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Abstract

Flow watermarks are active traffic analysis techniques
that help establish a causal connection between two net-
work flows by content-independent manipulations, e.g., al-
tering packet timings. Watermarks provide a much more
scalable approach for flow correlation than passive traffic
analysis. Previous designs of scalable watermarks, how-
ever, were subject to multi-flow attacks. They also intro-
duced delays too large to be used in most environments.

We design SWIRL, a Scalable Watermark that is Invisi-
ble and Resilient to packet Losses. SWIRL is the first water-
mark that is practical to use for large-scale traffic analysis.
SWIRL uses a flow-dependent approach to resist multi-flow
attacks, marking each flow with a different pattern. SWIRL
is robust to packet losses and network jitter, yet it intro-
duces only small delays that are invisible to both benign
users and determined adversaries. We analyze the perfor-
mance of SWIRL both analytically and on the PlanetLab
testbed, demonstrating very low error rates. We consider
applications of SWIRL to stepping stone detection and link-
ing anonymous communication. We also propose a novel
application of watermarks to defend against congestion at-
tacks on Tor.

1 Introduction

Network intruders usually try to hide their real location
by relaying their traffic through a number of intermediate
hosts, called stepping stones [25]. The traffic is encrypted,
preventing simple identification of stepping stones; instead,
traffic analysis techniques are used to find flows that have
similar characteristics, based on features such as packet tim-
ings, counts, and sizes [3, 6, 17, 20, 23, 25]. Traffic analysis
can also be used to attack anonymous communication sys-
tems by finding relationships between two flows that would
otherwise be unlinkable [1, 4, 16].

Traditionally, traffic analysis is performed as a passive
attack, by observing the candidate flows and trying to

find the flow relations through different statistical analy-
sis [1,3,4,6,16,17,20,23,25]. More recently, network flow
watermarks have been proposed as an active alternative to
perform traffic analysis more efficiently. Watermarks are
more scalable, as they require asymptotically less commu-
nication and computation; they also can operate on shorter
flows and provide lower error rates than passive analysis.

Previous watermark designs can be divided into two
categories: packet-based watermarks that operate on in-
dividual delays between packets [21], and interval-based
watermarks that perform an operation on an entire inter-
val [15, 19, 24]. The former category is not robust to packet
losses, reorderings, and insertions; the latter are subject to a
multi-flow attack [10] that can recover and remove the wa-
termark. In addition, these watermarks introduce large de-
lays, making them not suitable for practical applications.1

We introduce SWIRL, a Scalable Watermark that is
Invisible and Resilient to packet Losses. SWIRL is an
interval-based watermark, but it uses a novel approach to
resist multi-flow attacks. The watermark pattern is chosen
based on the characteristics of the flow being marked; as a
result, each flow is marked with a different pattern. SWIRL
watermarks introduce small delays to the network flows,
and thus are practical to deploy in real-world scenarios. The
small amount of distortion also makes SWIRL invisible to
state-of-the-art information-theoretic tools for covert chan-
nel detection [8].

We perform a mathematical analysis of the error rates
of SWIRL, showing that it can achieve very low false er-
ror rates on short flows. We validate our analysis against
simulations and an implementation running on the Planet-
Lab testbed [2]. We show experimentally that SWIRL is
resistant to the multi-flow attacks.

SWIRL provides the first practical approach to large
scale traffic analysis; it therefore extends the reach of traffic
analysis attacks in both anonymous systems and network
attack attribution. We also consider a novel application

1RAINBOW [9] is a packet-based watermark that is robust to packet
losses; however, it is designed to supplement, rather than replace, passive
traffic analysis and thus does not scale to large scenarios.



of watermarks to defend against a congestion attack in the
Tor anonymizing network [5]. We show that a watermark,
normally a privacy-invasive tool used to link anonymous
flows, can actually help protect users’ privacy by prevent-
ing attackers from creating routing loops. The properties of
SWIRL provide a practical defense where previous traffic
analysis approaches would not be appropriate.

The rest of this paper is organized as follows. We review
some background on network flow watermarking in Sec-
tion 2. In Section 3 we describe the design of the SWIRL
watermarking scheme. We analyze SWIRL by modeling the
network flow behavior in Section 4 to provide false errors
analysis of the scheme. We evaluate SWIRL with simula-
tions as well as implementation in Section 5. We discuss
watermark invisibility and resilience to multi-flow attacks
in Section 6. In Section 7 we provide a novel application of
SWIRL to Tor congestion attacks . Finally, we conclude in
Section 8.

2 Background

We first review the watermarking setting. Watermarks
provide a content-independent way to tag traffic so that cor-
related flows can later be recognized. Figure 1 shows the
general model of a network flow watermarking scheme. A
network flow passing through a watermarker gets water-
marked by changing the timing information of packets, i.e.,
applying specific delays on the packets. The flow then trav-
els along a noisy channel, which may include various net-
works, stepping stones, and anonymizing systems. This
channel introduces further delays, and might also drop, re-
order, or duplicate packets or repacketize the flow. Af-
ter the channel, the flow arrives at the watermark detec-
tor, which inspects it for the inserted watermark pattern.
The pattern encoding is based upon a secret watermark key,
shared between the watermarker and detector. In a blind
scheme, this is the only information the watermarker and
detector exchange; in a non-blind scheme, the watermarker
also sends information about the watermarked flow to the
detector through an out-of-band channel.

