
Performance Measurements and Statistics of Tor Hidden Services

Karsten Loesing, Werner Sandmann, Christian Wilms, and Guido Wirtz
University of Bamberg

Faculty Information Systems and Applied Computer Science
Feldkirchenstr. 21, D-96045 Bamberg, Germany

{karsten.loesing, werner.sandmann, guido.wirtz}@uni-bamberg.de

Abstract

Tor (The Onion Routing) provides a secure mechanism
for offering TCP-based services while concealing the hid-
den server’s IP address. In general the acceptance of ser-
vices strongly relies on its QoS properties. For potential
Tor users, provided the anonymity is secured, probably the
most important QoS parameter is the time until they finally
get response by such a hidden service. Internally, overall
response times are constituted by several steps invisible for
the user. We provide comprehensive measurements of all
relevant latencies and a detailed statistical analysis with
special focus on the overall response times. Thereby, we
gain valuable insights that enable us to give certain statis-
tical assertions and to suggest improvements in the hidden
service protocol and its implementation.

1. Introduction

Tor hidden services [2] constitute a convenient way for
providing a TCP-based service to clients without revealing
the hidden server’s IP address. Typical applications are hid-
den web servers or hidden IRC servers. There are often
good reasons for people who provide potentially contro-
versial services or content to others to hide their identity.
Otherwise these people could be faced with personal conse-
quences, ranging from job-related disadvantages up to pros-
ecution and personal harm.

Tor’s anonymity originates from relaying traffic over a
network of about 2,200 publicly deployed relays (April
2008). A client that wants to communicate anonymously
creates a circuit consisting of three randomly selected Tor
relays. The last relay in a circuit connects to the public
server that the client actually wants to talk to. All messages
between client and the last relay are encrypted in multiple
layers, which is the reason for Tor’s name: The Onion Rout-
ing. The idea is that no single entity but the client can learn
where the circuit starts and where it ends.

The hidden service design is based on connecting two
circuits—one of them created by the client, the other by the
hidden server—on a commonly agreed Tor relay. This so-
called rendezvous point acts as message relay by forwarding
outgoing messages from the client-side circuit to the server-
side circuit and vice versa. In order to protect rendezvous
points from attacks, a hidden service picks a set of Tor re-
lays as introduction points which work similar to the ren-
dezvous points. Introduction points are only used for trans-
ferring a single message containing the location of the se-
lected rendezvous point. In order to accept client requests,
the hidden service publishes a hidden service descriptor
containing a signed list of introduction points to directory
servers from which it can be downloaded by clients.

The design of hidden services is inevitably more com-
plex than the design for anonymizing a connection between
a client and a public service. Constructing a circuit re-
quires three Tor relays, whereas accessing a hidden service
involves more than a dozen. This makes accessing a hidden
service outstandingly slow and connections fragile, which
may be considered the major problems of hidden services.

We study the performance and QoS properties of hidden
services in the public Tor network via measurements and
statistical analysis. We focus on latencies rather than on
bandwidth, because previous studies have shown that laten-
cies of connection establishment are the major problem in
terms of usability [8].

In the next section we briefly review previous work on
the performance of Tor and hidden services. Section 3 de-
scribes our setting to measure client access times to a pub-
licly deployed hidden service. Overall response times and
times of a number of sub-steps are considered. In Sec-
tion 4 we statistically analyze the measurements and fit
them to probability distributions in order to detect and in-
vestigate bottlenecks or irregularities and to be able to pre-
dict response within a given time with a certain probability.
In Section 5 we propose some performance improvements
based on our observations. Finally, Section 6 concludes the
paper and outlines further research directions.
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2. Related Work

Wendolsky et al. [12] measured the performance of
client-anonymous connections in Tor. They found that la-
tencies of connections averaged to 4 seconds. They con-
cluded from the studies by Köpsell [7] that these 4 sec-
onds were the acceptable time that users are willing to wait:
Whenever the number of users increases, so that the net-
work load goes up, the average latency in the network in-
creases too, and the less anonymity-aware users are deterred
from using the system, so that the user base and with it the
average latency stabilizes. However, we want to emphasize
that these 4 seconds cannot be directly compared with the
latencies of hidden services, because of the inherent com-
plexity and higher number of involved nodes.

