protocols with unconditional setyuagainst any minority of malicious players.
This result assumes the existence of a broadcast chanrdaitioa to the public anonymous channel,
and follows from [50] and the result above.

The above results do not rule out the possibility that ananygrcommunication can be used to saivy
cryptographic task with an arbitrary level of security. Hawar, we show that this is not the case: anonymity
cannot be used to build an oblivious transfer protocol witbanditional security against half or more of the
players. Thus, the above general feasibility result agsen optimal level of security.

1.1.2 Efficiency improvements based on anonymity

We now turn the attention to the questionedficiency attempting to identify natural cryptographic tasks for
which anonymity can give rise to substantial efficiency gaim contrast to the feasibility results discussed
above, here we do not restrict ourselves to unconditiormllt® In particular, we would like to improve
over the best known solutions undary cryptographic assumption.

A key observation, that underlies our protocols in thisisgttis thatlocal randomizatiorof inputs, via
secret-sharing, when combined with tiebal mixingof the shares, provided by anonymity, allows us to
keep the inputs private and, at the same time, allows us tg cat some useful computations on the inputs.
We elaborate below.

“Split and Mix” approach. Consider a scenario in which several clients want to accegeery a central
server without revealing their sensitive data to the serker instance, the clients may want the server to
compute some global function of their joint queries (e.gerage salary of employees), or alternatively to
respond to each query separately (as in the case of regjieldta from a central database). As discussed

2\We note that the conference version of this paper [36] sugdehat public anonymous channels implied broadcast. dn fa
the protocol given in [36] for constructing private anonyma@hannels from public anonymous channels needs broadzastels.
We fix this by making an explicit use of broadcast as a priraitiv
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above, anonymity alone does not provide a good solutionisgotioblem. While the mixing effect achieved
by anonymity eliminates some information about the querdertay each client, most information remains.
Our key idea is to boost the effect of anonymity by using lsealdomization as eatalyst (Indeed, in our
analysis it will be useful to view the local randomizationaeseed to a randomness extractor, and the partial
randomization provided by anonymity as an imperfect sautdere concretely, our approach is to first have
each client locallysplit its query into few randomized sub-queries, e.g. via the disearet-sharing, and
then let the clientsnix all their sub-queries by anonymously sending them to theesefHere we assume
that all sub-queries are mixed together, so that the seammat tell whether two sub-queries were sent
by the same client.) The hope is that the mixed sub-queriesotally eliminate unnecessary information
about the queries, either statistically or computatignaWoreover, the splitting should be done in a way
that allows carrying out the desired computation on theimaigqueries based on the mixed sub-queries. We
stress that neither mixing nor splitting alone can provid@adequate level of privacy; but as it will turn out,
their combination is surprisingly powerful. We demongsrtite usefulness of this “split and mix” approach
in several contexts, described below.

Non-interactive private statistics. We consider the case where two or more clients heldit integers and
wish to reveal to a server treumof their inputs (and nothing else) by simultaneously segpd@nonymous
messages to the server. (Note that without anonymity, mmoissible to solve this problem in a completely
non-interactive way as we require, regardless of efficign&ysimple but inefficient solution is to let each
client, holding an integet:;, anonymously seng; distinct dummy messages to the server. The server can
now compute the sum of all inputs by simply counting the numidenessages it received. This simple
solution provides perfect privacy, but does not scale wéh whe bit lengthm. Towards a more efficient
solution, we use the split and mix approach in the followiagunal way. Each client locally splits its input
into O(m) shares via the use afiditivesecret-sharing, and anonymously sends its shares to trex.s€he
server can now recover the sum of the inputs by adding upalbhiares it received. We show that with this
choice of parameters, the mixed messages reveal only ajitbglamount of information about the inputs
(other than their sum). This basic integer summation padtcan be used as a building block for computing
other kinds of useful statistics on distributed data. We alsow an application of this protocol in a general
context of two-party computation, where each client wanfgrivately compute a function of its own input
and the server’s input.

Optimal amortized PIR. In the problem of Private Information Retrieval (PIR) [19,]4he server holds a
(large) database of size and each client wants to retrieve a specific item from thialtse while hiding
what it is after. This can be trivially done by having the ssmommunicate the entire database to each client,
but this solution is prohibitively expensive. In recent ggeahere has been a significant body of work on
improving the communication complexity of PIR, either i thbove single-server scenario [41, 10, 42, 26]
or using multiple servers [15, 3]. Given the low (and essdigtoptimal) communication complexity of the
best known PIR protocols, the efficiency bottleneck shdtthelocal computatiorperformed by the server.
Indeed, it is not hard to see that even in the case of a singleygthe server must read every bit of the
database in order for full privacy to be maintained. Thus ldbst one could hope for is to amortize this cost
over multiple queries.

The question of amortizing the computational cost of PIR t@en previously considered in [4, 35].
However, all previous solutions to this problem either isgjunultiple servers (and fail to protect against
colluding servers) or only allow to amortize the cost of sal/eimultaneous queries thatiginate from the
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same clienf A remaining open problem in this area is to obtain solutianPIR that are close to optimal
with respect tdoothcommunication and computation even in the case where guaniginate from different
clients. We suggest a solution to this problem using (twgjveamonymous communication, and assuming
that the queries are made simultaneously by the clients.s@ution applies the “split and mix” technique
as follows. First, each client randomizes its query into alsmumber of sub-queries by simulating an
appropriatemulti-serverPIR protocol (with privacy threshold equal to the securigygmeter). Then, all
sub-queries are anonymously sent to the server, who respomrach sub-query separately without knowing
which client it originates from. Each client can recover émswer to its query from the server's answers
to its sub-queries as in the underlying multi-server PIRgwol. The computation in this protocol can be
amortized by choosing the parameters so that the space pbdsdible sub-queries is of polynomial size.
This enables precomputing the answers to all possible gahies.

The security of our PIR protocol relies on an intractabiigsumption related to the hardness of recon-
structingnoisylow-degree curves in a low-dimensional space. A similanasggion for the two-dimensional
case was introduced by Naor and Pinkas [45]. Roughly spgatfie original assumption from [45] asserts
that noisy two-dimensional curves cannot be reconstruaotadnuch better way than using the Guruswami-
Sudan list decoding algorithm [30]. Our generalized asgionmsserts that, in the low-dimensional case,
one cannot do much better than the Coppersmith-Sudan thigofiL7] (which, in a sense, extends [30]
to the multi-dimensional case). We note that this assummdimes not seem to be affected by the recent
progress in the field of list-decoding [47, 29, 28]. Itis alsstructive to note that this assumption (as well
as the one from [45]) is not known to imply public-key encigpt let alone PIR, in the standard setting.
Accordingly, in the basic version of our protocol tw¢al communication with all clients must be larger than
the database size (yet the amortized cost per client beclmweshen the number of clients grows). We
show how to get around this limitation by combining our bagwsiotocol with a standard single-server PIR
protocol. The resulting protocol is close to optimal witlspect to both communication and computation
even when the number of clients is smaller than the datalzse s

Finally, we observe that the special structure of the abd® @Potocol allows to distribute the role
of the server between many different users without comsimmiefficiency or privacy. This gives rise to
conceptually attractive distributed storage systems,(B1@ peer-to-peer environment) which are simulta-
neously close to optimal with respect to communication, gotation, load balancing, storage, robustness,
and privacy.

