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ABSTRACT
Experimentation tools facilitate exploration of Tor performance
and security research problems and allow researchers to safely and
privately conduct Tor experiments without risking harm to real Tor
users. However, researchers using these tools configure them to
generate network traffic based on simplifying assumptions and out-
datedmeasurements andwithout understanding the efficacy of their
configuration choices. In this work, we design a novel technique
for dynamically learning Tor network traffic models using hidden
Markov modeling and privacy-preserving measurement techniques.
We conduct a safe but detailed measurement study of Tor using
17 relays (∼2% of Tor bandwidth) over the course of 6 months, mea-
suring general statistics and models that can be used to generate a
sequence of streams and packets. We show how our measurement
results and traffic models can be used to generate traffic flows in
private Tor networks and how our models are more realistic than
standard and alternative network traffic generation methods.
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1 INTRODUCTION
Tor [11] is the most popular anonymous communication system
ever deployed. As of May 2018, the Tor network consists of over six
thousand volunteer relays that collectively forward over 100 Gbit of
traffic per second from over two million daily users [37]. Tor helps
its diverse set of users, ranging from regular Internet users to jour-
nalists and digital activists to law enforcement and governments,
stay safe while browsing the web and communicating online. To
achieve unlinkability of communication, Tor clients multiplex all
application streams over long-lived circuits of three independently
chosen and globally distributed relays. No single point on this path
can determine both the communication source and destination.

Tor is also an open-source research and development platform:
researchers can analyze Tor’s design and can experiment with
novel anonymous communication algorithms and protocols by
changing the source code. Experiments with Tor modifications,
however, should be conducted without harming the privacy or
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anonymity of Tor users.1 Although this safety requirement had
originally limited the applicability of research results to the real
world, Tor experimentation tools have been developed [6, 24] and
have become a popular means [46] of better understanding how
changes to Tor’s path selection [1, 5, 10, 33, 34, 43, 45, 51, 53] load
balancing [18, 21, 25, 27, 32, 40] traffic admission control [3, 17,
19, 23, 29, 36, 54] congestion control [2, 16] and denial of service
mechanisms [9, 20, 31, 44] affect Tor performance and security [4].

While Tor experimentation tools have significantly enhanced
the state of Tor research, the relevance of the results they produce
depends on the accuracy of the network traffic models used during
experimentation. Previous models of Tor clients have generally
been limited to single file “web” (320 KiB) and “bulk” (5 MiB) down-
loaders based on relatively dated measurement studies of ethical
concern [8, 39]. Although there has been some limited effort to
compare network characteristics in experimental Tor networks to
reality [22, 23, 51], these comparisons have completely disregarded
potentially important Tor network characteristics such as the num-
ber of circuits and their distribution across relays and clients, the
number of streams and their distribution across circuits, and the dis-
tribution of download sizes across streams. As a result, the efficacy
of synthetic Tor network traffic models remains largely unknown.

In this paper, we make four major and significant primary con-
tributions that will have immediate impact on Tor security and
performance research.

Measuring Tor. First, we conduct a large and detailed measure-
ment study of Tor.We use a recent privacy-preservingmeasurement
tool called PrivCount [26] and 17 relays representing roughly two
percent of Tor’s bandwidth capacity [37] to repeatedly measure
various Tor client and network characteristics over 3 months. Our
study provides a deep analysis of Tor traffic, including the number
of active and inactive clients, the number of active and inactive
circuits and their distribution per client, the number and types of
streams and their distribution per circuit, and the number of in-
bound and outbound bytes and their distribution per stream. We
expect these measurements to be useful not only for producing
accurate Tor traffic models, but also for gaining a more thorough
general understanding of Tor and its usage.

Learning Tor Traffic. Second, we design novel techniques for
dynamically but safely learning Tor traffic models using hidden
Markov modeling (HMM). We extend the PrivCount measurement
tool [26] to support our techniques and use it on our relays to
iteratively measure (i.e., train) Tor packet and stream models over a
period of 3 months. We evaluate our models and find that, although
Tor traffic is highly variable over short timescales, our best model
instances fit Tor traffic reasonably well. Our models can be used
to generate streams on a circuit and packets on a stream using
standard probability distribution generation techniques.
1https://research.torproject.org/safetyboard.html
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Building Traffic Models. Third, we design and develop a set of
modeling semantics and a traffic generation tool called TGen that
can be used to create arbitrarily complex patterns of behavior; TGen
enables configurable control over the creation of TCP connections
and the size, schedule, and duration of packet streams. We describe
two new client models: one based on the most common protocols
used on Tor (i.e., HTTP and BitTorrent [8, 26, 39]), and one that
uses our Tor measurement results and HMM stream and packet
models as the basis for traffic generation. Our models are relevant
across a range of Tor experimentation tools and research topics.

Evaluating Traffic Models. Fourth, we conduct the first known
evaluation of the accuracy of Tor traffic models using a private
Tor network deployment of 2,000 relays and up to 60,000 clients in
Shadow [24]. First, we update Shadow’s outdated Internet model,
collecting 1.6 million latency measurements using 1,813 globally
distributed vantage points and using them to create a Shadow la-
tency model based on city-pairs. Then, we evaluate multiple traffic
models in Shadow: we configure Tor to export PrivCount events,
tally the events using a local PrivCount deployment, and compare
the results to our ground truth measurements of Tor traffic. We
find that the Tor client model that utilizes our traffic models yields
a network whose characteristics are closest to those we measured
in Tor: the single file model is inaccurate in the distribution of
bytes per stream, the protocol (i.e., HTTP and BitTorrent) model
is inaccurate in the distribution of streams per circuit, and both
models produce fewer clients, circuits, and bytes than Tor and our
HMM-based model.

Impact. Our Tor measurements and improved traffic models fa-
cilitate the meaningful exploration of open Tor research problems.
First, our results will improve research conducted using general-
purpose packet-level Tor experimentation tools [6, 24]. For example,
the evaluation of the efficacy of proposed Tor load balancing algo-
rithms [43] will be more meaningful when the background traffic
(e.g., the number and distribution of circuits, streams, and packets)
in a Tor test network is more realistic (i.e., more similar to condi-
tions in the public Tor network). Second, our results will improve
research that utilizes higher-level Tor flow or circuit simulations
that run over long simulated timescales. For example, proposed
secure bandwidth measurement algorithms [32, 48] have benefited
from experiments that involve many iterations of full network mea-
surement in order to measure feedback effects and the time to reach
steady state. These simulations can use our models as generators to
ensure an accurate distribution of flows over arbitrary timescales.

The changes to PrivCount and Shadow that were necessary to
carry out this research (to measure and make use of our models)
have been contributed to the open-source community and have
been merged into the PrivCount2 and Shadow3 projects. Further-
more, we have released our PrivCount measurement data, TGen
HMM models, and Shadow experimentation models (including our
updated Internet latency model as well as our private Tor network
Shadow configurations) so that researchers and developers can
benefit from our work.4

2https://github.com/privcount
3https://github.com/shadow
4https://tmodel-ccs2018.github.io

2 METHODOLOGY
We describe our measurement methodology in this section while
our measurement results will be presented in Sections 3 and 4.

2.1 Measurement Goals
A primary goal of this paper is to better understand Tor traffic and
its characteristics so that we can more accurately generate traffic in
private Tor networks and simulators like Shadow [24]. We conduct
a large Tor measurement study to help us achieve this goal. We
focus our measurements on overlay network-based statistics that
can also be measured in private Tor networks, including distribu-
tions of bytes per stream, streams per circuit, and circuits per client.
Although some related statistics were previously reported [26], we
update and expand previous measurements in order to: (i) cap-
ture the latest state of a growing Tor network; (ii) improve upon
the accuracy of the previous measurement study; (iii) collect new
statistics that are missing from previously reported results.

2.2 Measurement Apparatus
We measure Tor using multiple Tor relays as vantage points. Be-
cause user privacy and security of the measurement process are
primary concerns in our study, we collect our measurements using
a privacy-preserving distributed measurement system [26].

2.2.1 PrivCount Overview. PrivCount is an open-source privacy-
preserving distributed measurement system [26] that is based on
the secret-sharing variant of PrivEx [13]. PrivCount utilizes differ-
ential privacy [12] and secure aggregation in order to safely collect
measurements across a set of Tor relays.

PrivCount consists of a tally server (TS), one or more share keep-
ers (SKs), and one or more data collectors (DCs). The TS functions
as a central but untrusted proxy that is used to facilitate commu-
nication between the SKs and DCs. The operator of a PrivCount
deployment uses the TS to configure various global measurement
settings, such as which statistics the DCs should collect and when
they should start collecting. Each of the DCs extracts events from
a Tor relay and counts their frequency in order to measure the
various statistics that were configured by the TS operator. For each
such statistic, each DC initializes a local counter by adding noise
according to privacy parameters ϵ and δ , and also “blinds” the local
counter by adding a random blinding value. The random blinding
value is then secret-shared to each SK so that it can later be removed
from the global count (i.e., the sum of all DC local counts). Each SK
then combines the blinding values from all DCs for a given counter
in order to prevent anyone from learning individual DC inputs.
At the end of the measurement phase, each SK sends its summed
blinding value and each DC sends its local, noisy event count to
the TS; the TS sums the counts and removes the blinding values to
obtain the global, noisy count.