Watermarking has several advantages over passive traffic
analysis schemes. First, watermarks can be used to achieve
lower error rates with shorter flows than passive schemes.
Second, when multiple observation points are needed to de-
tect relayed flows, passive traffic analysis schemes require
continuous communication between these points to transmit
flow statistics (O(n) in the number of flows). Further, the
detector must match each candidate flow against all of the
candidates that must be correlated, requiring O(n2) com-
putation. A blind watermark, however, requires no commu-
nication other than the shared key (i.e., O(1)) and can de-
tect watermarks usingO(n) computation, since each flow is
processed individually. This makes blind watermarks useful

for large-scale traffic analysis.

2.1 Applications

Two particular applications of watermarks are stepping
stone detection and linking of anonymized flows. In the
former case, a watermark is inserted by border routers of an
organization onto incoming flows, and checked for in out-
going flows (see Figure 2). The low false-positive rate pro-
vided by watermarks is paramount for large installations,
since the volume of flows can make even a 10−3 false pos-
itive rate difficult to deal with. Scalability features are also
important to large installations, especially ones with mul-
tiple border routers, since watermarks obviate the need for
separate high-bandwidth channels between them.

With anonymous communication, the approach is sim-
ilar: a malicious website or router can insert a watermark
on a flow entering the network, and a cooperating router or
observer can search for the watermark in outgoing flows,
in an attempt to link the two. Modern anonymizing net-
works, such as Tor [5], require a large number of compro-
mised routers in order to effectively attack anonymity, since
for a fraction of f compromised routers, only about f2 tun-
nels can be linked. Thus, an adversary would need to insert
several high-bandwidth nodes or make use of a botnet [12];
in both cases, a scalable approach is needed. Furthermore,
low error rates can make the results of such traffic analy-
sis more useful; for example, a false-positive rate of 10−6

should erase any reasonable doubt that the identification of
a user was a mistake, should it be used in a legal proceeding.

2.2 Previous work

Although there have been numerous previous proposals
for watermark designs, an important feature gap remains.
Many past watermark designs used large delays to achieve
robustness to network noise. Such large delays present a
barrier to practical deployment in stepping stone detection,
as watermarks are applied to all flows, including benign
ones, thus significantly impacting usability. The delays also
make it easy to detect the presence of the watermark even
without the shared key; thus, anonymizing networks can
refuse to forward watermarked traffic as a countermeasure
to the attack.

Many recent watermark designs used an interval-based
design [15,19,24], which made them susceptible to a multi-
flow attack [10]. By aggregating several flows, the interval-
based transformations, applied at the same position, become
easy to spot, and an attacker can even remove the watermark
at a low cost. Other approaches that use packet-based ap-
proach have other problems. Wang et al.’s IPD-based water-
marks [21] require tight synchronization between the water-
marker and detector that can be destroyed by packet losses,
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Figure 2. Stepping stone detection using flow watermarking.

reordering, etc. This watermark has also been shown to be
susceptible to detection and removal [13]. RAINBOW [9]
is a packet-based watermark that is robust to lost or re-
ordered packets; however, RAINBOW takes a non-blind
detection approach to achieve high detection accuracy over
short flows while using very small delays. Our goal is to
build a blind and therefore scalable watermark, at the cost
of potentially requiring longer watermarked flows. Table 1
summarizes the properties of previous work.

3 SWIRL watermarking scheme

SWIRL is an interval-based watermark; therefore, it con-
siders the flow as a collection of intervals of length T , with
an initial offset o; i.e., the ith interval includes packets dur-
ing time period [o+ iT, o+ (i+ 1)T ). We first describe
our approach to flow-dependent marking and then describe
the overall SWIRL scheme.

3.1 Flow-dependent marking

To perform flow-dependent marking, we select two in-
tervals: a base and a mark interval. The positions of these
intervals will be fixed for all flows, but is otherwise arbi-
trary, with the restriction that the base interval must come

earlier. During watermarking, we will use the base interval
to decide which pattern to insert on the mark interval; the
detector will correspondingly look for the pattern it com-
putes using its version of the base interval.

The property of the base interval that we use is the in-
terval centroid, which is the average distance of the packets
from the start of the interval. I.e., if the interval i contains
packets arriving at times t1, . . . , tn, the centroid is:

C =
1

n

n∑
j=1

(tj − (o+ iT )) (1)

To decide on the pattern to be used on the mark interval,
we quantize the centroid to a symbol s in the range [0,m)
for some m ∈ Z+. Since the range of the centroid is [0, T ),
a simple approach would be to set s = bmC/T c. How-
ever, this would result in a non-uniform distribution for s,
since a centroid is more likely to be in the center than at the
interval. The actual distribution of centroids is heavily de-
pendent on the rate of the flow as well as the distribution of
packet delays. In order to approximate a uniform distribu-
tion for s, we take the approach of using finer partitioning.
Namely, we set:

s = bqmC/T c mod m (2)



Table 1. Watermark Scheme Comparison
Scheme Invisible? Robust to losses? Resilient to MFA? Scalable?