On relaxing the anonymity assumption.While we assume for simplicity that the network provigesfect
anonymity, this assumption can be relaxed. Most of our pasoonly require “sufficient uncertainty” about
the origins of messages to maintain their full security, rmtaest additional cost. Thus, our approach is quite
insensitive to imperfections of the underlying networkd aan be applied even in more realistic scenarios
where only some crude form of anonymity is available. Seeehplix A for further discussion.

1.2 Related Work

A variant of the toy example presented above (for key agre¢osng anonymity) was suggested by Alpern
and Schneider [2]. A similar idea was previously used by Win[55] for establishing secure channels in

3In [4] it was demonstrated that the computational cost of &R beslightly amortized even in the case of queries that originate
from different clients.



the game of Bridge. Our work, in contrast, achieves key ages in the presence ofialiciousparties, a
problem that was posed and left open in [2]. The related prolidf obtaining key agreement framecipient
anonymity which hides the identity of the receiver rather than thathef sender, was considered in [48].
Pfitzmann and Waidner [49] use a variant of private anonyneconsmunication as an intermediate step for
obtaining highly resilient broadcast protocols. Finaljjonymous communication has also been exploited
in the context of practically oriented applications sucla@ting [13] and electronic cash [53].

Our work can be cast in the setting of investigating secutaations between different multiparty func-
tionalities: An anonymous channel can be modelled by suehetibnality, and we are investigating what
other functionalities can be realized using this functiimdand how efficiently). This area has a rich his-
tory (see [39, 40, 23, 31, 5, 25, 44] and references thereimjiever, most of the work in this area has been
restricted to the two-party setting, and known results figr inulti-party setting are not general enough to
apply to the case of the anonymity functionality. Moreoveitatively little attention has been paid to the
efficiencyof such reductions.

Finally, our approach is also reminiscent of work on datagmy through dataerturbation(cf. [19, 14,
54]). These works examine privacy through “blending in wite crowd” [14], obtained via the perturbation
of data revealed to the adversary. In our work, we also examminv privacy can be achieved by blending in
with the crowd, but viamixing rather than perturbation.

Organization. In Section 2, we provide some necessary background andta@isiln Section 3, we apply
anonymity for obtaining new feasibility results and, in @t 4, we apply anonymity for improving the
efficiency of cryptographic protocols.

2 Preliminaries

Notation. We denote byn] the set{1,2,...,n} and by (")) the collection of all subsets of of size
k. We uselog to denotelog,, the logarithm to the base 2. We denote$® (X, Y') the statistical distance
between probability distribution&’, Y, defined as the maximal advantage of a (computationally wmdbed)
distinguisherA in telling X andY apart. ThatisSD(X,Y) = maxa | Pr[A(X) = 1] — Pr[A(Y) = 1]|.
We denote byH .. (X) the min-entropy ofX defined byH,(X) = min,(—logPr[X = z]), where the
minimum is taken over alt in the support ofX.

We rely on the following version of the Leftover Hash Lemma][j&asserting that a pairwise independent
hash function can be used as a strong randomness extragjor [4

Lemma 2.1 (Leftover Hash Lemma) Let H be a family of pairwise independent hash functibnsA —
B and letH denote a uniformly randorh € H. LetV be a random variable oved such thatH (V') >
log | B| + o andU be a random variable uniformly distributed ovBr, independently off. Then,

SD((H, H(V)), (H,U)) < 27%).

2.1 Network Model

In what follows, we define the network model that we use inpiiger. Then, we discuss the various notions
of anonymity that we consider. We denote Nythe number of players in the network. In all variants of
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anonymity, we start with a standard network that allows,dach pair of players’;, P;, communication
over anon-private point-to-point authenticated channel. (By “non-private& mean that the adversary
learns all messages sent over the channels.) Then, we atthizenetwork by some form of anonymous
point-to-point communication.

The main type of anonymity we consider in this work is thasefhder anonymitywhere the sender of
each message is hidden from the adversary (but both itsrtaate its designated receiver are known). We
distinguish between the basine-way anonymous channelhere the receiver of a message has no way to
“answer” a message, amfo-way anonymous channghere the anonymity mechanism allows “feedback”,
i.e., answering the sender of a message while still keepiagender’s identity secret.

More specifically, our default model allows onbpne-wayanonymous communication: at each round,
each playerP, may send a single message to some plalgge? The adversary learns the contentsadif
messages exchanged between the players, including theadiest of each message but not its source. We
denote this basic anonymity functionality Byhon. Alternatively, one could assume that the adversary
only learns messages received by corrupted players; wewelll a primitiveprivate-anonymous channel
and denote the corresponding functionality PyvAnon. We will show in Section 3.1 how to construct
the latter, stronger primitive from the former. We stresst h both cases, the adversary cannot learn any
information about the sources of messages that originate émcorrupted players. A formal definition of
the functionalitiesAnon and PrivAnon appears in Appendix B. Our definitions allow the adversarpeo
rushing namely to choose the messages it sends depending on nessageed by corrupted players.

We also consider two-way anonymous communication. In tladeh each invocation consists of two
rounds, allowing each playdr; to anonymously send a message to any pldyeand to receive a reply
to its message. For each such message-reply pair sent feymrpt to P; and back, the adversary learns
the identity of the destination playgr but not the identity of; it can also tell that the second message is
a reply to the first. Most physical or algorithmic implemeitas of anonymity support this two-way com-
munication (cf. [12, 7, 52]). As before, this can be formadizas an interactive functionality, as described in
Appendix B.

It is easy to implement two-way anonymous channels fromwag-anonymous channels and a public
broadcast channel: each sender sends its messdagethe desired receiver (using one-way anonymous
channel); each receiver broadcasts a(list, m}), wherem] is the answer to message;. (Note that the
answenn, should depend only on the content of the queryand not on the identity of the sender; thus, the
receiver only needs to provide one answer to duplicate gs.@rThe problem with this reduction is that it is
generally inefficient. Thus, in our applications that retytavo-way anonymous communication we assume
that the network provides an efficient direct realizatiothid primitive.

Finally, in some of our applications we will consider sceosuwhere the players are partitioned into
two or moreclientsand a singleserver so that each client only needs to interact with the servema with
other clients. Clearly, the above definitions apply to susktéing as well.

Secure reductions.Our results can be viewed as reductions between cryptogrpphmitives; namely, they
show how to implement a certain primitive (or functionalitygiven a black-box access to a functionality
f, wheref is typically an anonymity functionality. By &secure reduction from to f we refer by default
to a statistically t-secure protocol foy in the so-calledf-hybrid model (i.e., in a model where players

“We can extend this basic definition by allowing each playeseind up to\ messages at each round, for some parameter
Note that without such a bound the adversary may “flood” the/okk with anonymous messages.



have access to a trusted oracle computfia)gFor a formal definition of “statistically-secure protocols”,
see [11, 27]. For simplicity we considapn-adaptiveadversaries, who choose the set of corrupted players
in advance.

3 Feasibility Results Using Anonymity

In this section, we present unconditionally secure implaat@ns of several cryptographic primitives based
on anonymous communication over public channels.