The final global count value released by the TS is protected under
(ϵ,δ )-differential privacy [12] because of the noise that is added by
the DCs. The blinding values provide for secure aggregation of a
measurement across all relays: as long as at least one SK is honest
and secure, no one learns the individual contributions of any of
the DCs to the final global count value. The blinding values also
provide forward privacy for each DC: any compromise of a DC will
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Figure 1: A simplified view of the 17 Tor relays (11 entry, 6
exit) and 21 PrivCount nodes (17 DCs, 3 SKs, and 1 TS) used
in our deployment. See Table 2 for the total weights of our
entry and exit relays during the periods in which they were
used to collect measurements.

not leak the number of counter increments that occurred before the
time of compromise. Jansen and Johnson provide further PrivCount
details and proofs of security and privacy [26].

2.2.2 PrivCount Deployment. We set up a PrivCount deploy-
ment with 1 tally server, 3 share keepers, and 17 data collectors
each connecting to a distinct Tor relay (we ran 6 exit and 11 non-exit
relays). An overview of our deployment is shown in Figure 1. The
PrivCount nodes and the Tor relays were run by 3 different opera-
tors in 3 different countries: Canada, France, and the United States.
We ran the latest versions of PrivCount and PrivCount-supported
Tor5 as of the time of this writing.6

A primary goal of our measurement study was to improve upon
the accuracy of previously reported PrivCountmeasurement results,
which included measurement error of over 25% in many cases [26].
To help reduce error and obtain a more representative sample of
Tor traffic, we increased the sampling rate of traffic that is observed
by the measurement system: we ran 17 high bandwidth relays with
a combined entry weight of ∼1.2% and a combined exit weight
of ∼2.1%, compared to previous results that were collected with
7 relays providing 0.13% entry weight and 0.94% exit weight [26].
Additionally, we ensure that our exit relays will observe a represen-
tative sample of the types of traffic that Tor is used to transport by
configuring a custom exit policy that is more permissive than the
default exit policy. The policy we use throughout all of our mea-
surements7 allows traffic to ports that are commonly associated
with file sharing and blocked by the default policy.

5Amodified Tor that exports events, such as stream ended or circuit ended, to PrivCount
using the Tor control protocol.
6Both tools are available at https://github.com/privcount.
7Reject *:25,*:119,*:135-139,*:445,*:563; Accept *:*

Table 1: Action Bounds in PrivCount Deployment

Action Bound

G
en
er
al

Simultaneously open entry connections 1
Time each entry connection is open 24 Hrs.
New circuits 144
New streams 9,000

File Sharing, Other streams 80
Bytes transferred 10 MiB

H
M
M New circuits 1

New streams 31
Bytes transferred 2 MiB

2.2.3 Privacy Settings. We configured our deployment to use
the privacy budget allocation techniques set out by Jansen and
Johnson [26], but we deviated slightly in setting the privacy pa-
rameters. We use an operator-based privacy model, wherein each
operator adds enough noise across the relays they operate to fulfill
the differential privacy requirements. Therefore, only one operator
must remain honest (and their relays uncompromised) in order
for our deployment to add the full amount of noise necessary to
provide differential privacy. If there are no compromises during
our measurements, then the protections on our counters will be
greater since our final counters will contain

√
3 times as much noise

as necessary. Each operator configured the privacy parameter δ =
10−3, which provides an upper bound on DCs choosing noise value
that violates ϵ-differential privacy. For entry-based statistics, we
used ϵ = 0.3, and for exit-based statistics we relaxed this parameter
somewhat to ϵ = 1.0 in order to provide better relative accuracy for
histogram-based counters while still providing adequate privacy.

Our deployment provides privacy according to the daily action
bounds in Table 1, from which privacy sensitivities can be com-
puted. For our general measurements (Section 3), we protect one
simultaneously-open entry connection for the entire measurement
period (the default behavior of a Tor client is to maintain a single en-
try connection). We protect 144 circuits of any type per day, which
is enough to create one circuit every 10 minutes (the default circuit
lifetime) over the length of the measurement period. According
to httparchive.org, 95% of pages result in 90 or fewer connections;
therefore, we protect 9,000 web streams (to port 80 or 443) which
could be used to browse 100 pages. We protect 80 streams to ports
officially associated with file sharing traffic8 in order to allow for
twice as many connections as peers that a new BitTorrent client
typically attempts to establish [7]. Further, we observed a maxi-
mum of 74 opened connections while downloading each torrent
for our BitTorrent traffic model (see Section 5.2.2). Therefore, we
expect that 80 streams will protect at least one torrent download.
We provide the same protections for traffic on other ports that are
not categorized as web or file sharing, since past work has found
that the vast majority of non-web traffic corresponds to file sharing
traffic [8, 26, 39]. Finally, we protect 10 MiB of data transferred on
streams, which covers 95% of pages according to httparchive.org.
Note that histogram-based counters are sensitive to the change in

81214, [4661,4666], [6346,6429], 6699, [6881,6999], 45682, 51413

3

https://github.com/privcount
httparchive.org
httparchive.org


CCS ’18, October 15–19, 2018, Toronto, ON, Canada Rob Jansen, Matthew Traudt, and Nicholas Hopper

Table 2: Mean Combined Consensus Bandwidth Weights of
all Relays in PrivCount Deployment during Measurements

# Purpose of Measurement Weight*

En
tr
y 1 Total clients and circuits 1.26%

2 Circuits per client 1.13%

Ex
it

3 Total circuits and streams 2.13%
4 Total bytes on streams 2.14%
5 Streams per circuit, bytes per stream (All) 2.27%
6 Streams per circuit, bytes per stream (Web) 2.29%
7 Streams per circuit, bytes per stream (Other) 2.54%
8 Hidden Markov packet model 1.49%
9 Hidden Markov stream model 1.33%

* Weights correspond to the relay measurement position.

the number of inputs and not to the change in their values, and so
we use twice the number of inputs that can change as sensitivities
for histogram-based counters. (For example, we use 288 as the sen-
sitivity for the histogram of streams per circuit, since each circuit
would cause an increment to a histogram bin counter and a drop in
the count of one bin would raise the count in another.)

During our hidden Markov model (HMM) measurements (Sec-
tion 4), we adjust our actions bounds under the assumption that
circuits in Tor are unlinkable with one another (one of Tor’s design
goals [11]). We protect 1 circuit during the HMM measurements,
which we believe will allow for reasonable accuracy across the
HMM counters. We protect 31 streams and 2 MiB which covers
over 90% of circuits according to our general measurement results
(see Section 3).

2.3 Measurement Process
We conducted measurements in order to update and improve the
accuracy of previously-reported Tor entry and exit statistics [26]
and to learn hidden Markov models of Tor traffic. Accordingly,
we conducted our measurements in two main thrusts: a general
measurement phase and a traffic model measurement phase. During
each phase we ran several measurement periods of 24 hours each.
The purpose of each measurement and the mean combined entry or
exit consensus weight of our deployment during each measurement
is summarized in Table 2.

During our general measurement phase, we focused most mea-
surement periods on a collection of just a few statistics in order
to avoid distributing the privacy budget too widely and to ensure
we achieved the highest accuracy possible. In our earlier measure-
ments we focused on overall totals of the number of clients, cir-
cuits, streams, and bytes and their breakdown into traffic classes.
This was done to get a sense for the most important traffic classes,
the distributions of which we then further investigated by collect-
ing histogram-type counters. Histogram counters consume twice
as much privacy budget as regular counters and the count is dis-
tributed among multiple bins. Therefore, we ensure that the traffic
classes for which we collect histograms constitute a significant
portion of Tor traffic in order to maintain reasonable accuracy.

Our general measurements were conducted between 2017-10-
22 and 2017-12-01, and between 2018-01-10 and 2018-01-21. We

initially used previously-published statistics as traffic estimates
for the purposes of allocating our privacy budget [26], and then
updated these estimates in later measurement periods using results
from our earlier periods. We present in Section 3 the results from
7 general measurement periods, 2 of which were used to collect
entry-based statistics (rows 1 and 2 in Table 2) and 5 of which were
used to collect exit-based statistics (rows 3 through 7 in Table 2).

During our traffic model measurement phase, we focused on
measuring stream and packet hidden Markov traffic models. We
measure counters for each model for 14 sequential 24 hour periods.
At the end of each of these periods, the counter results are fed
back into the model in order to transform it to one that better fits
the observed traffic. Traffic model measurements were conducted
between 2018-03-19 and 2018-04-25; these measurements use only
exit-based observations (rows 8 and 9 in Table 2) because we model
individual TCP streams which can only be observed at Tor exit re-
lays (due to Tor’s multiplexing of streams over circuits). We present
in Section 4 the results from our 28 traffic model measurement
periods while also providing additional details about our model
learning techniques.

2.4 Ethical Considerations and User Safety
User safety was a primary goal during the measurement process.
Where applicable, we follow the techniques set out by recent privacy-
preserving Tor measurement research [13, 14, 26, 38], and we utilize
the state-of-the-art tool for measuring Tor in order to maintaining
user privacy and security of the measurement process [26]. Addi-
tionally, we considered the safety guidelines published by the Tor
research safety board1 and discussed our plans with several board
members before starting our measurements. Our tools and tech-
niques follow many safety guidelines, including data minimization,
collecting only what is safe to publish, taking reasonable security
precautions (each operator had exclusive access to their machines),
and limiting the granularity of data by adding noise. We believe
that the benefits from our measurements outweigh the risks to user
safety given our privacy and security guarantees and given that
the results of this work can benefit Tor experimentation across a
wide range of research areas.