IPD-based watermark [21] no no yes yes
Interval-based watermarks [15, 19, 24] no yes no yes

RAINBOW [9] yes yes yes no
SWIRL yes yes yes yes

for q > 1. The quantization multiplier q helps smooth out
the distribution; it is easy to see that as q → ∞, s tends to
a uniform distribution. We will discuss the choice of q in
more detail in Section 5.1.

The value s is then used to transform the mark inter-
val. We first subdivide the mark interval into r subinter-
vals of length T/r each. The subintervals are then fur-
ther subdivided into m slots each, with the slots numbered
0, . . . ,m − 1, see Figure 3. We select a slot in each subin-
terval i by applying a permutation pi(i) to s; each packet is
then delayed such that it falls within a selected slot, possibly
moving into the next subinterval. (Any packets at the end of
the interval past the last selected slot are not delayed.) This
produces a distinct pattern in the mark interval; see Figure 4
for an illustration. Note that we must use distinct permuta-
tion for each subinterval; otherwise we risk creating a peri-
odic pattern that can easily be observed. The permutations
π(0), . . . , π(r−1) are part of the secret watermark key.

3.2 Detection

To detect the watermark presence, the detector analyzes
packets in the base interval to compute the centroid Ĉ. It
then derives ŝ from Ĉ using (2). It then counts the fraction
of packets in the mark interval that are in the correct slot
(π(i)(ŝ)). If this ratio, ρ, is greater than a packet threshold
τ , then the watermark is considered to be detected success-
fully.

Note that the centroid of the interval may have shifted
due to network noise. We therefore consider an alternate
quantization of it, ŝ′, to be the next nearest quantization to
Ĉ:

ŝ′ =

{
dmqĈ/T e mod m if {mqĈ/T} ≥ 0.5

bmqĈ/T c − 1 mod m otherwise
(3)

where {x} = x − bxc denotes the fractional part of x. We
then repeat the detection using ŝ′ to compute ρ′. If ρ′ > τ ,
the watermark is also considered to be detected.

3.3 SWIRL design

A single watermark instance is likely to produce too high
a rate of false errors. To improve detection, SWIRL uses
n base and mark interval pairs. Let d be the number of

Table 2. Watermark Parameters
System parameters

r Number of subintervals
m Number of slots per subinterval
τ Packet detection threshold
η Mark detection threshold
n Number of base and mark intervals
T Interval length
q Quantization multiplier

Secret Parameters
o Initial offset

bj
Location of base intervals,
j = 0, . . . , n− 1

mj
Location of mark intervals,
j = 0, . . . , n− 1

π
(i)
j ∈ Sm

Permutations for each mark subinter-
val, j = 0, . . . , n− 1, i = 0, . . . , r

intervals where the watermark was detected; then the en-
tire watermark is considered to be detected if d > η for
some threshold η. The full list of parameters for SWIRL is
summarized in Table 2. These parameters must be shared
between the watermarker and detector. The system param-
eters are chosen to achieve a particular performance based
on the properties of the original flows and the noisy chan-
nel. The secret parameters are chosen randomly and can be
thought of as a secret key shared between the watermarker
and the detector. In Section 6.1 we analyze the security of
the SWIRL watermark by deriving the entropy of its water-
mark key.

4 System analysis

4.1 False-positive errors

The false-positive error rate is the probability of detect-
ing a non-watermarked flow as watermarked. To calculate
this, first consider the probability that a single packet in
some mark interval is in the “correct” slot. If we assume
a Poisson distribution for the flows, it is easy to see that:

FPp =
1

m
(4)
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Figure 4. Delaying packets to insert a watermark (m = 3, r = 4).

Of course, actual flows might have different distributions;
however, unless the traffic patterns in a flow are correlated
with the distances between slots (randomized by π(i)

j ), this
will remain a good approximation.

Given a mark interval with P packets, the number of
packets in “correct” slots will follow a Binomial distribution

of P trials with probability of success PFp, B(P, FPp).
The cumulative distribution function of a Binomial distri-
bution with v trials and success probability h, B(v, h) is
given by the regularized incomplete beta function I(·) as:

P (X ≤ k) = I1−h(v − k, k + 1) (5)

It follows that the odds of getting at least τ fraction of pack-



ets in the correct slots can be computed as:

I1/m(dτP e, 1 + P − dτP e) (6)

Since we perform the detection for both ŝ and ŝ′, the prob-
ability of an interval with P packets being considered de-
tected is:

FPPI ≤ 2I1/m(dτP e, 1 + P − dτP e) (7)

Modeling the flow as a Poisson process of rate λ, the num-
ber of packets in an interval of length T is distributed ac-
cording to a Poisson distribution with parameter λT . There-
fore, the overall probability of a false positive detection in
an interval is:

FPI = EλTP [FPPI ] =

∞∑
P=1

e−λT (λT )P

P !
FPPI (8)

where EλTP computes the expected value with respect to P
according to a Poisson distribution with parameter λT . Fi-
nally, the total number of detected intervals will once again
follow a Binomial distribution B(n, FPI), thus the overall
false positive rate is:

FP ≤ IFPI
(η, 1 + n− η) (9)

4.2 False-negative errors

Now we consider the false-negative errors, i.e., the prob-
ability that a watermarked flow is considered not to be wa-
termarked by the detector.

Again, we start by considering a single mark interval.
The probability that it is considered not detected is:

FNI ≤ FNs + (1− FNs)FNpr (10)

where FNs represents the probability that neither ŝ nor ŝ′

correspond to the original quantization s, and FNp repre-
sents the probability that more than (1-τ ) fraction of packets
have shifted out of the “correct” slot, s.