3.1 From Public to Private Anonymity

We start by showing how to realize the private anonymity fiomality PrivAnon using the basic (non-
private) anonymity functionalitAnon, together with broadcast.

The above goal is nontrivial even if we were additionallyegivprivate (non-anonymous) point-to-point
channels. Indeed, there is no obvious way to combine thendatyas of non-private but anonymous chan-
nels and private but non-anonymous channels. Instead, ggesuthe following direct implementation of
PrivAnon based ornon.

Assume for now that there are only 3 playets,B (senders) and (receiver); see Remark 3.2 below for
the generalization to th&-party case. We wish to construct a protocol allow#hgnd B to send messages
to R with the following properties: (1) IfA and B are honest then their anonymity is preserved. (2) If the
adversary corrupts only one sender, then it cannot violteggtivacy or the correct delivery of the message
sent by the other sender, nor can it correlate its own mesgiige¢he other message.

Below, we write AEx (m) to denote a (statistically secure) one-time authenticatettyption of the
messagen using the keyK. Such an encryption can be decrypted and authenticated tignsecret key
K. It can be implemented by using a one-time pad for encry@img) an unconditionally-secure MAC for
authenticating. We let denote a statistical security parameter. The protocolgads as follows:

1. Repealk times sequentially (each iteration is referred to as a fsp¥s

(a) Eachof4, B andR sends a randort+-bit number toR, using anonymous (non-private) channels.
(With overwhelming probability, the honest players chodiséinct numbers. The adversary may
send its own numbers and, being rushing, may duplicate nisgleait by honest players.)

(b) R considers the numbers received in the previous step, iggoepetitions, and chooses 2 out
of these numbers, including its owrk sends these 2 numbers in lexicographic order to both
playersA and B via the authenticated broadcast channel. The order of thasenbers defines
a (secret) bit betweeR and eitherA or B according to who’s number is chosen.

2. Each of4 andB sends taR, via non-private anonymous channels, a list of the firstssion numbers
in which they obtained shared bits. (Note that, with overwineg probability, each honest sender
obtained at least shared bits.) This results in the definition of twebit secret keyg({4 and K.
The receiverR, knows both keys, but does not know which of them belong4 &md which belongs
to B (i.e., from R’s perspective they are two key#(;, Ko} = {K4, Kp}).



3. To send private anonymous messagesandmp to R, the two playersd and B sendAEk ,(ma)
and AEk,(mp), respectively, via the non-private anonymous channeRtoThe receiverR au-
thenticates and decrypts each message using the Keymnd K (this allows identifying the key
corresponding to the message).

Theorem 3.1 The above protocol defines a statistically secure redudtimm the private anonymity func-
tionality, PrivAnon, to the basic non-private anonymity functionalifyjon.

Proof sketch: If any two players are dishonest, the protocol does not nequrdvide any security
guarantees to the remaining honest player.

If the receiverR is dishonest, but botd and B are honest, then we must guarantee anonymity ahd
B. This follows from the symmetry of the protocol and the uséhefbroadcast channel.

If the receiverR and one sender, are honest, but the other sendgis dishonest, we must guarantee
privacy, integrity, and independence 4% message t@&. By the properties of the authenticated encryption
AE, this is guaranteed as long as we can prove Biatview contains no information about the kég,
established betweed and R. This is demonstrated by giving a family 8% bijections on the randomness
used by honest playersand R, that preserve3’s view. Bijectioni works by swapping the random numbers
generated by and R in thes’th invocation of Step 1 (but leaving all other random chsigaact). Since3
only observes theetof values sent anonymously # (which includes of messages fromand R itself),
the view before the application of any bijection is identiwethe view after the application of the bijection.
The existence of these bijections shows that all possibiesafK 4 are equally likely for any view of the
adversary. [ |

Remark 3.2 The following changes should be applied to the above pratadwen dealing with amV-player
network (a receiveR and N — 1 potential senders). In such a case, we increase the numbsgssions”

to 2Nk which guarantees that the numbers chosen by each sendar appee pairs selected by at least

k times (alsok is sufficiently large so that in each session all the numbkosen by honest players are
distinct). This allows each sender to send a lisk skession numbers for which it knows the corresponding
secret bit. The resulting protocol is a statisticaNysecure reduction frorRrivAnon to Anon.

3.2 Secure Point-to-Point Channels

In this section, we describe a variant of the protocol from pinevious section. This protocol uses public
anonymous channels to realize secure point-to-point camuation. Recall that the simple key agreement
protocol described in the Introduction (as well as a sinplatocol from [2]) allowsA and B to agree on a
secret random key by posting messages on an anonymous bulletin board. Thisgmcassumes that the
bulletin board operator as well as the other users in thesyare honest-but-curious.

We now describe a key-agreement protocol that works in @mdstrd model, namely where the players
A, B are just two players in a network &f, possibly malicious, players. The main difficulty in utitig
anonymity in this case is that when one of the players neesksrtd an anonymous message, corrupted play-
ers may attack the protocol by also sending messages ovantimymous channel. Our protocol prevents
this attack, even if all othelN — 2 players are malicious.

1. RepeaR Nk times sequentially (each iteration is referred to as a ferys
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(a) Each ofA, B sends a randonk-bit number toB, using anonymous (non-private) channels.
(With overwhelming probability, the honest players chodgginct numbers. The adversary
may send its own numbers and, being rushing, may duplicatéars sent by honest players.)

(b) B considers the numbers received in the previous step, moepetitions, and chooses two out
of these numbers, including its owB. sends these two numbers in lexicographic ordet toa
an authenticated (but non-private) point-to-point channe

(c) Areports toB, over an authenticated channel, whether its number wasdadlin the pair sent
by B. In such a case, the order of the two numbers defines a secbettlveend andB.

2. If there are at least successful sessions, the fikssuch sessions define a shafkebit key between
A and B which both players output. Otherwisé,and B output independently randokibit strings.
[If both A and B are honest, the latter event will occur with negligible @bitity.]

Theorem 3.3 The above protocol defines a statisticalli+secure reduction from the key agreement func-
tionality to the public anonymity functionalimnon.

Proof sketch:  We only need to guarantee security of the protocol when batim@\B are honest. In this
case, we can condition on the event that A and B always gendistinctk-bit numbers in every session,
since this event will happen with all but negligible probafi We need to argue that in such a case: A1)
and B will eventually output the samk-bit key (except with negligible probability), and (2) thais key is
hidden from the adversary.

(1) follows from the fact that in each session the adversanysend at mosy —2 messages that interfere
with the two messages sent Hyand B, and thus the success probability of each session is atllgast

(2) follows from the fact that in each successful sessioa ativersary learns no information about the
bit shared by4d and B due to the anonymity of the channel. [ |

In Appendix C we discuss an alternative means for obtainggdgreement protocols in our setting via
a reduction to the problem of key agreement using a deck dsd&e] (see also [43]).
3.3 General Secure Multiparty Computation

We turn to the question of basing general secure multipamypzitation (MPC) on anonymity. Combined
with the implementation of private point-to-point charsiélom the previous section, one can then apply
known MPC protocols (e.g., [50] or [18]) and obtain gengrabcure MPC witht < N/2 when given a
broadcast channel.