3 MEASURING TRAFFIC STATISTICS
We focus our measurements on the number of clients, circuits,
streams, and bytes, as well as their distributions. PrivCount counts
the number of unique clients at the end of every 10 minute period
in order to limit the amount of time that client IP addresses are
stored in RAM. For consistency, we report all measurements as 10
minute means by dividing the daily count total by 144 (the number
of 10 minute periods during each 24 hour measurement period).

3.1 Entry Statistics
Entry relays have a limited view of Tor traffic types since they do
not directly observe stream information. However, they can observe
clients and circuits, and hence, the distribution of circuits per client.
This information is helpful in producing accurate Tor client models.

The results from our measurement of the total number of unique
clients and circuits in a 10 minute interval are shown in Table 3,
as well as the breakdown into active and inactive classes. From the
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Table 3: The 10minutemean entry statistics collected during
period 1 (see Table 2). The error associated with the addition
of privacy-preserving noise is shown with 95% confidence.

Statistic Count (×103) % of Total

Unique Clients 14.01 ± 0.513 (3.66%) —
Active 9.978 ± 0.347 (3.48%) 71.2% ± 3.60%

Inactive 3.395 ± 0.185 (5.45%) 24.2% ± 1.59%

Circuits 679.3 ± 3.64 (0.535%) —
Active 287.8 ± 2.94 (1.02 %) 42.4% ± 0.488%

Inactive 391.5 ± 2.15 (0.548%) 57.6% ± 0.441%
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Figure 2: The 10 minute mean number of circuits per client
collected during period 2 (see Table 2). The 10 minute mean
number of unique clients was 13,800 ± 153 (1.11%) with 95%
confidence. See Table 7 in Appendix A for a table of values.

entry perspective, PrivCount classifies a circuit as active if eight
or more cells were sent on it (seven cells are used to construct the
circuit), and otherwise classifies it as inactive; similarly, a client is
counted as active if it has at least one active circuit, and inactive
otherwise. We see from Table 3 that our entry relays observed
14,010 unique clients per 10 minute period on average, 71.2 percent
of which are active while 24.2 percent are inactive. Our entry relays
observed 679,300 circuits during an average 10minutes, 42.4 percent
of which are active and 57.6 percent of which are inactive. Although
initially surprising, we speculate that the large number of inactive
clients may be due to users who have Tor browser open but are not
using it. We believe that the large number of inactive circuits are
caused by Tor clients preemptively building circuits (part of Tor’s
design) that are never used.

Given that there is a significant amount of both active and inac-
tive circuits, we measured the distribution of each per client using
PrivCount histogram counters to better understand how clients
build circuits. The results are shown in Figure 2. For both types of
circuits, we observed that a single circuit per client is the most com-
mon, followed by two, three, or four circuits per client. Although
we observed that 12.7 and 9.86 percent of clients build 15 or more
active and inactive circuits, respectively, generally it is more likely
that clients build fewer circuits. These results indicate that most

Table 4: The 10 minute mean exit circuit statistics collected
during period 3 (see Table 2). The error associated with the
addition of noise is shown with 95% confidence.

Circuit Stat. Count (×103) % of Total

Total 61.34 ± 2.20 (3.59%) —

To
ta
l Active 31.78 ± 1.06 (3.35%) 51.8% ± 2.54%

Inactive 28.28 ± 1.14 (4.02%) 46.1% ± 2.48%

A
ct
iv
e Web 28.15 ± 0.93 (3.29%) 88.6% ± 4.16%

FileSharing 0.850 ± 0.02 (2.66%) 2.68% ± 0.114%
Other 4.76 ± 0.12 (2.44%) 15.0% ± 0.621%

Table 5: The 10 minute mean exit stream statistics collected
during period 3 (see Table 2). The error associated with the
addition of noise is shown with 95% confidence.

Stream Stat. Count (×103) % of Total

Total 263.5 ± 11.6 (4.39%) —

To
ta
l Web 238.4 ± 10.4 (4.38%) 90.4% ± 5.61 %

FileSharing 1.374 ± 0.066 (4.80%) 0.52% ± 0.034%
Other 19.91 ± 1.06 (5.34%) 7.56% ± 0.523%

Tor users only use a handful of circuits in an average 10 minutes,
suggesting that many Tor Browser users are only lightly browse the
web. Note that about 34 and about 47 percent of clients build zero
active and inactive circuits, respectively, in an average 10 minute
period, which again may be caused by idle users.

3.2 Exit Statistics
Unlike entry relays, exit relays are unable to observe clients but can
observe streams. Therefore, exits have access to traffic meta-data
such as the port to which a stream connects. PrivCount classifies
streams to port 80 or 443 as web, streams to common file sharing
ports as file sharing (see Footnote 8), and streams to unclassified
ports as other. We initially measure traffic from all of these classes
to better understand their significance. (We ignore PrivCount’s
interactive class, including SSH and IRC, as Jansen and Johnson
observed an insignificant amount of interactive traffic [26].)

3.2.1 Traffic Totals. Results for our exit circuit statistics are
shown in Table 4. These results show that 52.8 percent of circuits
are active while 46.1 percent are inactive, which is comparable to
our entry circuit statistics. We do observe about 10 times fewer
circuits overall on our exits than on our entries (61,340 exit circuits
compared to 679,300 entry circuits), which could be attributed to
internal Tor network circuits (e.g., directory, bandwidth test, and
onion service circuits) that do not utilize exit relays, circuits that
fail before reaching the exit, or a bug in PrivCount. We observed
that 88.6 percent of the active circuits carry web traffic, whereas
only 2.68 percent carry traffic to well-known file sharing ports and
15 percent carry traffic on other ports.

Results for our exit stream statistics are shown in Table 5. Again,
we observed that a large majority of streams (90.4 percent) carry
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Table 6: The 10 minute mean exit byte statistics collected
during period 4 (see Table 2). The error associated with the
addition of noise is shown with 95% confidence.

Byte Stat. Count (×220) % of Total

Total 25,587 ± 2 (0.01%) —

To
ta
l Inbound 23,914 ± 2 (0.01%) 93.5% ± 0.009%

Outbound 1,672 ± 0.1 (0.01%) 6.53% ± 0.001%

To
ta
l Web 18,547 ± 1 (0.01%) 72.5% ± 0.007%

FileSharing 263 ± 0.01 (0.002%) 1.03% ± 0.001%
Other 6,744 ± 0.5 (0.01%) 26.4% ± 0.003%

In
bn

d. Web 17,569 ± 1 (0.01%) 73.5% ± 0.007%
FileSharing 212 ± 0.01 (0.002%) 0.89% ± 0.001%

Other 6,106 ± 0.4 (0.01%) 25.5% ± 0.003%

O
ut
bn

d. Web 997 ± 0.03 (0.003%) 58.5% ± 0.003%
FileSharing 51 ± 0.001 (0.003%) 3.08% ± 0.001%

Other 637 ± 0.06 (0.01%) 38.1% ± 0.004%
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Figure 3: The distributions of streams per active circuit col-
lected during periods 5, 6, and 7 (see Table 2). The total num-
ber of circuits of each type is shown in the legend with 95%
confidence. See Table 8 in Appendix B for table of values.

traffic to web ports, while an insignificant number of streams (0.52
percent) carry traffic to known file sharing ports and a small number
of streams (7.56 percent) carry other traffic.

Results for our exit byte statistics are shown in Table 6. Over
the 24 hour measurement period, the relays in our PrivCount de-
ployment transferred 25 GiB of exit stream data in total. Of the
traffic, 93.5 percent was inbound, i.e., forwarded toward the circuit
initiator; the remaining 6.53 percent was outbound, i.e., forwarded
toward the Tor-external service. Of the inbound traffic, 73.5 percent
was for web ports 80 and 443, while 0.89 percent was for default
file sharing ports and 25.5 percent was for other ports. The share of
traffic that is web-related fell to just 58.5 percent of outbound traffic,
while traffic on file sharing ports rose to 3.08 percent and traffic on
other ports rose to 38.1 percent.

We conclude from our exit measurements that an unsurprisingly
large majority of circuits (88.6 percent), streams (90.4 percent), and
bytes (72.5 percent) are associated with web ports 80 and 443, while

most of the remaining traffic is associated with other ports. Past
work has found that bytes on Tor corresponding to unencrypted Bit-
Torrent were as high as 40.2 percent of observed traffic in 2008 [39]
and 24.9 percent in 2010 [8]. Additionally, more recent work found
some evidence that allowing more default file sharing ports in the
relay’s exit policy reduced the fraction of web traffic and increased
the fraction of non-web traffic [26]. However, based on our ob-
servations, we conclude that traffic to default file sharing ports
is relatively insignificant. For this reason, we focus on web and
other traffic in the remainder of our exit measurements. Past work
suggests that much of the traffic that we observed on other ports
may actually be associated with BitTorrent or other file sharing,
which would be consistent with the behavior of file sharing clients
that choose random ports upon start-up. We don’t explore this
possibility further as it is out of the scope of this paper.

3.2.2 Traffic Distributions. To get a better understanding of how
clients build streams and transfer bytes, we now explore distribu-
tions of streams-per-circuit and bytes-per-stream using PrivCount
histogram counters. We focus onweb and other traffic in this section
to ensure that we capture the most significant traffic for modeling
purposes, while ignoring traffic on default file sharing ports since
it is a relatively minor contributor to Tor traffic.