Note that for the quantization to be misdetected, the cen-
troid must shift by at least T/(2mq); thus:

FNs ≤ P
(∣∣∣Ĉ − C∣∣∣ > T

2mq

)
(11)

Note that, given Q packets in the base interval, with de-
lay of δj for packet j, we can calculate:

Ĉ − C =
1

Q

Q∑
j=1

δj (12)

We adopt a Gaussian approximation for the distribution
of packet delays, as suggested in previous work [13]. Using

synchronization described in Section 5.4, we can ensure that
the distribution has mean 0. We thus model delay as i.i.d.
Gaussian: δj ∼ N(0, σ2). Then:

Ĉ − C ∼ N(0, σ2/Q) (13)

FNs ≤ P
(
|Ĉ − C| > T

2mq

)
= EλTQ

[
2

(
1− Φ0,1

(
T
√
Q

2mq · σ

))] (14)

where Φ0,1(·) is the CDF of N(0, 1), and EλTQ averages
with respect to the Poisson distributed variable Q.

To compute FNp, we first need to consider the proba-
bility that each individual packet would have shifted out of
the assigned slot. Suppose that the packet pj was distance x
from the center of the slot (−T/(2rm) ≤ x ≤ T/(2rm)).
Given the Gaussian distribution of δj , the probability of the
shift is:

P (pj shifted|x) = 1− Φ0,1

(
(T/2rm)− x

σ

)
+ Φ0,1

(
− (T/2rm) + x

σ

) (15)

Given that xwill have a uniform distribution within the slot,
we can integrate to find:

FNpj =
rm

T

∫ T/(2rm)

x=−T/(2rm)

P (pj shifted|x)dx (16)

The number of packets that are misdetected, out of P
packets in the mark interval, is given by the Binomial dis-
tribution B(P, FNpj ). Correspondingly:

FNp = EλTP

[
IFPpj

(1 + P − dτP e, dτP e)
]

(17)

Using equations (14) and (17), we can compute FNI in
(10) and correspondingly:

FN = IFNI
(n− η + 1, η) (18)

5 Evaluation

We evaluate SWIRL watermarking scheme for the appli-
cation of stepping stone detection. Our evaluation is also
valid for Tor congestion attack prevention application, dis-
cussed in Section 7. For the application of linking flows in
anonymous networks, a new set of parameters would need
to be derived following the methodology described in this
section.



5.1 Parameter choices

Table 3 shows the tradeoffs that result from choosing dif-
ferent parameters of the watermarking scheme, along with
the chosen values for our implementation. The choice of
q represents a tradeoff; on one hand, larger q increases the
false negative rate by increasing FNs of (14). On the other
hand, smaller q may result in an uneven distribution of s,
resulting in a multi-flow attack (MFA). We will defer a full
examination of this tradeoff until our MFA analysis in Sec-
tion 6.3; for the subsequent simulations and experiments,
we set q = 2.5.

Likewise, r represents a tradeoff between false negatives
and the amount of delay. The maximum inserted delay is
bounded by T/r(2 − 2/m). We experiment with different
choices of r in the design.

In our experiments, we pick n = 32, i.e., 32 base and
mark intervals are selected. This means that the watermark
sequence must be at least 64T long; however, this ensures a
low overall rate of errors.

The parameter T should be chosen based on the rate of
the flow, since the false positive rate is proportional to Tλ.
In our experiments, we use flows that have a rate of 4–7
packets per second (pps), thus we set T to be 2s. For flows
with rates lower than 3pps, we suggest doubling the T pa-
rameter to compensate for the smaller number of packets in
each interval.

Both τ and η can be used to control the rates of false
positive and false negative errors. For a fixed η, increasing
the τ threshold improves the false positives while worsens
the false negatives. Likewise, having the η threshold fixed
increasing the τ threshold improves the false positives and
worsens the false negatives. Figures 5(a) and 5(b) illustrate
the effect on false errors that comes from varying each of
the parameters while fixing the other; these results were ob-
tained using a flow rate of 4.4pps (the average for the traces
used in the following sections).

Note that given a choice of η, it is possible to find the
value of τ that results in an equal rate of false-positive
and false-negative errors; e.g., in Figure 5(a), this occurs
at τ = 0.5. The corresponding error rate is called the cross-
over error rate (COER); in this case, it is approximately
10−7. We can use this to optimize the joint choice of τ and
η by computing the COER that can be achieved at any given
choice of η. Figure 6 shows this for flows with average λ of
4.4pps. As can be seen, η = 12 minimizes the COER while
the corresponding value of τ where the COER is achieved
is approximately 0.5. Note that some applications will ben-
efit from a different optimization target; e.g., lowest false-
negative rate given a false-positive rate of at least 10−6. In
this case, the analytical false error rates can be used to find
the optimal values of η and τ .