Theorem 3.4 For any N-party functionality f, there is a statisticallyt-secure reduction of to Anon and
broadcast for any < N/2.

We now argue that the bourid< N/2 in Theorem 3.4 is tight.

Claim 3.5 There is no statistically-secure reduction fronV-party OT to anonymity fot > N/2.
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Proof sketch:  Consider anV-party OT functionality, in which played acts as a sender argl as a
receiver. (The remainingy — 2 players have no inputs or outputs.) Suppose towards a dictican that
there is an unconditionallyN/2]-secure protocot realizing this OT functionality given oracle access to
the anonymity functionality. Now, led be a set off N/2| players such thatl € A andB ¢ A and
B = [N]\ A. Consideringr as a protocol between players.ihand players iri3, we get a 2-party 1-private
protocol’ for OT over an anonymous 2-player network. The key obsamas that anonymity is useless
(for the purpose of implementing OT) in the case of two playdfore precisely, the 2-party functionality
induced by partitioning the players of tleparty anonymity functionality into two sets can be reduted
the secure channel functionality. Since unconditionafiguse two-party OT cannot be based on a secure
channel alone, the claim follows. [ |

The proof of Claim 3.5 can be extended to obtain similar riegaesults for other primitives, such as
(IV-party versions of) coin-flipping or bit commitment.

The above results imply that the anonymity functionality eefined isnontrivial in the sense that it
allows key agreement, but on the other hand it isauohpletefor all V-party functionalities with respect to
N-secure reductions.

4 Efficiency Improvements Using Anonymity

In this section we consider different scenarios in whichrgmoous communication can yiekfficiency
improvements over the best known solutions (even onesehabn cryptographic assumptions).

4.1 Non-interactive Private Statistics

We show howh > 2 clients can privately compute statistics (such as meanglatd deviation, correlations)
on their combined inputs by each sending few anonymous mesga a central server. Our protocols only
require one-way anonymous communication and are privatie espect to an adversary corrupting the
server along with an arbitrary number of clieftdote that it is impossible to obtain such non-interactive
protocols in the standard model, even if one settles for cdatipnal privacy. (It is possible to solve this
problem in the non-interactive model of [20]; however, sicBolution requires setup assumptions and
provides a weaker security guarantee.)

Our basic building block is a protocol for integer summatidde assume that each clieRt holds an
integerz;, where0 < z; < M. We want to design a protocol in which each client sends alsmaiber
of anonymous messages to the server, from which the sermerecaver the sum of all inputs without
learning additional information about the inputs. Thisibdmiilding block for privately computing the sum
immediately allows privacy-preserving computation of thean of a distributed set of data, and can also
be applied to privately compute “suites” of statistics sash (1) both the mean and variance of a set of
numbers, and (2) the means of and covariance between two rer sets of numbers (where each player
holds corresponding elements from the s&tgjhe sum protocol can also be used to efficiently compute

SWe provide no guarantee of correctness in the presence adioe clients. However, in most applications of the kind
considered here malicious clients can cause nearly as nambgk also in an idealized implementation involving a edigtarty.

81t is important that a suite of statistics are being computéat instance, in example (1) above, we cannot use the sutngmio
to privately computenly the variance, without revealing the mean. However, it istroéien desirable to compute both the mean

11



randomized lineasketche®f the data that reveal approximate statistics (e.g., aroappate histogramj.

As discussed in the Introduction, a simple solution to thegar summation problem is to let each client
P, sendz; messages to the server (each containing an identical defduk), and let the server output the
total number of messages it received. This protocol previmafect privacy, but is prohibitively inefficient
when the inputs;; are large. An additional disadvantage of this simple apgrasithat it does not support
private addition over finite groups, which is particularkyeful for computing randomized sketches of data.

Our goal is to obtain a (statistically) private protocol ihish the communication complexity is essen-
tially optimal: the total number of bits sent by each playepehnds only logarithmically of/.

The protocol Sum. We present a protocol for addinginputs in a finite groug= of size L. (The above
integer summation problem reduces to addition @vet 7, whereL. = nM.) To compute the sum of the
inputs, each playeadditively sharests input intok shares inG (wherek will be specified later) and sends
each share t6 in a separate anonymous message. The server can récoveby adding up (inG) thekn
messages it received.

Analysis. We now analyze the parameters for which mixing additive eh&ides the values of the shared
secret$ We start with the case of = 2 players and consider the experiment of running the aboviequb
with uniformly chosen inputs id7. Let (X, Y") denote the players’ random inputs avicdenote the mixed
shares received by. Let V(z,y) denote the distribution of conditioned onX = z,Y = y andV (x)
denote the distribution df conditioned onX = x. Finally, letU be a random variable uniformly distributed
in G, independently of/.

Lemma 4.1 Supposéog (%) > ¢ + . Then,SD((V, X), (V,U)) < 27X,

Proof:  Fora € G* andw € () let hy(7) = 3., a;. Note thath, defines a family of pairwise

independent hash functions fro(ﬁkk]) to G. (Pairwise independence follows from the fact that eacis
an independent element of the group.) Also note thaf\) is distributed identically t@V, hy (II)), where
IT is the uniform distribution over all sets i(rﬁk]) independently ol/. This follows from the fact that, by
symmetry, every possible-subset of shares is equally likely to coincide with the ekaf X . Finally, the
Leftover Hash Lemma [33] (see Lemma 2.1) guaranteesSBy{(V, hy (1)), (V, U)) < 2~ U He(D=0) —

9-200g (%)= from which the lemma follows. m

Lemma 4.2 SupposeésD((V, X), (V,U)) < e. Then, for allz, y,2’,y/ € G such thatr + y = 2’ + ¢/, we
have
SD(V (z,y),V(«,y)) < 2GJ? - e,

Proof: If SD((V,X),(V,U)) < ethen, by Markov’s inequality, for every € G we have
SD(V(x),V) < |G| -e.

and variance together.

’In general, the approximate output together with the rarmdzss used to generate the sketch may reveal a few bits oicawddit
information that do not follow from the exact output (see]j2However, in most applications of sketching, this privdass is
either insignificant or non-existent.

8A somewhat simpler variant of the problem we consider herzimglicitly considered in the context of constructing pdeu
random generators based on subset sum [32].
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By the triangle inequality, for every, 2’ we haveSD(V (z), V(') < 2¢|G|.
To complete the proof we show thatalistinguisherD betweenV (x, y) andV (z',y’), wherex +y =
x’' 4+ ¢/, can be turned into &/|G|-distinguisherD’ betweenV (x) andV (z’). Such a distinguisher can be
implemented as follows. Let = z + y(= 2’ + ¢/). Given a challenge (a vector of2k mixed shares)D’
checks whether the shares add up tnd if so invokesD onwv; otherwise it outputs 0. [ |
From these two lemmas, we immediately conclude that theopobtprivately computes the sum for
n = 2 players, with the appropriate setting/af

Theorem 4.3 Letk = 1.5¢+ o. Then, protocoBum privately computes the summf= 2 inputs in a group
G, where|G| < 2¢, with statistical error2=%(),

The following theorem extends the analysis to the case»f2 clients.