The distribution of the number of streams per active circuit is
shown in Figure 3. We observed that about 55 to 59 percent of active
circuits carry only one or two streams and about 21 to 25 percent of
circuits carry 3 to 6 streams. Another 9 to 11 percent of circuits carry
7-14 streams, and about 4-11 percent carry 15 or more streams. We
were somewhat surprised that there are so few streams per circuit,
given that 30 percent of popular website front pages result in 11 to
20 TCP connections and more than 45 percent of front pages result
in more than 20 TCP connections according to httparchive.org. This
suggests that Tor Browser users may experience the web differently
than non-Tor users.

The distribution of the number of bytes per stream is shown
in Figure 4, with inbound bytes shown in Figure 4a and outbound
bytes shown in Figure 4b. We observed that about 70 to 80 percent
of streams receive less than 16 KiB inbound, while about 75 to 85
percent of streams send less than 1 KiB outbound. We also observed
a significant difference between web and other traffic: it is about 15
and 30 percent more likely that other streams will carry less than
2 KiB inbound and less than 512 bytes outbound, respectively, com-
pared to web streams. We also observed that the highest percentage
of streams sendingmore than 4 KiB outbound is 6.84 percent of other
streams; however, the distribution of bytes per stream generally
skews higher for web streams than for other streams.

4 LEARNING TRAFFIC MODELS
To model the behavior of Tor clients without explicit reference to
application protocols, we model both the creation of streams and
the traffic on a stream (i.e., packets) using hidden Markov models
and an iterative PrivCount measurement process.

4.1 Hidden Markov Modeling
Formally speaking, a hidden Markov model (HMM) is a discrete
stochastic process that maintains a state s among a state space S.
At each step i in the process, an observation o is drawn from some
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some observation space O according to the probability distribution
Θ(o |s) conditioned (only) on the current state si , and a next state is
drawn from S according to the transition distribution P(s ′ |si ). The
first state s0 is chosen according to the initial distribution π (s). In
our case, the states can be thought of as modeling the underlying
state of the application, and the observations correspond to the
arrival of streams, or packets on a stream. Since application state is
opaque and traffic can be encrypted, the only properties that a relay
can reliably observe are the direction (client-bound or server-bound
packet) or command (open or close stream) and the time elapsed
since the previous event.

Given the parameters of a stream arrival HMM, we can sample
a circuit by choosing s0 ← πstr eam (s), then repeatedly choosing
oi ← Θstr eam (o |si ) (a delay between stream arrivals) and si+1 ←
Pstr eam (s ′ |si ) (a next application state) until a “close circuit” event
occurs. Likewise, we can sample an application stream by choosing
s0 ← πpacket (s), then repeatedly choosing oi ← Θpacket (o |si ),
and si+1 ← Ppacket (s ′ |si ) until a “close” event occurs. So produc-
ing an empirical model of Tor streams requires training a hidden
Markov model to learn the parameters that best approximate real
Tor streams. In general, there are several approaches to training
HMMs from a set of sequences sampled from some HMM; we
modified the Expectation-Maximization (EM) approach, in which
an initial estimate of the parameters is used to find the sequence
of states most likely to yield a sequence of observations (accom-
plished with the Viterbi Algorithm [15]). These states are then
used to update the parameters of the HMM: each state observation
distribution’s parameters are chosen to maximize the probability
of the observations assigned to the state, and each state’s transi-
tion probabilities are chosen according to the observed frequencies.
This process is then repeated, with successive parameter estimates
yielding improved models of the underlying process.

To adapt the algorithm described above to the case of privately
measuring Tor traffic, we slightly modified both the process of
producing an initial estimate and the iteration process, as explained
in the following subsections.

4.2 Bootstrapping the HMM
Training an HMM to model a process requires making some ini-
tial assumptions about the form of the model, e.g. the number of
states, the connectivity between states, and the form of observation
distributions. To explore reasonable choices for these assumptions,
we performed several experiments using real network trace data
from AS 2500, a research ISP that advertises 10 IPv4 prefixes with
a total of 330,240 addresses and transfers data for real users from
several academic institutions and research organizations. Because
AS 2500 serves real users, the network traces that are captured
are anonymized before being released as part of a network mea-
surement project [50, 52]. The 24-hour anonymized network trace
that we used included 147,962 complete TCP sessions, which we
converted to “packet traces” by ignoring empty (acknowledgement-
only) and duplicated packets, and treating all data-carrying packets
as observations. Acknowledgements and duplicate packets were fil-
tered because we are modeling application level behavior; the TCP
stack and network emulation in Shadow will naturally (re-)produce
these packets given an application stream.

4.2.1 Stream Arrivals. To obtain an initial model of stream ar-
rivals, we hypothesized that hosts would follow a common two-
state model in which one state originates streams according to an
exponential distribution (representing, e.g., the sequential open-
ing of several resources within a web page) and the other state
originates streams according to a heavy-tailed distribution (encap-
sulating both the delay after requesting an index page and the “think
time” between user page loads). Using a log-normal distribution to
fit the heavy-tailed delays and adding a third state representing the
closing of a circuit, we found this model a good fit for the network
trace where the probability of transitioning between non-closed
states was roughly 25%, the exponential process had a rate of ap-
proximately 10/second, and the log-normal process had a median
delay of approximately 3 seconds.

4.2.2 Traffic. To determine the form of inter-packet delay distri-
butions, we fit networks to a small subsample of these flows (1000)

7



CCS ’18, October 15–19, 2018, Toronto, ON, Canada Rob Jansen, Matthew Traudt, and Nicholas Hopper

Number of Transitions Nt:
Nt

s→a, N
t
s→d,

Nt
a→a, N

t
a→d, N

t
a→e,

Nt
d→a, N

t
d→d, N

t
d→e

Number of Emissions Ne:
Ne

d→$, N
e
a→$

Stream Arrival Statistics A:
Aexp

a→$  : inter-stream delay
Alognorm1

d→$        : log(inter-stream delay)
Alognorm2

d→$        : log(inter-stream delay)2

Step 2: observe Tor traffic, run
Viterbi on stream sequences,

use PrivCount to count:

Step 1: initiate model M Step 3: update model M→M' 
using counts and inertia ϵ:

Transition Probabilities P't:
P'ts→a = ϵ * Pt

s→a  + (1-ϵ) * Nt
s→a  / ⅀Nt

s→*

P'ts→d = ϵ * Pt
s→d  + (1-ϵ) * Nt

s→d / ⅀Nt
s→*

P'ta→a = ϵ * Pt
a→a  + (1-ϵ) * Nt

a→a / ⅀Nt
a→*

P'ta→d = ϵ * Pt
a→d  + (1-ϵ) * Nt

a→d / ⅀Nt
a→*

P'ta→e = ϵ * Pt
a→e  + (1-ϵ) * Nt

a→e / ⅀Nt
a→*

P'td→a = ϵ * Pt
d→a  + (1-ϵ) * Nt

d→a / ⅀Nt
d→*

P'td→d = ϵ * Pt
d→d  + (1-ϵ) * Nt

d→d / ⅀Nt
d→*

P'td→e = ϵ * Pt
d→e  + (1-ϵ) * Nt

d→e / ⅀Nt
d→*

New
Stream

$

States: {s,a,d,e} Observations: {$}

Start
s

Active
a

End
e

Dwell
d

transition 
probability Pt:

emission 
probability Pe:

Pe
d→$stream 

arrival model: LogNorm(μd→$,σd→$)
Exp(λa→$)

Pe
a→$

Pt
d→e

Pt
a→e

Pt
d→a

Pt
d→d

Pt
a→a

Pt
s→a

Pt
s→d

Pt
a→d

Emission Probabilities P'e:
P'ea→$ = ϵ * Pe

a→$ + (1-ϵ) * Ne
a→$ / ⅀Ne

a→*

P'ed→$ = ϵ * Pe
d→$ + (1-ϵ) * Ne

d→$ / ⅀Ne
d→*

Stream Arrival Model Parameters:
λ'a→$ = 1 / ϵ * 1 / λa→$ + (1-ϵ) * 1 / Ne

a→$ / A
exp
a→$

μ'd→$ = ϵ * μd→$ + (1-ϵ) * Alognorm1
d→$        / N

e
d→$

σ'd→$ = ϵ * σd→$ + (1-ϵ) * sqrt(Alognorm2
d→$         / N

e
d→$ - (A

lognorm1
d→$         / N

e
d→$)

2)

Figure 5: Overview of HMMmeasurement and update process using PrivCount and exemplified with our stream model.

using several different distributions. Through trial and error we
found that log-normal distributions could reasonably model the
delays in our trace.

To determine the architecture of the HMM (number of states and
connectivity), we hypothesized that the flows could be explained
by a small set of independent protocols, so we clustered the flows
using an approach due to Smyth [47]. Briefly, we train an HMM to
match each flow and cluster flows according to the probability their
HMM assigns to other flows. We then retrain an HMM against all of
the flows in the cluster. Using the “bayesian information criterion”
to balance the tradeoff between the size of the resulting model and
the fit to the flows, we finally produced an initial HMM with 26
states, partitioned into 3 clusters.

4.3 Tor Measurement
Once we have an initial model, typical EM training will repeatedly
update the parameters using a single set of sequences. However
in our case, we could not store the packet or stream sequences
observed at our relays while preserving user privacy. Thus we mod-
ified the iterative update process to work with PrivCount as follows.