We also compute the η threshold that achieves the min-
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Figure 6. Cross-Over Error Rate (COER) for
different detection thresholds η (λ = 4.4pps).

imal COER for different flow rates. Figure 7(a) shows the
results; the corresponding COER is shown in Figure 7(b).2

This shows that, for optimal detection, η should be chosen
based on the flow rate. The analytical computations, how-
ever, are based on approximate models of traffic and delays,
and compute upper bounds of error rates. For simplicity
of implementation, one might choose to use a single detec-
tion threshold regardless of the flow rate. Figure 8 shows
the false positive and false negative error rates for a detec-
tor using a fixed η = 12, with the corresponding optimal
η COER rates shown for comparison. As can be seen, for
flows with smaller rates the fixed detection threshold im-
proves the false negative errors rates at the price of increas-
ing the false positive errors; this is opposite for the higher
rate flows, but offers reasonable error performance overall.

5.2 Simulations

We simulated the SWIRL watermarking system in Mat-
lab. A watermark key is generated using the random num-
ber generators. We use n = 32, and use the system de-
sign parameters described in the previous section (see Ta-
ble 3). We use traces collected by the CAIDA project
from its equinix-chicago monitor—an OC192 link of
a Tier 1 ISP—in January 2009 [18]. We selected SSH (port
22) flows out of the traces, since SSH is frequently used
with interactive stepping stones; we used flows that were
at least 2nT = 128 s long, for a total of 304 flows. In
every run of the simulation, an SSH flow is randomly se-
lected from the database and is watermarked using the des-
ignated watermarking key. Since the analysis in Section 4
predicts that error rates are dependent on the rate of the flow,

2The non-monotonic behavior in the graph corresponds to changing the
value of T for flows below 3pps.



Table 3. Tradeoffs in selecting watermark system parameters

Parameter Tradeoffs Selected valueIncreasing improves: Decreasing improves:
r Delay, invisibility False-negative errors 20
m False positives False negatives 5
τ False positives False negatives 0.5
η False positives False negatives 12
n Detection performance (FP,FN) Detection time 32
T False-positive errors Detection time 2 sec
q MFA invisibility False-negative errors 2.5
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Figure 5. Analytical false error rates for different η and τ thresholds (λ = 4.4pps).

we chose flows that have similar rates for our simulations
(9 pps < λ < 10 pps).

To simulate the effect of network delays, we captured
traces of round-trip delays between pairs of randomly cho-
sen PlanetLab nodes [2]; each trace captures the jitter prop-
erties of the relevant Internet path.3 The traces have stan-
dard deviations ranging from σ = 6.2 ms to σ = 12 ms.
For every run of the simulations a network delay sequence
is selected at random and applied to the watermarked flow.
Finally, the watermarked flow affected by network delay is
evaluated by the simulated watermark detector to check for
the shared watermark. We run this experiment 1000 times,
each time with the same watermark key but random se-
lection of network flows and network delays. Figure 9(b)
shows the histogram of the number of watermark intervals
(out of n = 32) that the detector successfully detects by
evaluating a watermarked flow, namely true detected inter-
vals. We compare this to the expected errors as predicted by
the analysis in Section 4. The simulations show better than
predicted error behavior due to the use of upper bounds in
the analysis.

To consider false-positive errors, we perform the same

3We approximate the one-way jitter by the round-trip properties.

simulations to evaluate the number of watermark inter-
vals detected when the detector inspects non-watermarked
flows. Similar to the previous experiment, we randomly se-
lect network flows from the database and apply a network
delay trace to the selected flows using the same scenario.
We then pass the flows through the watermark detector to
check for the watermarked intervals. This experiment is
also run for 1000 times. Figure 9(a) illustrates the exper-
imental and analytical histograms of false detected inter-
vals, namely, the number of watermark intervals detected
by SWIRL detector from non-watermarked flows. Again,
the simulations result in fewer errors than predicted by the
upper bounds in the analysis. Comparing the two figures,
it is easy to see that there is a strong separation between
the two distributions; thus we should be able to achieve a
low false error rate by choosing the detection threshold ap-
propriately. Using a threshold of η = 12, we observed no
false-positive or false-negative errors in our simulations.

5.3 Implementation

We implemented the SWIRL watermarking scheme over
the PlanetLab infrastructure to evaluate its performance. We
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Figure 9. Histogram of watermark intervals detected by the simulated SWIRL detector for T
r = 100

(1000 random runs), as well as expected histogram values from the analysis.
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Figure 7. COER and optimal detection thresh-
old for different effective rates.
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Figure 8. Probability of false positive and
false negative errors for the optimal threshold
(COER) and for a constant detection thresh-
old of η = 12.

used same data set of SSH flows from the CAIDA traces, but
we explored a wide range of flow rates. In each experiment,
the watermarker reads the timings of packets in a flow read
from the trace and then applies the watermark to them to
generate a sequence of packets. These packets are then sent
over the wide area to another PlanetLab node running the
detector. Both the watermarker and detector are written in
C++. As in simulations, we use the system parameters from
Table 3. We also generate the watermarking key randomly
as described before. To obtain false-positive rates, we fed
flow timings from traces directly into the detector.

Table 4 summarizes the PlanetLab experiment results.
Since the analysis suggests different detection performance
for different flow rates, the flows are selected such that their



rates lie in one of the three ranges shown in Table 4; we used
about 100 flows per group. Since the detection performance
drastically improves with flow rate we skip data rates higher
than 10 pps in our experiments. Also, in order to illustrate
the effect of r parameter on the system performance each
group of flows are watermarked with three different values
of r. As the results show, in all cases a choice of η = 12
results in zero errors.