In earlier measurements we found that connection es-
tablishment to a hidden service took in average 5.39 sec-
onds [8]. Those numbers are significantly lower than those
to be presented in the present paper, because we then ex-
cluded the times for descriptor download and data ex-
change. In [8] we also found that subsequent message ex-
changes only took in average 2.32 seconds, which is quite
fast compared to connection establishment. Therefore, we
did not consider message exchange times in this paper.

Øverlier and Syverson [9] proposed a new connection
establishment protocol for hidden services. Their revised
protocol reduces the number of involved Tor relays com-
pared to the original design [2] and therefore should lead to
reduced latencies. An implementation might lead to signif-
icant performance improvements for hidden services.

3. Environment and Measurement Setup

Assume, Bob wants to offer a hidden service. The first
step is to configure his Tor client accordingly. The Tor client
generates a long-term public key pair to identify the service.
Further the Tor client selects three nodes within the Tor net-
work to act as the server’s introduction points and opens a
circuit to each of them. We configured the Tor client to se-
lect a specific node, that was also controlled by us, as first
introduction point. The information to access the service,
i.e. the identifier and the addresses of the three introduction
points forming the hidden service descriptor, is published
on a lookup directory server within the network. The pro-
cess of setting up a hidden service only needs to be per-
formed once and was consequently done prior to the actual
measurements. It has no influence on the service user per-
spective. All steps necessary to establish and access the hid-
den service are shown in Figure 1 and described below.

Alice wants to access Bob’s website and therefore learns
the identifier from a website or another source. First her
Tor client contacts the directory server and receives the hid-
den service descriptor (the time between opening a circuit

Figure 1. Establishing and accessing a hid-
den service

to send the request and receiving the reply is referred to as
DescRTT in the next section). Regularly, it would randomly
pick one of the introduction points, but we implemented a
minor code change to force Alice’s Tor client to always pick
the first introduction point from the hidden service descrip-
tor. As mentioned above this introduction point was con-
trolled by us. After fetching the hidden service descriptor
Alice’s Tor client chooses another node in the Tor network
as rendezvous point and builds a circuit to it. If available,
the Tor client may pick the third Tor relay in an existing
3-hop circuit instead of building a new circuit to a random
Tor relay, which is called cannibalization and which can
be done without delay. Alice’s Tor client requests the cho-
sen rendezvous point to act as such and the latter acknowl-
edges (RendRTT). At the same time the Tor client builds a
circuit to the introduction point (IntroC). If a suitable pre-
built 3-hop circuit is available, this circuit is extended to
the rendezvous point with a fourth hop. This is another
form of cannibalization, which is faster than building all
hops on demand. When the introduction circuit is built and
the rendezvous point has acknowledged the request, Alice’s
Tor client informs the introduction point that Alice wants
to access the hidden service (Intro1), handing over the ren-
dezvous point’s address. The introduction point forwards
the message to the hidden server (Intro2) and sends an ac-
knowledgment back (IntroAck). Now the hidden server also
builds a circuit to the rendezvous point (RendC), that con-
nects it to the circuit built by Alice’s Tor client and informs
her client of the successful connection (Rend12). This cir-
cuit can also be built by cannibalization, so only the fourth
hop to the rendezvous point needs to be built on demand.
Now a connection between Alice and Bob is established and
Alice can send a request, e.g. an HTTP GET message to re-
trieve a website (Data). Figure 2 shows the sequence of all
values measured to emphasize parallel steps and to display
a critical path when trying to reduce the complete response
time of hidden services.