Theorem 4.4 Letk = 1.5¢ + o + log n. Then, protocolSum privately computes the sum ofinputs in a
group G, where|G| < 2¢, with statistical error2=%(),

Proof:  First we note that if the adversary corruptsut of then players and learns their secrets, then, since
all other shares remain independent and uniformly mixeal ptioblem reduces to the case of an adversary
that has made no corruptions amang- ¢ players. Therefore, without loss of generality, we may assu
that the adversary knows none of the secrets ofitbayers (but of course he knows the sum).

Let z,y € G™ be two distinct sets of player inputs such thatz; = > vy;. We will argue that the
adversary cannot distinguish (statistically, to witlin®(?) error) between its view whem defines the
inputs, or wheny defines the inputs.

We define a “basic step from” to be a vectorz’ such that there exist two indicésj € [1,n] and a
valuea € G, such thatr; = z; +a andz’; = x; — a. Then, itis easy to see that to reacfrom z requires at
mostn — 1 basic steps. Thus, by a standard hybrid argument, we negdlonlv that the adversary cannot
distinguish betweer andy, wheny is a basic step from. Let the indices and; be fixed to reflect this
basic step.

We now argue that if there exists an adversdrihat can distinguish its view based orfrom its view
based ony, then there is an adversady for then = 2 case that can distinguish its view when the secrets are
(xi, x;) from its view based ofy;, y;). The reduction is simple: Sinaeandy agree on all other coordinates
except; andj, the adversaryl’ (which will have all other coordinate values otuilt into it) can generate
shares for alk,, (= y,,) for u # 4, j, and mix these shares uniformly into te shares it obtains as input, in
order to perfectly simulate the views of the adversamywhen given either: or . Thus, if A succeeds, then
so doesA’ with precisely the same probability of success. But sincémeav by the previous theorem that
no suchA’ can exist, we conclude that no sudhcan exist, and the theorem is established. The parameter
values needed follow naturally from this argument. [ |

The above analysis (specifically, the proof of Lemma 4.1)sdua require perfect anonymity. Rather,
we consider the adversary’s uncertainty about which of lfz@es it sees could be shares of any particular
secret; because we are in the statistical case of unbounbledsaries, we can model this as a distribution
over sets (a distributionl over ([2,5])). As long as this distribution has enough min-entropy, agument
applies. Thus, the level of anonymity needed is only as msahmegded to guarantee high min-entropy in
the adversary’s uncertainty distribution. In particuldre protocol remains secure even if the server can
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partially correlate messages sent from the same client, e.g., byiggpaopessages according to their exact
time of arrival.

Note that our analysis requires the amount of communicaiemclient to grow with the number of
clients. This might seem counter-intuitive, since a lamggmber of clients should intuitively make it easier
to “blend in the crowd”. Recall, however, that we requirewsdyg to hold against an adversary who may
corrupt the server andn arbitrary number of clients Considering an adversary who corrupts the server
and all but two clients, the communication per client in thseofn clients cannot be smaller than in the
case of just two clients. We also note that the additigen term in the complexity is not just an artifact of
the analysis; it can be shown that the communication inmghgach client has to grow to infinity with the
number of clients.

4.2 Secure Two-Party Computation

In Appendix D we describe an application of the summatioriqual for realizing general secure two-party
computation between the server and each client, albeitather weak security model.

4.3 Private Information Retrieval

In this section, we use anonymous channels to obtain a Piqmiovhich allows a server to handle queries
that may originate from many different clients using a neaptimal amount of communication and com-
putation. In contrast to previous protocols presentedigwmiork, the current protocol only providesmpu-
tational client privacy. Its privacy relies on a natural general@atof a previous intractability assumption
from [45] related to noisy polynomial reconstruction.

The model. We consider a system with a single server, holding a database{0,1}", and several
(typically many) clients. Each client holds a selectionexd € [m] and wishes to learm; without revealing

i to the server. The protocol requires only a single round efrigs and answers. Each client can send
several (simultaneous) anonymous queries to the servaeeanive a separate answer for each query. Thus,
the interaction between the clients and the server is caghtay a single invocation of the two-way anonymity
functionality defined in Appendix B (generalized to allowssal queries from each clierit).We stress that

in our protocol the clients do not need to interact with eaitteio Our protocol will provide the following,
somewhat unconventional, security guarantee. An adwecsarupting the server and a subset of the clients
will be unable to learn the inputs of the remaining cliemsthie sense that different choices for these inputs
induce computationally indistinguishable views, proddbat the number ofincorruptedclients exceeds
some given threshold. (More precisely, it will suffice thiag ttotal number of queries originating from
uncorrupted clients exceeds this threshold.) The valukeoftireshold will depend on the database size and
the security parameter, but not on the number of clients.sTthe fraction of corrupted parties that can be
securely tolerated by the protocol tends to 1 as the numbarerits grows.

*While we assume for simplicity that all clients send theiedes simultaneously in a synchronous way, this requireisarot
essential. As in other protocols presented in this works#wirity of the PIR protocol relies on having sufficient uteiaty (from
the adversary’s point of view) about the origin of queriestd® uncorrupted clients. To guarantee privacy even wheretis only
a small number of active clients, one can employ “dummy téietihat generate and send sufficiently many random quesitset
server.
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Overview of construction. We take at-server information-theoretic PIR protocol in which théent’s
privacy is protected against collusionsiogervers. (In our typical choice of parameters, weklserve as
the security parameter amd= O(k - m©).) Thet queries sent by the client in this protocol can be viewed as
points on a degreg-curve in a low-dimensional space. Akyof theset points jointly reveal nothing about
the client’s selection, whereas any + 1 of them completely determinge A natural approach that comes to
mind is to (computationally) hide the curve encodiryy adding random noise. As it turns out, the required
amount of noise is very large — it has to be at least of the asflenagnitude ofm, the database size, in
order to defeat an attack by Coppersmith and Sudan'fLThus, the approach is entirely useless in case of
a single client accessing the database. The key observatibat the same amount of noise would suffice
to hide an arbitrarily large number of curves, possibly ioaging from different clients. Thus, the use of
anonymity allows to amortize the required noise over midtidients. When the number of uncorrupted
clients is sufficiently large, the amount of noise each tlreeds to contribute is small.

The original polynomial reconstruction (PR) intractayilissumption, introduced by Naor and Pinkas [45]
(see also [38]), asserts roughly the following. For an appate choice of parameters, the output of the
following experiment keeps a secret field element F' semantically secure with respect to a security
parametek: (1) pick a random polynomial(-) of degreec k such thap(0) = s; (2) pick ¢ distinct eval-
uation pointsay,...,a; € F andn random noise coordinates, ...,r, € F’; (3) output the good points
(a;,p(a;)) along with noise pointér;, b;) in a random order (where easéhis random and independent of
all ;).

The Guruswami-Sudan list decoding algorithm [30] implieattthe above assumption does not hold
whent > \/(n + t)k. Thus, the assumption becomes plausible only when the anobmoise is higher,
say whem > t2 /k. We rely on the following multi-dimensional variant of thieave assumption: the secret
s is replaced by a vector effield elements = (s, ..., s.) and the polynomiap by a(c + 1)-dimensional
curve, namely by a vector efpolynomialsp = (p4, ..., p.). The above experiment can then be generalized
in a natural way to the multi-dimensional case. Formallg,dssumption is defined as follows.