We notice that detection performance improves for
higher rate flows, e.g., group A results in the best detec-
tion results. For a given group of flows, increasing r de-
grades detection performance, but improves watermark de-
lay and invisibility as discussed in Section 6. Note that, as
mentioned before, for the lower-rate flows, SWIRL detector
uses a higher value for the T parameter, in order to com-
pensate for the smaller number of packets in each interval.
One can show that increasing T significantly improves the
detection performance at the expense of longer watermark
detection times.

5.4 Detector synchronization

As shown in Table 2, the offset o is shared between the
watermarker and the detector. In fact, this is not necessary,
as the scheme is self-synchronizing: the detector can per-
form detection using multiple offset value and return the
best result. For example, Figure 10 shows a detector try-
ing offset values in the range [0, T ] using steps of T/100.
This approach allows the detector to use a randomized off-
set; this can serve as an additional countermeasure for the
multi-flow attack, as discussed in [10]. It also ensures that
two flows that exhibit similar behavior (e.g., repeated down-
loads of the same web page) will nevertheless be marked
with different patterns.

6 Watermark invisibility

In this section, we start by showing that the very high
entropy of the SWIRL watermark key makes is infeasible
for an attacker to guess the watermark key. Then, we show
that without having access to the watermark key an attacker
is unable to detect the SWIRL watermark from a single wa-
termark flow, as well as from multiple watermarked flows.

6.1 Watermark key entropy

To maintain invisibility, the watermark key must remain
secret. We therefore estimate the size of the key space for
the secret parameters used in SWIRL, as listed in Table 2.

First, we consider the space of permutations π(i)
j . Each

permutation is a random member of Sm, and each permuta-
tion is chosen independently. Therefore, the total space of
permutations is (m!)rn. Next, we must consider the space

1 intervals = range(2*n) # 0,...,2n-1
2 for i in range(n):
3 b[i] = intervals[0]
4 intervals.remove(b[i])
5 # pick m[i] uniformly at random
6 # out of remaining intervals
7 m[i] = random.choice(intervals)
8 intervals.remove(m[i])

Figure 11. Algorithm to generate interval as-
signments (shown in Python)

of parameters bj and mj . Note that it is possible to create
equivalent keys by renumbering the intervals, therefore, we
must count the number of non-equivalent interval assign-
ments; we do so by defining a canonical ordering scheme
such that bi < bj for any i < j.

We can consider a recursive algorithm for generating a
random assignment of 2n intervals into base–mark pairs,
shown in Figure 11. It is easy to see that this algorithm
generates every assignment with canonical ordering exactly
once. The only random choice is on line 7 of the algorithm;
at iteration i(= 0, . . . , n−1), there are 2(n− i)−1 choices
available. Therefore, the space of choices is:

(2n− 1)(2n− 3) . . . (3)(1) =
(2n)!

2n(n!)
(19)

For a conservative analysis, we can assume that o = 0
and that the first 2n intervals are chosen for watermarking;
this results in the minimal required watermark duration of
2nT (= 128 s using the parameters in Table 3). We can thus
estimate the entropy of the key choice as:

log2

(m!)rn((2n)!)

2(n!)
=

rn log2(m!) + log2(2n!)− log2(n!)− n (20)

Using the parameters from Table 3, the key entropy is
over 4000 bits, thus it is completely infeasible for an at-
tacker to guess the secret key.

6.2 Single flow invisibility

In this section we demonstrate the infeasibility of distin-
guishing between SWIRL watermarked flows and benign
flows by an attacker who does not have access to the water-
mark key.

Delay. As described in Section 2, a flow watermark is re-
quired to be invisible. The magnitude of delays makes a



Table 4. Watermark detection results for the PlanetLab experiments.

Group Flow rate λ range
r

T True detected intervals False detected intervals
(packet/sec) (sec) Mean Range Mean Range

A 6–10
10 2 31.6 30–32 3.5 0–6
20 2 30.56 28–32 2.6 0–5
30 2 31.4 29–32 2.8 2–4

B 3–6
10 2 30.89 29–32 2.87 1–5
20 2 31.25 27–32 2.87 2–4
30 2 29.4 24-32 2.87 1–4

C 0–3
10 4 25.25 15–31 1.4 0–2
20 4 22.75 14–30 1.4 0–2
30 4 20.66 14-27 1.1 0–3
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Figure 10. Synchronization at watermark detection.

scheme easier or harder to identify. The maximum delay
inserted by SWIRL is:

Dmax =
T

r

(
2− 2

m

)
(21)

Table 5 shows the average watermark delay over the
packets for different values of the redundancy parameter r,
with T fixed at 2s. As evident from (17) and (14), lower
r will reduce the number of false negatives at the cost of
higher delay.

Information-theoretic tests. We also test the invisibil-
ity of the SWIRL using the information-theoretic tools de-
signed by Gianvecchio et al. [8] for the detection of covert
timing channels. We use two entropy tests ofEN andCCE
and apply them over a database of SSH flows, collected
from real traces at the North Carolina State University (the
average rate of the flows is 4.4pps). The tests are evaluated

for two classes of flows: a) regular non-watermarked flows,
and, b) the same flows watermarked with SWIRL (each flow
is 2000 packets long), with 10 tests per class. We then try
different decision thresholds to decide whether a test met-
ric corresponds to a watermarked flow. Figure 12 draws the
ROC curves for the EN and CCE test metric, where the true
positive is the odds of detecting a watermarked flow and the
false positive is the odds of declaring a non-watermarked
flow to be watermarked. As can be seen, the test metrics
are not able to provide a confident separation between non-
watermarked and SWIRL watermarked flows.