For the measurements we used two instances of Tor ver-
sion 0.2.0.6 alpha (r11276) running on a virtual root server



Figure 2. Sequence of measured values

located in Frankfurt on the Main, Germany. We observed
log events indicating the sending and receiving of messages
as well as opening new circuits to other nodes. In order to
gather the data we started the Tor relay acting as introduc-
tion point first and then the Tor client providing the hidden
service prior to the actual tests. We created new Tor clients
for the test every five minutes for 72 hours between 27–29
August 2007, and let them perform a single access attempt
on our hidden service. We chose not to re-use the same
onion proxy on client side to avoid the effects of caching
information. Further we did not control all roles involved in
the process. We used the official directory servers of the Tor
network and therefore had no access to their log events. We
did also not control the relay chosen as rendezvous point by
Alice, because the configuration option to choose a specific
rendezvous point does not work in case of cannibalization.

4. Statistical Data Analysis

The first step in statistical data analysis consists of com-
puting meaningful empirical characteristics of the measured
data to get an impression of the basic properties. Overviews
of the empirical statistics and percentiles for all measured
times are given in Table 1 and Table 2, respectively.

In order to find appropriate probability distributions that
well represent the measured data, we performed a paramet-
ric fit. Some candidate distributions were selected and for
each of these distributions a maximum likelihood estima-
tion (MLE) was carried out to find those parameters that fit
best to the data. The goodness of fit was tested by the χ2

test, the Kolmogorov-Smirnov (KS) test, and the Anderson-
Darling (AD) test. In a nutshell, given a parametric dis-
tribution and measurement data, MLE determines the pa-
rameter values that are most likely with respect to the data.
Goodness-of-fit tests check the assumption that the data is
according to a specific distribution and compute test statis-

tics that indicate how well justified this assumption actually
is. Roughly speaking, the goodness of fit is evaluated by the
rule that the smaller the test statistic, the better the fit. For
the details of the statistical methods see, e.g., [11, 13].

Due to space limitations it is not possible to present plots
and advanced investigations for all measurements. We re-
strict our detailed presentation to response times. These are
most important from the users’ point of view as they are
what users really care about and perceive. Hence, they are
particularly well suited as a measure of user-perceived qual-
ity of service (QoS) or quality of experience (QoE).

We selected candidate distributions based on the empiri-
cal statistics and percentiles as well as on the shape of his-
togram plots. We also considered some widespread distri-
butions often appearing in network models. For instance,
the most common one is the exponential distribution and
thus we included it. However, from the data it is obvious
that any distribution whose support is the whole set of posi-
tive numbers will probably not well fit the data for small val-
ues since the minimum response time is significantly larger
than zero. Consequently, distributions like the shifted ex-
ponential distribution should be considered. Another rea-
soning takes the occurrence of some very large data values
into account which may indicate heavy-tailedness. In fact,
there is much evidence in the presence of heavy-tailed dis-
tributions on the Internet [1, 10], where the Pareto distribu-
tion has become particularly prominent. However, even in
cases where the Pareto distribution seems most appropriate,
from a practical point of view it may be more convenient to
work with other distributions, e.g., when the goal is to build
stochastic models involving the distribution and further in-
vestigate these models. For instance, the Pareto distribu-
tion causes serious problems in simulation [4]. Besides,
Downey [3] found that the lognormal distribution is often
more appropriate. As a distribution with a similar shape
to that of the lognormal distribution where in particular the
mode is not at the lower boundary, the loglogistic distribu-
tion is also taken into account. Particularly reasonable with
respect to the measured data are extreme value distributions
where also the mode is not at the lower boundary. We con-
sidered the Frechet distribution also known as extreme value
distribution of type 2, and the generalized extreme value
distribution. Detailed descriptions of all the mentioned (and
many more) distributions can be found in [5, 6]. Table 3
contains the densities of the candidate distributions. The
parameters obtained by MLE are given in Table 4 and the
goodness-of-fit test results in Table 5.