Definition 4.5 (Noisy Curve Reconstruction (CR) Assumptioh Let k denote a degree parameter, which
will also serve as a security parameter. Given functiding:) (field), c(k) (dimension),t(k) (points on
curve), andn(k) (noise), we say that theR assumptiorolds with parametersF, c, ¢, n) if the output of
the following experiment keeps a secret F(k)°(*) semantically secure (with respect to security parameter
k):

e Pick random polynomialg; (+), ..., p.(+), s.t. eachp, is of degree< k and

def

p(0) = (p1(0), ..., pc(0)) = s;

10An attempt to base PIR on a stronger version of our intralitybissumption was made in [37]. This assumption was broken
by the Coppersmith-Sudan algorithm (see also [8]). Ourgmaltrelies on a much more conservative choice of parametesis
not known to imply PIR in the standard model.

The corresponding assumption in Definition 2.3 of [45] difin that it requires the noise pointgto be distinct from the good
pointsb;. Our variant of the assumption is slightly stronger, sifeedhoice of points reveals a small amount of informatioruabo
the locations of the points; (to an extent which diminishes with the field size). This infiation can be eliminated by picking
the pointsa; in a completely independent way (i.e., with repetitionplaeing multiple occurrences of a good pointwith noise
points. We prefer the above variant because it simplifie$adiraulation of our protocol.
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e Pick ¢ distinct evaluation points,...,a; € F \ {0} andn random noise coordinates,...,r, €
F\ {0};

e Output the good pointg(a;) along with random noise poin(&bjl., ..., b5) €g F°,in arandom order.

Towards relating the CR assumption to known attacks, it ivenient to consider an augmented (and
“more adversarial”) experiment which outputs the evatrapointa; along with eache-tuple p(a;) and a
random element of" along with each noise point. Clearly, if the augmented CR assumption (i.e., the CR
assumption with respect to the augmented experiment) hiodasit also holds with respect to the original
experiment. The algorithm from [17] breaks the augmenteca€Rimption wheh > ((n 4 t)kc)/(c+) 4
k+ 1. Thus, whert = o(nk®)'/(¢+1) or equivalentlyn = w(t - (t/k)°) the augmented assumption (let alone
the original one) remains plausible. We stress that thengsion does not seem to be affected by the recent
progress in the field of list-decoding [47, 29, 28].

Our protocol uses the following choice of parameters.d.et1 be a constant. (The amortized complex-
ity per client will be of the order of!/¢.) We view the entries of a database= {0, 1} as the coefficients
of a c-variate polynomialy, of total degree at most = O(ml/c) over a fieldF’, where the size of” will
be specified later. This allows to associate with each seteatdex: € [m] a pointz; € F* such that
qz(zi) = z; (see, e.g., [15]).

The protocol. Each client, holding selection indéxpicks a random degreeeurvep = (py, ..., p.) such
thatp(0) = z;, as well ag = kd + 1 random distinct evaluation points € F'\ {0}. It anonymously sends
to the server the queriesv; wherev; = p(a;) € F¢. In addition, the client anonymously sends a number
of random noise points of the fortp € F'°, so that the total number of noise points sent by all clientt i
leastn. (The security of the protocol will be guaranteed as longhagatal number of noise points sent by
uncorruptedclients is at least.) The server replies to each query with an answet ¢, (v;). (If all values

of ¢, were precomputed, this is done via a table lookup.) Findily,client can recover; by interpolating
the degreéed univariate polynomial defined by the poiriis;, s;). For this interpolation to be possible, we
need|F| > t + 1, though a largef is desirable for enhancing the secufy.

Privacy. The following lemma guarantees thatifpoints of noise are sufficient to (computationally) hide
the selection of a single client, then this is also the casari@rbitrary polynomial number of clients.

Lemma 4.6 Letk denote a security parameter letk) be a polynomial. Lef\(k) = (A1 (k), ..., Ay (k))

be a distribution ensemble, wherk) is a sequence af(k) independentlistributions ovemultisetsof
elements from a domaiP (k). Let B(k) = (Bi(k),..., Byx)(k)) be another distribution ensemble as
above, and lef?(k) be a random multiset of(k) elements fronD (k). Moreover, suppose that for every
index sequencg(k), 1 < j(k) < u(k), we haved; U R ~ B; U R. (Here~ denotes computational
indistinguishability with respect to polynomial-sizeatiits, and the dependence of all parameterskaa
implicit in the notation.) Thend; U...UA,UR~ B; U...UB, UR.

Proof:  Suppose the contrary. By a hybrid argument, there is a sequéh) such thatd; U...UA;_; U
B;U...U B, U R can be distinguished from; U...UA; U B, U...U B, U R with non-negligible

2The problem with lettingF'| ~ t is that the good points are likely to share the safheoordinates with many noise points. In
such a case, PR-type assumptions are susceptible tolbéties attacks [9].
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advantage. The corresponding distinguishiean be used to get a distinguisher betwden R andB; U R

given a multisetS, take the union ob with a sample fromd; U... U A,;_; U B, U...U B,, and invoke

T on the result. [ |
Note that the CR assumption guarantees that the queriesiglaclient, when combined with points

of noise, keep the client’s selection computationally gev Thus, Lemma 4.6 establishes the privacy of the

protocol for an arbitrary number of clients, with the sameant of noise as that required for the privacy of

a single client:

Theorem 4.7 If the CR assumption (Definition 4.5) holds with paramet@rgk), c(k), t(k), n(k)), then
the above anonymous PIR protocol remains computationaisaie for an arbitrary (polynomial) number
of clients, as long as the total amount of noise contributedricorrupted clients is at least(k).

Parameters. Recall that we set to be a constant and= O(km'/¢). As noted above, a good choice of the
noise parameter for the CR assumption is w(t- (t/k)¢) = w(k-m!*1/¢). Thus, the total amount of noise
is comparable to the database size. Finally, we argue taajubry space is polynomial, so that the answers
to all queries can be precomputed by the server. Recall taaequire thatF| = Q(t) = Q(km'/¢) but, as
discussed above, it is safer to avoid many collisions and g7’ | be larger tham. Either way, the query
space F'|¢ is polynomial inm.

Using the above choice of parameters, we get:

Corollary 4.8 Letm(k) be the size of the database as a function of the security peteanietc be a posi-
tive integer and: > 0 a constant such that the CR assumption holds with paramét&is), c, t(k), n(k)),
wheret = O(k-m!/¢),n = O(k-m't1/t¢), and|F (k)| = O(k-m'/¢t<). (Alarger value of represents a
more conservative assumption.) Then, assuming two-wayyamous communication, there is a one-round
PIR protocol involving a single server and multiple clieitsvhich the amortized communication and com-
putation per query ar€)(t) = O(km'/). The protocol is computationally private as long as uncptad
clients makedogetherat leastn (k) random noise queries.

Achieving sublinear communication.While the PIR protocol given by Corollary 4.8 has a low corjile
per client when the number of clients is large, it requiresttital communication with all clients to be bigger
than the database size. Indeed, a protocol with a sublintdrcdommunication would imply a PIR protocol
and hence key agreement in the standard model, which is etrkio be implied by the CR assumption.
We now briefly sketch a way for combining the proto@dlof Corollary 4.8 with any standard (single-
server) PIR protocoP’ in order to reduce the communication complexity when the lmemof clientsu(k)

is smaller than the database sizék).