6.3 Multiple flow invisibility

Kiyavash et al. [10] show how multi-flow attacks (MFA)
can be applied to compromise invisibility of interval-based
flow watermarking schemes [15, 19, 24]. The main idea of
the MFA attack is to collect a number of network flows wa-



Table 5. Average watermark delay (per packet) for different values of T/r along with the detection
performance (σ = 10 msec, results averaged over 500 runs).

r
T/r Average delay Maximum delay Mean true intervals Mean false intervals

(msec) (msec) (msec) (out of n=32) (out of n=32)
10 200 53.77 200 29.56 2.67
20 100 17.91 100 26.3 2.70
30 66.7 11.84 66.67 23.40 2.43
40 50 9.05 50 20.26 2.45
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Figure 12. The ROC curves for the EN and
CCE tests.

termarked by an interval-based watermarking scheme, us-
ing the same watermark key, and aggregate these flows to
extract watermarking parameters and the watermark key.
More specifically, the MFA attacker evaluates the aggre-
gate histogram of a number of watermarked flows in order
to find the watermark patterns, e.g., empty intervals, that are
similar for all of the watermarked flows. The MFA attack
has been shown to be highly effective in compromising pre-
vious interval-based watermarking schemes [15,19,24]. We
analyze the resilience of SWIRL to multi-flow attacks.

The flow-dependent approach taken by SWIRL is de-
signed to resist multi-flow attacks. In particular, since dif-
ferent flows have different watermarks, an aggregated his-
togram should not exhibit any repeated patterns. However,
if the distribution of quantized values s is not uniform, an
MFA attack may be able to identify the watermark. For
example, if all watermarked flows use the same value of s
for some interval, this will have a pronounced effect on the
histogram.

The parameter q helps smooth out the distribution. In
Figure 13, we plot the histogram of 10 non-watermarked

Table 6. Detected intervals for varying values
of q (λ = 4.1pps, 1000 runs).

q
Watermarked Non-watermarked

Mean Range Mean Range
5 29.16 21–32 1.71 0–7

2.5 29.44 23–32 1.69 0–6
1.6 29.61 22–32 1.82 0–8

1.25 29.78 23–32 1.77 0–7

flows, and 10 watermarked flows, using different choices
for q. With q = 5, the variance of the watermarked
flows is similar to the unwatermarked case. However, with
q = 1.25, the histogram exhibits a clear pattern, since the
number of quantification steps is too small and thus the dis-
tribution of s is heavily skewed.

In this scenario, we watermarked all flows using the
same offset. By choosing randomized offset, we can de-
stroy the synchronization between flows: any shift of at
least T/(mr) will result in completely unaligned flows. As
discussed by Kiyavash et al. [10], an adversary could still
examine different potential alignments; however, when pa-
rameters from Table 3 are used, it would be necessary to
examine 640k alignments to find the correct alignment of
k flows; this is both computationally expensive and is also
deleterious to the false-positive detection rate for an MFA
attack.

Note that, although increasing the q parameter improves
resilience to the multi-flow attack, it also increases the false-
negative rate. We demonstrate this in Table 6 by plotting the
number of intervals counted as detected among a sample
of both watermarked and non-watermarked flows. We note
that the true detection rate falls with increasing q, whereas
the false positives remain unaffected (for a given threshold
η); this is consistent with the analysis in Section 4, where
q factors into the false-negative but not the false-positive
calculations.

Based on these results and the effect seen in Figure 13,
we pick q = 2.5 to balance detection performance and sus-
ceptibility to the MFA attack.
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(c) Watermarked histogram (q = 1.25)

Figure 13. Cumulative histogram of 10 flows, non-watermarked and watermarked with different values
of q.

6.4 Active attacks

An adversary may use a more active approach to detect-
ing and removing watermarks; e.g., by sending packets with
embedded timestamps [13] to detect extra delays, or by in-
troducing extra delays at the stepping stone. It is easy to see
that, in the limit, the attacker can defeat any traffic analysis
scheme by generating an independent packet schedule for
a relayed flow, using dummy packets and introducing po-
tentially large delays [3]. Previous work on stepping stone
detection has considered limiting an attacker by a maximum
tolerable delay [6]; however, we expect that a normal user
would be less tolerant of added delays than a determined
attacker, and a blind watermarking scheme that introduces
delays that are much shorter than those it tolerates remains
elusive and is an apt area for future research. We note
that SWIRL will work well at detecting stepping stones and
other relays over which the attacker does not have full con-
trol, as is the case in the application described in Section 7.

7 Tor congestion attack

Watermarks have been traditionally seen as privacy-
invasive tools, since they can be used to link relayed flows
and thus compromise anonymity systems such as Tor [5].
We show that SWIRL enables a new, privacy-enhancing use
of watermarks in order to prevent a certain type of attack
against Tor.