Figure 5 shows an overview of the HMM and its associated pa-
rameters, as well as the process that we used to iteratively adjust the
model according to traffic observed at our Tor relays. The overview
in Figure 5 uses our stream model as an example, but the process
works similarly with our packet model. In each measurement pe-
riod, we first initialized relays with the current HMM parameters
(step 1). During the period, for each completed observation (packet
or stream sequence), we used the Viterbi algorithm to compute the
sequence of states that made the observation most likely. Using this
state sequence, we updated sums for the number of observations
of each state, the number of transitions between each pair of states,
and summary statistics for the observations for each state (step 2).

In the case of the stream model, this involved the sum of the delays
observed in the exponential state and the sum of the log delays and
squared log delays observed in the log-normal state. In the case
of the packet model, we recorded sums for the number of client-
and server-bound packets observed in each state, the log delay of
packets observed in each state, and the squared log delay of packets
observed in each state (combined with the state counts, these can
be used to estimate the parameters of a log-normal distribution). At
the end of a period, the aggregated counters were used to compute
new parameters for the HMM (step 3): the new parameters were
combined with the previous parameters using a weighted average
of 0.5 to give the model “inertia”. These new parameters were then
used in the next measurement period.

4.4 Results
To reduce the privacy risks to users, we ran two separate measure-
ment experiments, first performing a series of 14 iterations with the
packet model, and then performing a series of 14 iterations with the
stream model. Each iteration involved a 24-hour measurement pe-
riod. To assess the measurement results, we were interested in two
main questions: would the parameters converge to stable values
over several iterations? and, would traffic patterns remain stable
enough that successive iterations produced improved models?

4.4.1 Parameter Convergence. To assess the convergence of the
models, we tracked the total difference in parameters between
successive measurements for each iteration, that is, if the transition
probability between states s and t in iteration i was p(i)st , then we
computed

∑
s,t |p

(i+1)
st − p(i)st | for each iteration i . Figure 6 shows

the result of these differences for both the stream arrival model
and the packet model. Both subplots in Figure 6a show that the
change in parameters in the final model are significantly lower than
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Figure 6: Results from our Hidden Markov Model parameter convergence and model improvement analysis.

the changes in the first model, and that the differences generally
decreased over measurement iterations. Note that we observed
some slight oscillations between iterations, which we believe is due
to PrivCount noise and possibly to some anomalous traffic that we
observed during the Tor measurements.

4.4.2 Model Improvement. To determine whether successive
iterations resulted in improved models, we conducted two separate
experiments using all iterations of the models from our stream or
packet model measurements, M(0),M(1), . . . ,M(14). In the stream
experiment, our relay tracked stream creation events for each cir-
cuit in a 24-hour period, and for each completed circuit, the relay
used the Viterbi algorithm to compute the most likely sequence of
states under each modelM(i) and the log likelihood of the observed
sequence, ℓ(i). The relay then compared each pair ℓ(i), ℓ(j) to de-
termine which model gave the sequence a higher likelihood, and
added this result to a counter. Finally, after 24 hours, these pairwise
counters were taken as the output of the experiment. Intuitively, a
better model for a process should assign higher likelihood to the
output of the process more often; so if the models improve over
iterations we should expect to see more circuits with a higher like-
lihood underM(i) thanM(j) when i > j . This process was repeated
with the packet model for each stream in the second experiment.

The results are shown in Figure 6. For both the stream arrival
model (Figure 6b) and the packet model (Figure 6c), the later models
are generally superior fits to new data than the earliest models, but
we can also see that potentially anomalous measurement periods
can cause some iterations to produce inferior models that then
continue to improve in following iterations. Using the results of
these measurements, we chose the stream and packet models that
had the best performance as the basis for our Shadow experiments
in the following sections (the stream and packet models at index 9).

4.4.3 Conclusions. Both measurement experiments show that a
single day of Tor traffic can produce patterns that are quite anoma-
lous compared to other 24-hour periods. An interesting subject for
further research would be to expand these measurements over a
longer period to reduce the effect of short-term variability in traffic.
Additionally, our experiments used an “inertia” value of 0.5, mean-
ing that our experiments gave both parameter sets equal weight

in each iteration. Using a larger “inertia” value (greater than 0.5)
when averaging the previous model’s parameters with the latest
estimates would give higher weight to the previous model’s param-
eters and lower weight to the parameters computed from the new
measurement. We expect that this may dampen the effect short-
term variability in traffic and could lead the model to converge
more quickly, but more work is needed to explore these issues.

5 MODELING TOR TRAFFIC
In this section, we describe modeling semantics and a tool that we
designed to generate arbitrarily complex network traffic patterns.
We then construct models of traffic that it can be used to generate.

5.1 Traffic Generation
We designed a set of simple traffic modeling semantics for specify-
ing a set of actions as well as parameters for executing those actions.
By using these semantics and a tool that understands them, we will
be able to generate traffic patterns for most types of common appli-
cations without the need for implementing, building, installing, or
configuring software components for each.

5.1.1 Modeling Semantics. We use a connected, directed action-
dependency graph to specify an application behavior model in our
framework. Each vertex in the graph corresponds to one of a small
set of actions that are used to model behaviors, and each edge in the
graph represents a dependency between the connected actions (i.e.,
the sequence in which the actions should be performed). Vertices
may contain required or optional attributes that act as action input
parameters and allow for customization of actions, and edges may
contain attributes to adjust the meaning of the dependencies.

Valid actions in the graph include start, transfer, model, pause,
and end. Only the start action is required: the graph is walked
by starting at the start action and following each outgoing edge
to reach the next action that should be performed. For vertices
with multiple outgoing edges, the walk forks and multiple paths of
execution are created and followed in parallel. This default “forking”
behavior can be modified by specifying a special weight attribute
on the edges. Only one of all outgoing edges that define a weight
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Figure 7: A simplified TGen model graph capturing the be-
havior of Tor’s performance benchmarking process.

will be followed, where the choice is weighted according to the sum
and distribution of edge weight values.

The primary means of performing a data transfer is through
transfer and model actions. Transfer parameters include the
size and type of transfer to perform. Model parameters include file
paths to stream and packet hidden Markov models which are also
represented as graphs: vertices represent states and observations
and edges represent transitions and emissions (see Section 5.2.3 for
more details). Pauses in the walk, between transfers or otherwise,
can be specified in a pause action, and walk termination conditions
are specified in an end action.

5.1.2 Traffic Generation with TGen. We developed a traffic gen-
erator application called “TGen” that uses the semantics described
above to generate real network traffic. TGen parses standard graph
files to extract the actions, parameters, and edge ordering. A TGen
instance connects to another TGen instance and transfers data ac-
cording to the parsed parameters. Various transport, transfer, and
timing information is recorded during and after the transfer pro-
cess so that the performance of each transfer can be later analyzed.
TGen contains 6329 lines of C code and is available as open source
software as part of the Shadow simulation framework [24].

TGen and our simple but powerful semantics can be used to
model a wide range of behaviors. Figure 7 shows an example of
a simple TGen model emulating the Tor network benchmarking
process.9 The simple model shows that a client downloads one of
three differently-sized files (50 KiB, 1 MiB, and 5 MiB) every five
minutes from a server, where each transfer has a weighted chance
of being chosen after each five minute pause completes. Because of
the modeling flexibility, The Tor Project now uses TGen to collect
performance benchmarks.

5.2 Traffic Models
Tor by design fundamentally limits the ability of network partici-
pants to learn about individual users in order to protect privacy. We
describe models that produce traffic either according to some gener-
ally known traffic classes and supposed application usage in order
to limit privacy risks (Section 5.2.1 and Section 5.2.2) or based on our
privacy-preserving PrivCount measurement results (Section 5.2.3).

5.2.1 Single File Models. Single file user models have been used
almost exclusively in the Tor performance literature over the past
decade. It consists of a “web” client type that downloads 320 KiB files
(previously the average size of a web page) and pauses in between

9https://metrics.torproject.org/torperf.html

ALGORITHM 1: Pseudocode for modeling n web sessions from over 470k
pages and over 51.5m requests from HTTP Archive, simplified to show only
GET request sizes (POSTs and the number of domains and TCP connections
are similarly handled in our model).

Require: D ← HTTP Archive Database, n ← num sessions
1: S ← initialize n new sessions
2: P 1 ← select pages from D sort by page.firstRequest.responseSize
3: Bp

1 ← split(P 1, n) {split P 1 into n equally sized bins}
4: for i from 0 to n-1 do
5: sz ← median(page.firstRequest.responseSize for page in Bp

1

i )
6: Si .transfers.append(sz , first←True)
7: end for
8: P 2 ← select pages from D sort by page.totalSize
9: Bp

2 ← split(P 2, n) {split P 2 into n equally sized bins}
10: for i from 0 to n-1 do
11: m ← median(|page.requests| for page in Bp

2

i )

12: R ← select requests from D where request.page is in Bp
2

i sort
by request.responseSize

13: Br ← split(R,m) {split R intom equally sized bins}
14: for j from 0 tom-1 do
15: sz ← median(request.responseSize for request in Brj )
16: Si .transfers.append(sz , first←False)
17: end for
18: end for

repeated downloads (to mimic user “think time”), and a “bulk” client
type that repeatedly downloads 5 MiB files without pausing. These
models are simple to understand and implement, and the number
of clients of each type can be adjusted to produce different traffic
distributions in a Tor simulation. However, these models may not
capture Tor network conditions well. Single file models are trivial
to reproduce in TGen, and we compare the efficacy of a network
that uses them in Section 6.