From the goodness-of-fit tests we can obtain a clear rank-
ing for the fitted distributions. For all tests, sorting with re-
spect to the test statistics yields the same order among the
distributions. We can see that the exponential distribution,
either shifted or not, and the Pareto distribution seem to be
completely inappropriate. The Frechet distribution unam-



Table 1. Empirical statistics of measured times, times are given in seconds

Statistics DescRTT RendRTT IntroC Intro1 IntroAck Intro2 RendC Rend12 Data RespTime
Min 0.073 0.020 0.063 0.010 0.008 0.136 0.050 0.032 0.690 2.118
Max 82.022 55.006 106.560 32.427 7.648 27.472 48.386 56.531 99.653 151.850
Mean 5.333 1.842 5.657 0.718 0.597 0.512 2.336 1.586 6.530 24.052
Var 94.767 24.819 235.320 3.393 0.731 2.381 17.933 10.986 72.766 555.340

StdDev 9.735 4.982 14.340 1.842 0.855 1.543 4.235 3.315 8.530 23.566
CoeffVar 1.825 2.705 2.712 2.565 1.431 3.015 1.813 2.090 1.306 0.980

StdErr 0.338 0.173 0.532 0.067 0.031 0.056 0.147 0.115 0.296 0.817
Skewness 4.800 6.433 3.617 11.739 4.267 12.379 5.243 8.979 5.279 2.243
Kurtosis 26.980 51.479 12.072 168.410 26.081 182.880 35.728 112.030 38.485 5.233

Table 2. Empirical percentiles of measured times, times are given in seconds

Perc. DescRTT RendRTT IntroC Intro1 IntroAck Intro2 RendC Rend12 Data RespTime
5% 0.401 0.072 0.177 0.035 0.033 0.142 0.299 0.219 1.442 5.752
10% 0.510 0.132 0.250 0.054 0.051 0.143 0.377 0.270 1.723 7.324
25% 0.963 0.250 0.493 0.144 0.142 0.143 0.556 0.425 2.463 10.039
50% 2.541 0.491 1.169 0.279 0.258 0.145 1.157 0.992 4.305 15.238
75% 5.495 1.473 2.362 0.894 0.923 0.489 2.141 1.534 7.022 26.624
90% 11.861 2.895 6.123 1.346 1.302 1.005 4.253 2.546 11.324 65.157
95% 17.024 7.958 60.504 1.991 1.806 1.550 8.748 3.945 20.125 77.504

Table 3. Densities of candidate distributions

Distribution Density f(x)

Exponential λe−λx

Shifted Exp. λe−λ(x−c)

Extreme
exp(−(1+λz)−1/λ)
σ(1+λz)1/λ+1

Frechet a
b

(
b
x

)a+1
e−(b/x)a

Loglogistic a
b

(
x−c
b

)a−1 (
1 +

(
x−c
b

)a)−2

Lognormal 1
xσ
√

2π
exp

(
−(ln x−µ)2

2σ2

)
Pareto aba

xa+1

biguously provides the best fit. However, one needs to be
careful with such a quick argumentation since the statistical
tests only provide an overall view of both data and distribu-
tions without any special regard to particular data regions.
We shall get more specific insights from visualizations of
the data and the fitted distributions.

Table 4. MLE parameters

Distribution MLE parameters
Exponential λ = 0.042
Shifted Exp. λ = 0.046, c = 2.118

Extreme λ = 0.414, µ = 12.92, σ = 8.829
Frechet a = 1.624, b = 12.091

Loglogistic a = 1.98, b = 13.994, c = 2.023
Lognormal µ = 2.849, σ = 0.771

Pareto a = 0.477, b = 2.118

4.1. Visualization and Interpretation

Figure 3 shows a plot of the densities together with the
histogram for the measurements which gives a rough overall
impression of the appropriateness of the fitted distributions.
It confirms the conclusion from the goodness-of-fit tests for
the overall view. Figure 4 and Figure 5 show probability-
probability (PP)-plots and probability difference plots, re-
spectively, for the fitted distributions against the measured
data. A PP-plot is a graph of the distribution function of
the fitted distributions versus the empirical distribution of
the measured data where a perfect fit would yield a straight



Table 5. Goodness-of-Fit test statistics

Distribution χ2 KS AD
Exponential 332.1 0.169 39.096
Shifted Exp. 214.8 0.114 23.837

Extreme 45.8 0.083 4.894
Frechet 15.4 0.037 2.147

Loglogistic 36.1 0.051 4.065
Lognormal 76.6 0.088 10.043

Pareto 874.1 0.348 159.280

Figure 3. Histogram-density plot for all fitted
distributions

diagonal line from (0,0) to (1,1). A probability difference
plot, as the name suggests, visualizes the difference be-
tween the empirical distribution and the distribution func-
tion of the fitted distributions. It should be close to zero.