Let m/(k) be a database size for whi¢hremains secure if each of theclients contributes a single
noise query. (Note that'(k) should always be smaller tharik), to an extent that depends on the strength
of the CR assumption; whenis big ande is small,m/(k) is close tou(k).) We parse then bits of the
original database as anm’ x ¢ matrix X where/ = [m/m/]. Each client, who wishes to retrieve entry
(i,7) of X, invokes the protocdP as if it is retrieving the-th bit from a database of size’. Along with
each of the sub-queries iR, it sends a (standard) PIR query pointing to jhtlh entry of a database of
¢ entries, generated according . (An independent invocation ¢ is used for each sub-query.) For
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each sub-query received from a client, the server obt&iasswers, each resulting from applyifiyto
the corresponding column of, and then computes a single response by applfihtp the database df
answers. The resulting protocol has a low communicationpdexity if so do? and?’. Excluding the
cost of pre-processing, the amount of server computatiorclnt is typically of the order of, resulting

in a total amount of computation that is close/tom’ = m whenm/ is close tou. Thus, a good choice of
parameters yields a protocol which is close to optimal wepect to both communication and computation,
regardless of the number of clients.

4.4 "PIRto Peer”

The feasible query domain of the above protocol allows ttridige the role of the server between many
users without compromising efficiency or security. Thisegivise to the following, conceptually attractive,
type of distributed storage systems.

We envision a peer-to-peer community in which a large nunabersers are willing to share their re-
sources. In such a community, each user may play three distites: adatabase ownerholding some
data to which it wishes to provide private accessgever making its small share of contribution for each
database owner in the system; andiant, wishing to privately retrieve data from other databaseeran

The efficiency of such systems is measured by three main péeasn A first parameter is ttewmmu-
nication complexityequired for retrieving an item from a database, which welirecto be sublinear in the
size of the database. Note that achieving this in our seittigies that only a small fraction of the servers
should be involved in each PIR invocation. A second effigjgparameter is the (expected) totahd on
the servers for each query made by a client. We would likedbd bf answering the clients’ queries to be
distributed evenly between the servers, even if there ioaufar’ item requested by many clients. Finally,
we would like the storage overhead to be small, and eventyililited between the servers. In terms of
security we would like to ensure that (assuming that the networkiges/a reasonable level of anonymity)
the privacy of each query made by the client is protected exwm almost all users are corrupted. Finally,
we would like the system to bebustin the sense that it maintains its functionality even if gé&anumber
of users are adversarially corrupted.

To the end of implementing such a system we distribute theeabthe single server in the anonymity-
based PIR protocol described above. To store a database $iydkem, the (preprocessed) string containing
the list of all possible PIR answers for this database isdmavenly between many different users, acting as
servers. (Ideally, the number of users is sufficiently lazg¢hat each user receives at most a single element
of F' for each database in the system.) To accesstthentry in a database, a user first computes a set of
(randomized) queries as in the above PIR protocol, and titehds the answers layponymouslgontacting
the users that hold the answers to these queries. This schasthe same (nearly optimal) efficiency
and privacy features as in the single-server setting, éxbep here we additionally get the followirigad
balancingfeature: the load of answering the queries is evenly digkeith between users regardless of the
multiset of queries being asked. In particular, even if aing in the system try to access the same data item,
the (expected) load on each user remains the same. Thisdéatiue to the randomness of the PIR queries.
The randomness of the PIR queries also makes the systaumstto denial-of-service attacks involving a
large fraction of the users. We note that without the use ohgmity the system would still enjoy most of
the above features, except that privacy would only holdregjamall collusions of users (rather than against
collusions involving “almost all” users).
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A On Using Imperfect Anonymity

While we assume for simplicity that the network provigesfectanonymity, this assumption can be relaxed.
In fact, most of our protocols only require “sufficient urtegémty” about the origins of messages to maintain
their full cryptographic security, at a modest additionastc

For instance, consider the following generalization of shiaple key agreement protocol described in
the Introduction. Instead of posting a single message ohuetin board, each player postsrandom and
independent messages. (To prevent the adversary fromndjrdifferent messages sent by the same player,
the timing of the messages is randomly spread within somd firee interval.) As a result, both players
learn a random subsstC {1,2,...,2m} of sizem, consisting of the positions of messages posted by

Now, suppose that an adversary can partially break the amongnd obtain some partial information
about the sefS. We argue that as long as there is sufficient uncertainty taBolsom the adversary’s
point of view, a random secret key can be obtained by makingradard use of privacy amplification [6].
Specifically, suppose that the adversary cammetiselytraceall messages to their origin, except with*
success probability. (Still, it might be the case that theseshry can trace 99% of the messages with absolute
certainty.) Applying a random (pairwise independent) hasiction to the sefS, the players can agree on
a key of lengthk’ = k — o which given the adversary’s view is within statistical diste2~2(?) from
random. A similar approach can be applied to obtain robustiwes of other protocols we present. (In fact,
such robustness is already built into some of the protodi&ksthe private sum protocol described above.)
Thus, our approach is quite insensitive to imperfectionthefunderlying network, and can be applied even
in more realistic scenarios where only some crude form ohgmity is available.

B Anonymity Models

We now present some formal definitions of the anonymity fianetlities described in Section 2. We start
by defining the functionalitAnon that captures our basic model of non-private anonymous agmaation.
A first attempt to define this functionality is as follows:

¢ INPUT: each playet; provides the functionality with a paim;, d;), where eithern; is a message
(string) andd; € [N] is its destinatiort? or m; = d; =L (indicating thatP; has no message to send).

e OUTPUT: each playeP; outputs themultisetof all valuesm; for whichd; = j.
The adversary’s output includes, fevery;, the multiset of messages received by plakg(i.e., the
adversary learns the content of all messages at each nebeivdoes not get any information as for
the sender of each message).

(Note that since the output of a playBs is just a multiset then, in particular, this output reveasimfor-
mation about the identities of the senders of these megsage.

The above formulation of the functionalit§non is not satisfying as it does not allow to deal with a
rushingadversary; as such, this makes the primitive of anonymoasras too powerful. We modify the
definition so as to allow the adversary to see first the cormttall messages sent by players which are not

3Note that we allow, and in fact in certain cases also use, tissipility thatd; = i; i.e., a player may send an anonymous
message to itself (clearly, this is useful only for confgsihe adversary regarding the messages sent in the network).
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under its control (excluding, of course, the identity of #ender of each of these messages) and only then
to decide on its own messages. The definitiorAabn is therefore described as a two-stage process, as

follows:

e INPUT ROUND 1: each playeP; provides the functionality with a paim;, d;), where eitherm; is
a message (string) anlj € [N] is its destination, om; = d; =L (indicating thatP; has no message
to send or thaf®; is under the adversary’s control).

e OUTPUT ROUND 1: No player has an output; the adversary’s wutpcludes, for everyj, the
multiset of messages sent to playgt

e INPUT ROUND 2: No player has an input; the adversary’s inmatudes a set of pairs of the form
(m,d), wherem is a message andlis its destination; the number of these pairs is bounded &y th
number of players under the adversary’s control.

e OUTPUT ROUND 2: each playeP; outputs themultisetof all valuesm, for which d; = j (inserted
as inputs in any of the two input rounds).