5.2.2 Protocol Models. In this section, we describe alternative
“web” and “bulk” models that we designed based on traffic traces
and that we believe are more realistic than the single file models.

Alexa Web User Model. We design a web user model that gen-
erates traffic that is similar to real Internet website traffic. To do
this we utilize data from HTTP Archive,10 an online service that
regularly fetches pages in the Alexa top 1 million sites list.11 HTTP
archive provides meta-data about each page load, which we use to
build our model.

HTTP archive provides a database of pages and requests, where
each page contains a single first request (HTML content), and many
second requests (embedded objects). Each request is associated with
a request size, a response size, and a domain name. We use the HTTP
archive snapshot from 2017-10-16 which contains over 470 thou-
sand pages and over 51.5 million requests in total. While we could
produce a TGen graph that reproduces the transfer sizes of all of
these pages and their requests, such a model would not be mem-
ory efficient (the full HTTP archive database consumes 52 GiB of
persistent storage space). Instead, we model the page loads as a

10http://httparchive.org
11http://www.alexa.com/topsites
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Figure 8: Total session size distribution in our general user models compared to actual session sizes in the full datasets.

smaller number multiple-transfer sessions that maintain the overall
distributions of page, request, and response sizes.

Ourmodeling approach is detailed in Algorithm 1. To createn ses-
sions, we first get a list of all of the first requests on pages, sorted by
their response sizes. We then split this list into n equally sized bins,
and take the median of the response sizes in each bin, and use them
as the first transfer sizes in our sessions (see lines 2-7). Thismedian-
binning strategy ensures that the distribution of our first request
sizes best fits the distribution of request sizes in the original dataset.
We use a similar median-binning approach to compute the number
of requests for each session in lines 8-11, and their sizes in lines 12-
15. We show the distribution of the modeled total session sizes com-
pared to actual total page sizes in Figure 8a; a Kolmogorov–Smirnov
test of the distributions yields a result of 0.045 (p < 0.05) which
indicates that our model approximates the dataset reasonably well.

BitTorrent Bulk User Model. We also design a BitTorrent user
model that generates traffic similar to real-world BitTorrent traf-
fic. We use the same general strategy as for the web user model.
We were unable to find a dataset containing BitTorrent transfer
information, so we generated our own.

We sourced 30 torrent files from a wide variety of open source
Linux distributions and free software websites. Each torrent was
loaded one at a time into a version of the popular BitTorrent client
rTorrent12 that had been modified to export useful events regard-
ing connections and incoming/outgoing pieces. Each torrent was
allowed to completely finish downloading before the next started.
The torrents were downloaded while throttled to 25, 50, 75, and
100 Mbit/s for a total of 4 samples per torrent. We performed this
collection process on three different machines located in the United
Kingdom, California, and Washington DC. The machines had sym-
metric Internet connections limited to 10 Gbit/s, 1 Gbit/s, and 50
Mbit/s respectively. We successfully collected 309 samples of BitTor-
rent traffic in total during 2017-12 and 2018-01 with a wide range of
total torrent sizes, BitTorrent swarm sizes, and effective maximum
bandwidth rates.

To extract n representative sessions from this data, we used a
process similar to Algorithm 1. We start by sorting the sessions by

12https://rakshasa.github.io/rtorrent

the number of connections that they made or received (like line 2).
The sessions are then binned (like line 3) and the median number
of connections in each bin becomes the number used for one of the
n representative sessions (like lines 4-7).

From here, each of the n sessions has been assigned a number of
connections, but not an amount to to send, an amount to receive,
or a connection start time. To determine how much each of session
ni ’s connections should send, we list all connections made in the
sessions in the ith bin, sort them by amount sent, and perform
median-binning. The analogous is done to determine an amount
to receive. We use median-binning to calculate a start time, but we
shuffle the resulting times such that the connection that sends and
receives the least does not also start the soonest.

The resulting distribution ofmodeled session sizes, where session
size is the sum of the bytes received across all connections, is plotted
against actual session sizes in Figure 8b; a Kolmogorov–Smirnov
test of the distributions yields a result of 0.22 (p < 0.005) which
indicates that our model approximates the dataset reasonably well.

5.2.3 PrivCount Model. Our PrivCount model is constructed
using a combination of the measurement results that we presented
in Section 3 and Section 4. Most importantly, each client generates
streams and packets in the PrivCount model according to the HMMs
from Section 4. We specify the HMM graph files as parameters for a
model action type in the TGen action graph (see Section 5.1.1). For
each such model action, we traverse the states in the stream HMM
graph to generate stream observations and we generate packet
schedules for each stream using the packet HMM graph. Delays
between streams and packets are sampled from the probability
distributions associated with the emission of each observation (pa-
rameters for which are encoded in the respective HMM graphs).
The traffic generation process continues until we reach the close
state in the stream HMM; once all of the generated stream transfers
finish, the model action is complete and TGen moves on to the next
action in its action graph.

We use our measurements from Section 3 to understand how
many clients and circuits to create. In particular, we create a num-
ber of active clients according to our entry measurements from
Table 3 while ignoring inactive clients. We scale our measurements
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according to the combined bandwidth fraction of the relays in our
PrivCount deployment during the measurement (see Table 2) and
the fraction of the Tor network that we are attempting to simulate.
For each active client, we sample a number of active circuits c from
the circuits-per-client distribution in Figure 2. We create c model ac-
tions in each client TGen graph, and use Tor’s IsolateSOCKSAuth
configuration option and a unique SOCKS username and password
combination for each model action when creating the connections
to Tor SOCKS proxy to ensure that a unique circuit is used for
streams generated by each action (this is same technique that is
used by Tor Browser Bundle to force streams onto different circuits).
Each client starts each of its c model actions at t ← 600

c seconds
from the previous, such that the traffic generation process for each
model action starts at a time uniformly distributed throughout each
10 minute interval.

6 EVALUATION
In the previous sections, we measured Tor and described traffic
models that can be used to generate traffic in private Tor networks.
In this section, we evaluate the fidelity of private Tor networks that
generate traffic according to our models.

6.1 Experimental Setup
We use Shadow [24] to evaluate and compare our traffic models.
Shadow is a network simulator that runs real applications, including
Tor and TGen (described in Section 5.1.2). Shadow uses a network
graph to model Internet paths, including latency and bandwidth
rates, and runs a private Tor network over this Internet model. We
created an updated Shadow network model since the most recent
Shadow network graph available was created in 2013 [23].

6.1.1 Network Model. We are interested in modeling network
latency between all pairs of nodes that run in Shadow. To ensure
that our model is general enough to be useful for a variety of
experiments and for future work, we create a city-based latency
map using Internet ping measurements.

We use RIPE Atlas13 to perform and collect ping measurements.
Atlas provides vantage points called probes from which measure-
ments can be scheduled and collected. We first measured all 8,428
available Atlas probes and found that 2,993 of them responded to
ping. To reduce the overall number of required measurements, we
use only one representative probe per city (as assigned by Max-
mind geoip14) which had the highest uptime of those probes that
are assigned to the same city. This paring process left us with 1,813
probes, among all pairs of which we scheduled 3 ping measure-
ments in Atlas. Of the n ·(n−1)

2 = 1, 642, 578 total pairs of probes, we
obtained at least one successful latency estimate for 1,245,948 (76%)
of the pairs and no successful estimate for 396,630 (24%) of the pairs.

Every vertex in our network graph represents one of the cities
for which we obtained a successful ping measurement; each such
vertex is assigned an IP address, city code, and country code, as
well as city upstream and downstream bandwidth rates that we
parsed from speedtest.15 For every pair of vertices (i.e., cities), we
created an edge in our graph and assigned it a latency according to
13https://atlas.ripe.net
14https://www.maxmind.com
15http://www.speedtest.net
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Figure 9: Shadow and TorPerf performance benchmarks.

the mean of the successful pings between the pair; if no successful
measurement was available, then we take the mean of all pings be-
tween the two countries in which the cities were located. Similarly,
we used the mean bandwidth rates for the country in which the city
was located for any city for which speedtest did not provide city
bandwidth rates. Using this approach, we always favor the most
specific data that is available.

We were unable to find a city-based packet loss data set. Instead,
we assign each edge e a fractional packet loss rate pe that increases
linearly with the latency le assigned to the edge, such that pe =
0.015 · le/300. This loss model has been shown to yield reasonable
results when running Tor in Shadow [30].

6.1.2 Tor Host Model. We created three Tor host models for
Shadow, one for each of the traffic models from Section 5.2. We used
the standard network generation tools provided with Shadow in
order to generate the single filemodel. This network was configured
with 2000 Tor relays, 5000 TGen servers, and 60,000 TGen clients. Of
the TGen clients, 57,327 were configured to run the single file “web”
model, 1773 were configured to run the single file “bulk” model, and
900 were configured to emulate the TorPerf process (see Figure 7).
The resulting network configuration yields similar performance as
TorPerf benchmarks from the public network as shown in Figure 9.

In our protocol model we replace the “web” and “bulk” single
file TGen models from above with the more complex HTTP and
BitTorrent models described in Section 5.2.2. We also reduce the
number of clients: we create 4.8 times fewer “web” clients (i.e.,
11,943) since the median session size in our new model is 4.8 times
greater than the single file model (1.5 MiB vs. 320 KiB), and we
create half as many “bulk” clients since we expect the new multi-
stream BitTorrent model to achieve twice the throughput of the
single file model (due to Tor’s flow control, i.e., circuit and stream
windows [2]).