All plots clearly eliminate the Pareto distribution from
any further considerations. It neither reflects the data for
small or medium values nor for large values. Taking a
deeper look at some peculiarities we can recognize that
none of the distributions appropriately covers the irregular-
ities for data values slightly greater than 60 seconds. In
practice, there is a simple explanation for this effect. If the

Figure 4. PP-plot for all fitted distributions

Figure 5. Probability difference plot for all fit-
ted distributions

connection request is not handled by the server within 60
seconds, then a timeout occurs and the connection is re-
quested again. We performed fitting procedures where the
time scale was subdivided into intervals of length 60 sec-
onds, resulting in the same ranking of distributions as for the
overall fit. Thus, for the time being with regard to the statis-
tical analysis of response times, we can neglect this effect
because neither one of the candidate distributions is ranked
better or worse due to this effect and, more important from
the applications point of view, end users care about their ef-
fective response time regardless whether or not it includes
timeouts. Moreover, the following observation will lead us
to a separate treatment of response times less than 60 sec-
onds and response times greater than 60 seconds anyway.

An important effect indicated by all plots is the signif-
icant difference in the goodness of fit with respect to the
distributions’ body on the one hand and the tail behavior on
the other hand. In fact, the preference for the Frechet distri-
bution due to the statistical tests mainly relies on its excel-
lent ability to reflect the range up to 60 seconds whereas the
tails decrease exponentially. This particularly demonstrates
that there is no evidence of a heavy-tailed distribution of
the response times, but rather the tails almost perfectly fol-
low the exponential distribution. In order to illustrate this,
we show comparative plots of the exponential distributions
(shifted and non-shifted) versus the Frechet distribution in
Figures 6–8.

Figure 6. PP-plot for Exp and Frechet



Figure 7. Zoomed probability difference plot
Exp and Frechet distribution in range [0,80]

Figure 8. Zoomed probability difference plot
Exp and Frechet distribution in range [60,160]

The PP-plot of Figure 6 elucidates the good overall fit
of the Frechet distribution. Figure 7 and Figure 8 provide
zoomed probability difference plots where we have split the
time scale. The range from 60 to 80 seconds is included
in both plots in order to show that neither distribution fits
well there, but all distributions come back to a quite good
fit for values greater than 80 seconds. Most importantly,
Figure 7 manifests the superiority of the Frechet distribution
for response times less than 60 seconds, whereas Figure 8
shows that the exponential distributions perfectly coincide
with the tail of the empirical distribution provided by the
measurements.

Another important effect can be observed when plotting
the distribution functions as shown in Figure 9. The cu-
mulative distribution functions of the exponential and the
Frechet distribution intersect at time 60 seconds. This is
particularly remarkable since it means that the probability
mass assigned to values less than 60 seconds is equal for
both distributions. The same holds for the probability mass
assigned to values greater than 60 seconds. In particular,
the probability for a response time of more than 60 sec-
onds, one possibly critical QoS parameter, is identical for
both distribution types. Evaluating the distribution func-
tion (in the following of the exponential distribution) we
get P (R > 60) = 1− FExp(60) = 1− e−0.042×60 ≈ 8%.