We will also consider a “private” version dnon, denotedPrivAnon. This functionality is defined
similarly to Anon, except that the adversary only learns the contents of thesages sent to corrupted
players, rather than the contents of all messages sent ivetiv@rk.

Next, we define two-way anonymous communication. As betbire can be formalized as an interactive
functionality as follows.

e INPUT ROUND 1: each playeP; provides the functionality with a paiim;, d;), as above.

e OUTPUT ROUND 1: each playeP; outputs thesetS; of all valuesm; for whichd; = j.

e INPUT ROUND 2: each playeP; (after performing some local computation) provides thecfiom-
ality with a vector of valuesn!, one value for eachn; € S;.

e OUTPUT ROUND 2: each playeP;, for whichm; #_L, outputs the message;, corresponding to
the messagen; that P; sent toP; (in ROUND 1).

In the above definition we ignore, for simplicity, the issdeushing. We do so because the applications
in which we usetwo-wayanonymous channels are not sensitive to the issue of ryshirany case, the
definition can be easily modified to deal with rushing in theeavay as we did above for the one-way case.

C An alternative Key-Agreement protocol

An alternative means for obtaining key-agreement protasing anonymity is via a reduction to the prob-
lem of key agreement using a “deck of cards” [22] (see als§)[48 this problem, there is a deck of cards,
where a set of cards is given to playerA, another (disjoint) set of cards, is given to player, and the
remaining cards are revealed to the adversary. Fischer aigth’8how how to take advantage of the mutual
information betweerd and B so as to agree on a secret key. Below we sketch how to use tb&icpl in
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a setting whered, B have access to a public anonymous channel (i.e., this mlodoesnot require private
anonymity). The reduction proceeds as follow4.and B both send taB, using the public anonymous
channel/ random “cards” from an exponentially large domain. (Mali players can possibly inject their
own uncalled-for values.) Thet sends back tal the set ofm > 2¢ received values, eliminating possible
duplicates. The received values define a “deck of cards” fndnth each ofA and B knows/ (random)
cards and the adversary knows the rest. Néwand B can agree on a key by using the methods of [22].

D Secure Two-Party Computation

In this section as we consider the following scenario. Thee clients who communicate with a server
S via two-way anonymous channels. The server holds an in@utd each client an inputg;. The goal is
for each client to learn the valug&q;, =) for some functionf, while keepingg; private from the server and
preventing clients from learning additional informatidooatz. We refer to these two privacy properties as
client privacyandserver privacy respectively.

A first observation is that we cannot generally hope to obteiconditional privacy against arbitrary
collusions of parties. Indeed, this would contradict theassibility of OT discussed in Section 3.3. Thus,
we will settle for the following relaxed notion of privacyirgt, the server’s privacy will only be guaranteed
against a singlesemi-honestlient. As to the privacy of the clients, we will have the @lling guarantee:
the statistical advantage of a (potentially malicious)eadsary corrupting the server and a subset of the
clients is exponentially small in the number of uncorruptéents. Thus, our security model is best suited
to scenarios in which protecting the privacy of the cliestthe main concern.

Note that, unlike the non-interactive protocol for securmmation, here we inherently need to have a
two-way interaction between the clients and the serversTimuthis setting it is possible to obtain (compu-
tational) security without anonymity at all, assuming tléstence of oblivious transfer. The advantage of
using anonymity is in obtaining a light-weight protocol tle&oid the need for public-key operations. Our
protocol can either obtain unconditional security (fortrieted function classes) or computational security
based on the existence of one-way functions (for arbitrangtions).

Linear functions. Suppose thaf(q,z) = x - ¢, wherex is a matrix held by the server anda vector
held by the client. For this case, consider the followingt@col. (1) each client breaks his input vector

to k& additive shareg;, ..., ¢, and anonymously sendsmessages of the fority, ¢;) to S; (2) S replies

to each message of the forfi ¢;) with X - ¢; + r;, where ther; are random masks that add to 0. Each
client can now recover its output by adding up thenessages it received. Note that by the choice of the
masksr;, each individual client will learn no information about thetput. As to the clients of the privacy,
here we can prove the following property: with an approprigtioice ofk (see below), any collusion of the
server with a subset of the clients will only be able to ledmsumof the inputs of the uncorrupted clients.
(We will later show how to eliminate this extra informatiom&n there are many uncorrupted clients.) This
follows by a similar analysis to the sum protocol, letting= O(|q| + logn + o) (whereo is a statistical
security parameter). The only difference is that now theeshabtained by the servers are labelled by indices
j. This decreases the entropy of the server’s uncertainty sipall (logarithmic) factor that can be easily
compensated by a larger choicekof

General functions. Using known reductions, it is possible to reduce any seeuoeparty computation task
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to a matrix-vector product of the forrfi(q, ) = x - ¢, whereq is determined by the client’s input andis
arandomlychosen matrix based on the server’s input. This reductionefficiently support information-
theoretic server privacy for functions with small formulasbranching programs (e.g., using [34]), and
computational server privacy for general functions (aiging [56]). Combined with the above protocol for
linear functions, this gives us the desired result, excaptife fact that theumof the client’s (transformed)
inputs is now revealed. We eliminate this extra informatiynusing additional (local) randomization of
both the clients’ inputs and the server’s input.

We illustrate this using the simple case of the AND functidrhis would give the general result, as
securely computing this function can be usegarallel for computing arbitrary functions using randomiza-
tion techniques from [56, 34]. In the case of the AND functitire server holds a hit. Each client holds
a bit ¢; and would like to learn: AND ¢; (namely learn: only if ¢; = 1). Applying the above protocol for
linear functions over GR2) (wherex is viewed as d x 1 matrix), we get a protocol in which the server
can learn the exclusive-or of all inputs. One simple apgrdac eliminating this extra bit of information is
by assuming that among the uncorrupted clients there isaat e “helper” client who picks its input at
random. Note, however, that we cannot let a client holdingnpnt ¢; serve also as a helper client, since
such a client will be able to recoverfrom the2k answers even if; = 0.

Instead, we use the following randomization approach. Enees breaks his secret hitinto 3 shares
(z1,x2,x3) such that a single share gives no information ahoahd any pair of shares completely reveals
x. Each client holding an inputwill transform its input to a random vector from the $é8, 0,0), (1, 0,0),
(0,1,0),(0,0,1)}. Similarly, a client holding an input will transform its input to a random vector from
the set{(1,1,1),(1,1,0),(1,0,1),(0,1,1)}. Now the clients and the server engage in parallel invooatio
of the basic AND protocol, resulting in each client learnthg shares;; corresponding to the positions in
which its chosen triple contairis Note that each client will be able to recowveif its input is 1 and will
learn no information about otherwise, as required. The server, on the other hand,emithl the exclusive-
or of all triples held by the clients. It can be shown using alda chain analysis that this exclusive-or
converges exponentially fast to the uniform distributioio{0, 1}3. Thus, the server's advantage vanishes
exponentially with the number of uncorrupted clients. Nibt the above choice of triples is not completely
arbitrary; for instance, eliminating, 0,0) from the first set would make the server’s view in the case all
clients hold 0 statistically far from the case all client$chd.
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