In our PrivCount model, we replace the “web” and “bulk” single
file TGen models with HMM clients that follow the traffic gener-
ation process as described in Section 5.2.3. We run half as many
active HMM clients as scaling our measurements in Table 3 dictates
due to resource constraints (each Tor client consumes ∼10-20 MiB
of RAM): we configure 128,519 TGen clients that each generate
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Figure 10: Wasserstein distance (a.k.a., earth mover’s distance) between PrivCount measurements as a percentage of ground
truth, where a (G) indicates a measurement taken from an entry relay position and an (E) indicates a measurement taken
from an exit relay position. (10a) The cumulative percentage distance across all nine single counters was 703% for the single
file model, 1001% for the protocol model, and 408% for the PrivCount model. (10b) The cumulative percentage distance across
all six histogram counters was 150% for the single file model, 56% for the protocol model, and 95% for the PrivCount model.

twice as much traffic (and twice as many circuits) as explained in
in Section 5.2.3 using our HMM traffic generation process.

6.2 Results
We run our Tor networks in Shadow using each of the three client
models outlined above, and using a version of Tor that exports
PrivCount events that each relay logs to a file throughout the simu-
lation. Following each experiment, we configure a local PrivCount
deployment that consumes the logged events from our files rather
than from relays’ control ports as is PrivCount’s standard mode of
operation. This process allows us to directly compare our measure-
ment results from the public Tor network (i.e., ground truth) with
those from our Shadow simulations across a range of statistics.

6.2.1 Distance. We compare the measurement results from each
Shadow experiment to the ground truth Tor measurements using
Wasserstein distance (a.k.a., earth mover’s distance) as a metric.
Under this metric, the computed distance represents the minimum
amount of “dirt” that needs to be moved for each measurement in
order to yield an identical result to the ground truth measurement.
Each unit has equal weight for single counters, while for histograms
the distance for each bin i with a corresponding bin range [Li ,Ri )
is weighted as (Li + Ri ) /2.

We present the Wasserstein distances for each Shadow experi-
ment as percentages of the total ground truth values in Figure 10.
Figure 10a shows that our PrivCount model is closer to Tor for all
single-type counters that we measured. The cumulative percentage
distance across all nine single counters was 703% for the single file
model, 1001% for the protocol model, and 408% for the PrivCount
model. The highest distance values for the single file and protocol
models is attributed to the network producing significantly fewer
inactive clients, circuits of all types, and outbound bytes, and the
protocol model produced 343% more streams than indicated by our
ground truth measurements. The PrivCount model improves upon

these by incorporating our measurement results into the model. Fig-
ure 10b shows that the protocol and PrivCount models are similarly
close to Tor for histogram-type counters: the cumulative percentage
distance across all six histogram counters was 150% for the single
file model, 56% for the protocol model, and 95% for the PrivCount
model. We find that the single file model produces streams with
significantly more inbound bytes than we measured in Tor (and the
constant file sizes skew the distribution), while the protocol model
creates more streams per circuit than we observed in Tor. We find
that the largest distance in the PrivCount model was due to the
creation of too many inactive circuits and too many outbound bytes
per stream. We believe that the larger number of inactive circuits
was a result of more clients building more preemptive circuits than
in the other models; the PrivCount model used about 10 times the
number of clients as the protocol model, and about twice as many
clients as the single file model, and the distance associated with
inactive clients scales similarly. The larger number of outbound
bytes per stream is an artifact of our TGen HMM implementation:
the server-to-client packet delay sequence is generated on the client
side and sent to the server upon stream creation, yielding more
client-to-server bytes than usual. Future work should consider an
implementation that removes this artifact.

6.2.2 Performance. Although the PrivCount model produces
a network that is “closer” to Tor, we measured the performance
of our HMM generator process to better understand its overhead.
We used our stream model to generate 439,344 “circuits” (here,
each “circuit” corresponds to a sequence of inter-stream delays
in our experiments), and we used our packet model to generate
4,980,038 packet sequences (i.e., one inter-packet delay sequence for
each stream in each circuit). We measured the time to generate each
sequence, the total time to generate all packets and streams for each
circuit, and the generate event counts. Note that we measure the
time to generate the inter-packet and inter-stream delay sequences,

13



CCS ’18, October 15–19, 2018, Toronto, ON, Canada Rob Jansen, Matthew Traudt, and Nicholas Hopper

100 101 102 103 104 105

Generated Event Counts

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

Streams Per Circuit

Packets Per Stream

Packets Per Circuit

(a) Number of Generated HMM Events

10−2 10−1 100 101 102 103

Generation Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n

Streams Per Circuit

Packets Per Stream

Packets Per Circuit

Total Per Circuit

(b) Time to Generate HMM Events

Figure 11: Performance overhead of our HMM generator processes.

but not the time to create packets and streams or transfer traffic.
The performance results are shown in Figure 11.

Our generator continues to generate streams for a circuit un-
til the stream model emits an end event, and it generates packets
for a stream until the packet model emits an end event. The num-
ber and distribution of such events that were generated in our
performance experiment are shown in Figure 11a. Our generator
generated fewer than 165 streams per circuit across all generated
circuits. We found that our generator did not generate more than
7,211 packets (∼10.5 MiB) for a single stream, and did not generate
more than 35,568 packets (51.9 MiB) for all streams in a circuit.

Figure 11b shows the time to generate HMM events. We found
that the maximum time to generate all of the streams in a circuit,
for all circuits, was 4 milliseconds. We also found that the maximum
time to generate a packet sequence for each stream was 52 millisec-
onds, and the maximum time to generate all packet sequences for
all streams in the same circuit was 274 milliseconds. Similarly, the
maximum total generator time for all streams and packets in a cir-
cuit was 278 milliseconds. We believe that the generator times are
negligible when compared to the time to send and receive network
traffic (which happens as a result of the generated events).

Finally, we found that the PrivCount model requires more com-
putational andmemory resources to run in Shadow compared to the
single file and protocol models. We believe this is because the Priv-
Count model contains more clients than the other models. Given
our results, we suspect that inactive clients can be excluded to save
resources without significant detrimental effect. An area of further
research would be to explore how running fewer but busier clients
affects experimental accuracy, and how changes in experimental
accuracy affects research conclusions.

7 RELATEDWORK
This work focuses on the measuring and modeling of Tor traffic.

7.1 Measuring Tor
A measurement process is necessary for distributed system opera-
tors that wish to understand the usage and performance of their

system. A simple approach taken in early Tor measurement studies
from McCoy et al. [39] and Chaabane et al. [8] was to directly log
traffic and later analyze it to extract interesting statistics. Because
these studies recorded and manually analyzed sensitive data (in-
cluding packet headers and some fraction of packet payloads), they
were met with strong criticism from the privacy community. Fol-
lowing these studies, Soghoian raised ethical and legal questions
and called for better standards for safer Tor research [49].

Loesing provided guidelines for safely measuring anonymity
networks and conducted a privacy-preserving Tor measurement
study of the number of connecting clients and amount of exit traffic
by port [37]. The privacy techniques include simple rounding and
per-relay aggregation over time; secure aggregation across relays
is not considered and there is no rigorous analysis of privacy guar-
antees, both of which our measurement study benefits from due to
our use of PrivCount [26].

Despite Soghoian’s and Loesing’s work, a traffic logging ap-
proach was still later used by Ling et al. [35] to measure and classify
malicious traffic on Tor using the snort intrusion detection system.
More recently, Owen and Savage collected a list of unique hidden
service addresses by running a large number of hidden service di-
rectories and recording hidden service lookups [42]. These direct
logging studies are illuminating but are ethically questionable since
they provide no privacy protections.

There has been considerable advances in recent years in privacy-
preserving Tor measurement techniques and tools. Elahi et al. first
designed secret-sharing and distributed decryption variants of
PrivEx, a traffic statistics measurement system based on distributed
differential privacy and secure multiparty computation [13]. Jansen
and Johnson extended the secret-sharing variant of PrivEx to de-
sign and develop PrivCount, which they used to measure a wide
range of Tor traffic statistics [26]. Jansen et al. extended PrivCount
to support the classification of circuits and webpages, and used it
to measure the popularity of hidden services [28]. Our work also
extends PrivCount to support the measurement and processing of
hidden markov traffic models. Finally, Mani and Sherr developed
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Historϵ , a distributed measurement system that is robust to manipu-
lation by malicious data collectors [38], while Fenske et al. designed
Private Set-union Cardinality, a cryptographic protocol for aggre-
gating the count of unique items across data collectors [14].

7.2 Modeling Tor
Early Tor client models were created for use in single-purpose
discrete-event Tor simulators that explore the performance benefits
of Tor incentive schemes [25, 41]. Variants of these client models
that utilized some of the Tor-specific statistics measured by McCoy
et al. [39] were later adopted into higher-fidelity Tor experimenta-
tion tools [6, 22, 24]. These early models, which correspond to our
single file models from Section 5.2.1, became somewhat of an unof-
ficial standard in Tor performance research because: (i) they were
based on actual Tor measurements; and (ii) it was difficult to safely
and ethically collect new Tor measurements that could be used in
new models. We seek to better understand the accuracy and fidelity
of these previous models while also using recent privacy-preserving
measurement tools to produce newer, data-driven models that are
more representative of the current Tor network.