Evans et al. [7] demonstrated an attack on Tor that uses
active probing to detect which Tor routers are used to for-
ward a particular tunnel, thus breaking anonymity. Unlike
watermarks or passive traffic analysis, their attack works
even when the routers being used are not under the con-
trol or observation by the adversary. The basis of the attack
comes from an earlier congestion attack, explored by Mur-
doch and Danezis [11]. However, a key feature of the new

attack is the use of bandwidth amplification to create suffi-
cient congestion as to make this attack practical on today’s
Tor network.

The bandwidth amplification exploits the fact that paths
in Tor can be constructed to have an arbitrary length. This,
coupled with the fact that each hop on a path knows only
the previous and the next hop, makes it easy to construct a
path that loops through a set of routers many times. This, in
turn, ensures that a single packet sent by a user will result
in k packet transmissions at each of the routers in the loop,
for near-arbitrary values of k.

A potential defense described by Evans et al. is to mod-
ify the Tor protocol to restrict the number of circuit exten-
sions it allows, and thus the maximum path length. How-
ever, they point out that this is not sufficient to completely
prevent such congestion attacks, as loops can still be cre-
ated by going outside the Tor network and then returning.
In particular, a client can create a Tor tunnel, which for-
wards its traffic over Tor to TCP connection from an exit
node to some destination on the Internet. This TCP con-
nection can then be used to connect back to Tor as a client,
and repeat the circuit again. Iterating this process yields the
same functionality as the long-path attack. Although a naive
approach may be foiled by exit and entrance policies in Tor,
the attacker can instead use proxies, other anonymizers, or
hidden Tor entry and exit points. Evans et al. leave defense
to such external routing loops as an open problem.

We propose to use SWIRL as a solution. The basic strat-
egy is to configure Tor exit nodes to insert a SWIRL wa-
termark on all outgoing TCP traffic. Note that this labels
the traffic as coming from Tor, but given that the list of exit
nodes is published in the Tor directory, this does not sig-
nificantly degrade privacy. Each entry guard, correspond-
ingly, tries to detect the SWIRL watermark on an incoming
TCP connection and rejects the stream if the watermark is
found. This way, the congestion attack is restricted to in-



ternal paths only, which can be solved using the solution
described above.

Note that this application can tolerate a significant rate
of false positives (say, 10−3 or even higher). This is be-
cause a false positive will simply cause a legitimate user to
retry a connection; given that the current Tor network does
not provide very reliable service, an occasional extra failed
connection is unlikely to significantly affect usability. This
means that SWIRL parameters can be tuned to be able to
mark shorter flows as compared with other setting. Addi-
tionally, full invisibility is not needed, as the open proxies
are unlikely to be adversarial (if they were, they could sim-
ply generate the traffic themselves). Thus, the q parameter
can be reduced to decrease false-negative errors.

It is important to realize that, although in principle any
traffic analysis technique could be used, the properties of
SWIRL make it particularly suitable for this task. Pas-
sive traffic analysis techniques (and non-blind watermarks)
would require each exit node to communicate timing pat-
terns of each exiting flow to each entry node. In addition to
being very expensive, such an approach would completely
defeat the protection provided by the Tor network, as each
entry node would be able to detect which exit node each of
its flows was using! A watermark, on the other hand, marks
only the exiting flow and cannot be linked to the entry node.
(Each exit node could, in fact, use the same watermark.)
Additionally, other watermarking schemes introduce large
delays, affecting the usability of the Tor network. The de-
lays used by SWIRL, on the other hand, are significantly
smaller than the typical latency of a Tor tunnel [22] and are
unlikely to be noticed.

To study this attack, we simulated SWIRL being applied
to Tor traffic flows. We used a set of flow timings observed
by a Tor middle node4 in our tests. We used a total of 14
flows that were long enough for our watermark. We then
ran tests using both watermarked and non-watermarked ver-
sions of the flows to compute the number of true and false
intervals detected. The results are shown in Table 7. The
rates of the flows had a natural separation into two classes
and we present the results for each class separately. Note
that our tests are most representative for a direct connection
from an exit to an entry node; any proxies or other relays
may introduce extra delays that affect parameter choices.
(However, the large and highly variable delays in the ac-
tual Tor network do not matter here, since the watermark
is being transmitted over a channel external Tor.) Prior to
implementation, it would be necessary to do a survey of
proxy mechanisms available for congestion attacks and tune
the parameter choices appropriately; we leave this to future
work.

4This data set was provided to us by Steven Murdoch.

Table 7. Watermark detection results for Tor
flows.

Flow rate True intervals False intervals
(pps) mean range mean range

3.25–3.57 27.51 17–32 5.89 2–11
11.58-14.33 28.76 21–32 6.88 3–14

8 Conclusion

We proposed SWIRL, a novel flow-dependent water-
marking scheme for network flows. SWIRL uses an
interval-based structure in order to provide robustness to
network perturbations, while evading multi-flow attacks
by making the watermark dependent on the containing
flow. SWIRL performs blind watermarking, reducing the
communication overhead and computation overhead com-
pared to passive traffic analysis or non-blind watermarking
schemes. We show through analysis, simulation, and exper-
iments that SWIRL is able to link related flows using flow
lengths as short as 2 minutes, while providing error rates
on the order of 10−6 or less. SWIRL introduces short de-
lays on average and it is undetectable using existing covert
channel detection tools. Finally, we show that SWIRL can
be used to address a congestion attack on the Tor network.
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