Figure 9. Cumulative distribution functions of
Exp and Frechet distribution

4.2. Implications

Our findings directly imply that we can improve the fit
of the response time distribution by combining the Frechet
and the exponential distribution such that for times less than
60 seconds the Frechet distribution applies and for times
greater than 60 seconds the exponential distribution applies.
In particular, note that due to the intersection of both distri-
bution functions at time 60, this does not need any further
normalization but directly yields that the combined density
integrates to one as required to be a density. Hence, alto-
gether we obtain a very accurate fit of the response time
distribution that can in turn be used for diverse further mod-
eling and analysis purposes providing insights useful with
regard to improvements from a statistical perspective. One
immediate result is that, as a generalization of the above
evaluation of P (R > 60), the exponential distribution ap-
plies to large response times. Hence, far better QoS guaran-
tees follow than it would be in case of applying the Frechet
distribution in the tails.

5. Recommended Improvements

After analyzing the current performance of hidden ser-
vices in Tor we suggest a number of modifications in im-
plementation and protocol to accelerate the access to hidden
services and therefore improve usability. The challenge is at
the same time not to hurt or reduce the anonymity of either
the requesting client or the hidden service provider and not
to increase the network load disproportionally.

Comparing the mean values in Table 1, building the in-
troduction (IntroC) and rendezvous (RendC) circuits takes
most time, besides fetching the hidden service descriptor
(DescRTT) and data transfer (Data). Therefore special fo-
cus should be put on circuit creation.

In the current implementation three internal circuits are
built before actually needed in order to be cannibalized later.
That is the exact number, that is necessary for accessing a



hidden service: one circuit to retrieve the rendezvous de-
scriptor, one for the rendezvous circuit and one to contact
the introduction point. If one of the circuits is not ready
on demand, it cannot be cannibalized and a complete new
circuit has to be built. If more general circuits are built in
the beginning, the probability of finding a working circuit is
increased.

The Tor client could start to cannibalize two 3-hop cir-
cuits to contact the introduction point simultaneously. The
first circuit that is opened successfully is used to send the
introduction message, while the other circuit is discarded.
This behavior uses the high variability of circuit cannibal-
ization to decrease the time until an open circuit is available.

The hidden service proxy picks three introduction points
and publishes them. In the current protocol version the
client proxy randomly chooses one of them and tries to build
a circuit to it. We suggest that the client proxy tries to con-
nect to two introduction points simultaneously and when
the first circuit is established, discards the other connection
attempt. As a disadvantage this would result in increased
network traffic. Therefore we need to consider the trade-
off between resulting performance improvements and addi-
tional network traffic.

The impact of reducing the number of Tor relays in-
volved in the process of accessing a hidden service, as sug-
gested by Øverlier and Syverson in [9], needs to be eval-
uated. In one of the proposed scenarios the introduction
point also acts as rendezvous point. In another scenario the
rendezvous circuit is cannibalized and extended to the in-
troduction point.

Finally, the client-side timeout after which a connection
is requested again should be reduced from 60 seconds to a
lower value. Though this might occasionally result in un-
necessary network traffic, the probability of high response
times decreases.

6. Conclusions

We performed comprehensive performance measure-
ments of Tor hidden services and statistically analyzed the
data focussing on the response time as an important user-
oriented QoS parameter. Our studies resulted in a mathe-
matically well-founded fit of the response time distribution
by means of combining Frechet and exponential distribu-
tion. Moreover, we obtained insights that led to recommen-
dations on how to improve the hidden service protocol and

its implementation. Further research includes the develop-
ment of a detailed model based on the measurements of sub
steps. Such a model could be a foundation for sophisticated
mathematical analysis, e.g. via queueing theory or simula-
tion. This would allow us to immediately observe the effects
of changes to the protocol which yields huge time savings
compared to the effort required for repeated measurements.
Besides, the recommended improvements can be efficiently
evaluated in advance before actually implementing them.
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[2] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium, August 2004.

[3] A. B. Downey. Lognormal and Pareto distributions in the
Internet. Computer Communications, 28:790–801, 2005.

[4] G. S. Fishman and I. Adan. How heavy-tailed distribu-
tions affect simulation-generated time averages. ACM Trans.
Modeling and Computer Simulation, 16(2):1–22, 2006.

[5] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. vol. 1, Wiley, 2nd edition, 1994.

[6] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions. vol. 2, Wiley, 2nd edition, 1995.
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