Models of Tor network structure, including Internet paths, la-
tency, packet loss rates, and relay and client types and distribution,
were first rigorously set out by Jansen et al. [22]. The network
topologies of these initial models were independently improved by
Wacek et al. [51], and later integrated and validated for Shadow [24]
by Jansen et al. [23]. We produce the most recent model of network
topology using real Internet measurements from RIPE Atlas and
the most recent bandwidth data available from speedtest.net. We
believe that our topology yields the best trade-off between fidelity,
measurement overhead, and processing delays during simulation
of any previous model.

8 CONCLUSION
In this paper, we conducted a significant general measurement
study of Tor, measuring clients, circuits, streams, bytes, and their
distributions for modeling purposes. Additionally, we collected
measurements that we used to dynamically learn hidden Markov
stream arrival and packet models. Using our measurements, we
designed a traffic generation model for private Tor networks and
demonstrated that our model yields a more realistic network than
previous and alternative models. We identified interesting areas
of future work, including the measurement of HMM stream and
packet models over time periods longer than 24 hours and exploring
how network accuracy affects research conclusions across a range
of network scales.
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APPENDIX
A ENTRY STATISTICS
Here we provide tables of entry statistics for graphical figures that
were included in the main body of the paper. Table 7 shows values
of entry statistics that were shown in the plots in Figure 2.

Table 7: The 10 minute mean number of circuits per client
collected during period 2 (see Table 2). The 10 minute mean
number of unique clients was 13,800 ± 153 (1.11%) with 95%
confidence. See also Figure 2.

Hist. Bin Count (×103) % of Total

[1,2) Active 4.13 ± 0.144 (3.50%) 30.0% ± 1.10%
Inactive 2.92 ± 0.049 (1.68%) 21.2% ± 0.426%

[2,5) Active 2.31 ± 0.144 (6.26%) 16.7% ± 1.06%
Inactive 2.05 ± 0.049 (2.40%) 14.8% ± 0.392%

[5,15) Active 0.904 ± 0.144 (16.0%) 6.55% ± 1.05%
Inactive 1.01 ± 0.049 (4.87%) 7.31% ± 0.365%

[15,∞) Active 1.76 ± 0.144 (8.23%) 12.7% ± 1.06%
Inactive 1.37 ± 0.049 (3.62%) 9.86% ± 0.373%

B EXIT STATISTICS
Here we provide tables of exit statistics for graphical figures that
were included in the main body of the paper, as well as a graphical
figure that was not included in the main body of the paper for space
reasons. Table 8 shows values of exit statistics that were shown
in the plots in Figure 3, Table 9 provides values of exit statistics
that were shown in the plots in Figure 4a, and Table 10 provides
values of exit statistics that were shown in the plots in Figure 4b.
The distribution of total bytes per stream is shown in Figure 12 and
the full values are shown in Table 11.
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Figure 12: The distributions of total bytes per stream (in-
bound + outbound) collected during periods 5, 6, and 7 (see
Table 2). See also Table 11 in Appendix B for full tables of
values.

Table 8: The 10 minute mean number of streams per active
circuit collected during periods 5, 6, and 7 (see Table 2). See
also Figure 3. (See the legend in Figure 3 for the total number
of all, web, and other circuits.)

Hist. Bin Count (×103) % of Total

[1,3) All 20.2 ± 0.59 (2.92%) 54.8% ± 1.82%
Web 16.9 ± 0.69 (4.07%) 57.1% ± 2.68%

Other 3.85 ± 0.049 (1.29%) 58.8% ± 0.876%

[3,7) All 8.50 ± 0.59 (6.94%) 23.0% ± 1.64%
Web 6.09 ± 0.69 (11.3%) 20.6% ± 2.37%

Other 1.61 ± 0.049 (3.08%) 24.6% ± 0.778%

[7,15) All 3.98 ± 0.59 (14.8%) 10.8% ± 1.61%
Web 2.56 ± 0.69 (26.8%) 8.68% ± 2.33%

Other 0.68 ± 0.049 (7.31%) 10.3% ± 0.759%

[15,31) All 2.03 ± 0.59 (29.0%) 5.51% ± 1.60%
Web 1.29 ± 0.69 (53.0%) 4.38% ± 2.33%

Other 0.20 ± 0.049 (25.2%) 3.00% ± 0.756%

[31,63) All 1.41 ± 0.59 (41.8%) 3.82% ± 1.60%
Web 1.23 ± 0.69 (55.7%) 4.17% ± 2.33%

Other 0.025 ± 0.049 (200%) 0.38% ± 0.755%

[63,∞) All 0.946 ± 0.59 (62.3%) 2.57% ± 1.60%
Web 0.038 ± 0.69 (1790%) 0.13% ± 2.32%

Other 0.031 ± 0.049 (160%) 0.47% ± 0.755%

Table 9: The 10 minute mean number of inbound bytes per
stream collected during periods 5, 6, and 7 (see Table 2). See
also Figure 4a. (See the legend in Figure 4a or 4b for the total
number of all, web, and other streams.)

Hist. Bin Count (×220) % of Total

(0,2) All 155 ± 6.40 (4.11%) 42.1% ± 1.88%
Web 99.6 ± 5.81 (5.83%) 39.6% ± 2.49%

Other 15.9 ± 0.207 (1.30%) 54.2% ± 0.801%

[2,16) All 113 ± 6.40 (5.65%) 30.7% ± 1.81%
Web 99.2 ± 5.81 (5.85%) 39.5% ± 2.48%

Other 3.58 ± 0.207 (5.78%) 12.2% ± 0.710%

[16,65) All 39.5 ± 6.40 (16.2%) 10.7% ± 1.74%
Web 30.0 ± 5.81 (19.4%) 11.9% ± 2.33%

Other 0.830 ± 0.207 (24.9%) 2.83% ± 0.705%

[65,128) All 13.6 ± 6.40 (47.0%) 3.69% ± 1.73%
Web 5.51 ± 5.81 (105%) 2.19% ± 2.31%

Other 0.186 ± 0.207 (111%) 0.632% ± 0.704%

[128,∞) All 23.1 ± 6.40 (27.8%) 6.24% ± 1.74%
Web 23.0 ± 5.81 (25.3%) 9.14% ± 2.32%

Other 1.08 ± 0.207 (19.1%) 3.69% ± 0.705%
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Table 10: The 10 minute mean number of outbound bytes
per stream collected during periods 5, 6, and 7 (see Table 2).
See also Figure 4b. (See the legend in Figure 4a or 4b for the
total number of all, web, and other streams.)

Hist. Bin Count (×220) % of Total

(0,0.5) All 174 ± 6.40 (3.68%) 47.0% ± 1.91%
Web 97.3 ± 5.81 (5.97%) 38.7% ± 2.48%

Other 19.4 ± 0.207 (1.07%) 66.1% ± 0.844%

[0.5,1) All 111 ± 6.40 (5.75%) 30.1% ± 1.81%
Web 94.4 ± 5.81 (6.15%) 37.6% ± 2.47%

Other 5.19 ± 0.207 (3.99%) 17.7% ± 0.715%

[1,2) All 51.2 ± 6.40 (12.5%) 13.9% ± 1.75%
Web 37.2 ± 5.81 (15.6%) 14.8% ± 2.34%

Other 1.70 ± 0.207 (12.2%) 5.78% ± 0.706%

[2,4) All 14.4 ± 6.40 (44.4%) 3.90% ± 1.73%
Web 13.6 ± 5.81 (42.8%) 5.40% ± 2.31%

Other 0.412 ± 0.207 (50.3%) 1.40% ± 0.704%

[4,∞) All 10.9 ± 6.40 (58.5%) 2.96% ± 1.73%
Web 14.7 ± 5.81 (39.6%) 5.84% ± 2.31%

Other 2.01 ± 0.207 (10.3%) 6.84% ± 0.706%

Table 11: The 10 minute mean number of total bytes per
stream (inbound + outbound) collected during periods 5, 6,
and 7 (see Table 2). See also Figure 12. (See the legend in Fig-
ure 12 for the total number of all, web, and other streams.)

Hist. Bin Count (×220) % of Total

(0,2) All 149 ± 6.40 (4.30%) 40.3% ± 1.87%
Web 93.4 ± 5.81 (6.21%) 37.2% ± 2.47%

Other 21.1 ± 0.207 (0.979%) 72.0% ± 0.868%

[2,16) All 134 ± 6.40 (4.76%) 36.4% ± 1.84%
Web 97.3 ± 5.81 (5.97%) 38.7% ± 2.48%

Other 4.84 ± 0.207 (4.27%) 16.5% ± 0.714%

[16,65) All 42.3 ± 6.40 (15.1%) 11.4% ± 1.74%
Web 38.6 ± 5.81 (15.1%) 15.3% ± 2.34%

Other 1.86 ± 0.207 (11.1%) 6.34% ± 0.706%

[65,128) All 17.3 ± 6.40 (37.0%) 4.69% ± 1.73%
Web 14.9 ± 5.81 (39.0%) 5.92% ± 2.31%

Other 0.404 ± 0.207 (51.2%) 1.38% ± 0.704%

[128,∞) All 28.1 ± 6.40 (22.8%) 7.61% ± 1.74%
Web 21.2 ± 5.81 (27.4%) 8.44% ± 2.32%

Other 1.18 ± 0.207 (17.5%) 4.03% ± 0.705%
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