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Abstract. In this paper we show two attacks against universally re-
silient mix-nets. The first attack can be used against a number of mix-
nets, including Furukawa-Sako01 [6], Millimix [11], Abe98 [1], MiP-1,
MiP-2 [2, 3] and Neff01 [19]. We give the details of the attack in the case
of Furukawa-Sako01 mix-net. The second attack breaks the correctness of
Millimix [11]. We show how to counter these attacks, and give efficiency
and security analysis for the proposed countermeasures.

1 Introduction

Mix-net [4] is a cryptographic technique that is used to hide the origin of mes-
sages in network communication. It can be used in a wide range of applica-
tions, including anonymous email [4], Web browsing [7], electronic voting [22,
14], anonymous payment systems [9], secure multiparty computation [12] and
privacy in advertisements [15]. A mix-net consists of a set of mix servers, each
receiving as input a list of ciphertexts and outputting either a permuted list of
the re-encrypted ciphertexts, or a permuted list of the corresponding plaintexts.
By keeping the permutation secret, the mix-net can hide the correspondence be-
tween input items and output items hence providing privacy for the originators
of messages. Other important properties of mix-nets are robustness and verifia-
bility. Robustness means that the mix-net is able to operate correctly regardless
of component failure. Verifiability means that the correctness of mix-net opera-
tion can be verified by any system participant. A mix-net that provides privacy,
robustness and verifiability is called resilient [5].

A common way of proving correctness of the results is that each mix-server
after producing the output, performs a verification protocol. If the verification
results in accept, the mix-server is assumed honest and its output is taken to
the next mix-server. If the verification outputs reject, the mix-server is found
dishonest and is expelled from the mix-net and its input is passed to the next mix-
server. Many mix-nets, including those given in [11, 2, 3, 6, 19] use zero-knowledge
proofs based on the difficulty of discrete logarithm problem to perform their
verification protocol.

In this paper we show that two mix-nets, proposed by Furukawa et al. [6] and
Jakobsson et al. [11], are not resilient. We show that in both cases, despite prov-
able security, a mix-server can produce incorrect output without being detected.



One of the attacks can also be used against other mix-nets, including mixing
phase in MiP-1, MiP-2 [2, 3] and Neff01 [19] and decryption phase in Abe98 [1]
and MiP-2 [2, 3].

The organization of the paper is as follows. In section 2, we recall crypto-
graphic tools and systems that will be used in the rest of the paper. Section
3 gives brief descriptions of Furukawa-Sako01 and Millimix mix-nets. The next
two sections show attacks, countermeasures and analysis for Furukawa-Sako01
and Millimix mix-nets. Section 6 concludes the paper.

2 Background

2.1 Model

A mix-net consists of the following participants that are all assumed polynomi-
ally bounded. Users send messages to mix-net. Mix servers perform mixing of
then input messages and produce an output, which could be used as input to
other mix-servers. Verification can be external where a trusted verifier verifies
operation of the mix-net, or internal where each mix server is verified by other
mix servers in the same mix-net. We assume there is a bulletin board which
is a shared memory where all participants have read access to and can append
messages after being authenticated. A bulletin board simulates an authenticated
broadcast channel.

An adversary is a party whose objective is to compromise resiliency of the
mix-net. An adversary that can corrupt tu users and ts mix servers is called a
(tu, ts) adversary. Corruption is before the system starts operation (static ad-
versary).

2.2 Requirements

To define resiliency we follow the definitions in [5].

– privacy: it is infeasible for the adversary to output a pair of input and the
corresponding output of an honest user with probability significantly greater
than random guess.

– verifiability: if a set of participating mix servers produce an output different
from the one prescribed by the protocol, then the verification will be able
to establish this fact and reveal the identities of the cheating servers. If
verification only uses publicly available information of the mix-net, the mix-
net is called universally verifiable.

– robustness: ensures that the probability of producing incorrect output is
negligibly less than 1.

– efficiency is measured in terms of the computation and communication costs
of participants.

A mix-net is resilient if it satisfies privacy, robustness and verifiability. A re-
silient mix-net is universally resilient if it is universally verifiable. It is optimally
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resilient if tu and ts have their maximum possible values, that is tu is equal n−2
where n is he number of users, and ts is equal to b(s− 1)/2c in case of internal
verification and is equal to s− 1 in the case of external verification.

2.3 Cryptographic tools

El Gamal-Schnorr non-malleable encryption Inputs to a mix-net must be
encrypted by a non-malleable encryption scheme. In a non-malleable encryption
scheme, given a ciphertext it is computationally infeasible to generate a different
ciphertext such that the corresponding plaintexts are related in a known manner.
If the encryption scheme is malleable, an adversary can trace an input ciphertext
ci, by creating a ciphertext ci′ whose plaintext is related to the plaintext of
ci in a known manner and in the output check for the plaintexts that satisfy
the relationship. An example of this attack is shown in [23] against mix-net in
[22]. Most of mix-net schemes use a combination of El Gamal encryption and
Schnorr signature to efficiently achieve non-malleability. El Gamal-Schnorr non-
malleable encryption scheme [2] can be described as follows. Let p and q be two
large primes such that p = 2kq + 1, where k is a positive integer and g is a
generator of a subgroup Gq of order q in Z∗

p . Hereafter, unless stated otherwise
we assume all computations are in modulo p. The private key is x ∈ Zq and
the public key is (y, g) where y = gx. A ciphertext of message m ∈ Gq is
(α, β, c, z) where α = mys, β = gs, c = H(α, β, gw), z = w − cs mod q, H is
a hash function H : {0, 1}∗ → 2|q| and s, w ∈R Zq (i.e. chosen randomly and
with uniform distribution from Zq). Validity of a ciphertext can be verified by

checking whether c
?= H(α, β, gzβc) and α, β ∈ Gq. Intuitively, Schnorr signature

is used to show that the ciphertext must have been encrypted by someone with
the knowledge of s. The plaintext is computed as m := α/βx.

An El Gamal-only ciphertext (α, β) can be re-encrypted as another ciphertext
(α× yr, β× gr) of the same plaintext m, where re-encryption exponent r ∈R Zq.

Schnorr identification Let p,q,x and (y, g) be defined as above. A prover
P can show his knowledge of the private key x to a verifier V using Schnorr
identification protocol as follows.

1. P −→ V: a commitment w = ge, where e ∈R Zq

2. P ←− V: a challenge c ∈R Zq

3. P −→ V: a response s = e + cx mod q

V then verifies that gs = wyc. Schnorr identification protocol can be converted
into a Schnorr signature scheme by generating c = H(w,m) for a message m
that is to be signed using a hash function H : {0, 1}∗ → 2|q|. Schnorr signature
is used in the encryption scheme above.

Disjunctive Schnorr identification Let p and q be defined as above. Suppose
(x1, (y1, g1)) and (x2, (y2, g2)) are two instantiations of (x, (y, g)) above. A prover
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P shows he has one of the private keys x1 or x2 to a verifier V by using the
Disjunctive Schnorr identification protocol as follows. Assume that P possesses
x1.

1. P −→ V: two commitments w1 = ge1
1 , w2 = gs2

2 y−c2
2 , where e1, e2, c2, s2 ∈R

Zq

2. P ←− V: a challenge c ∈R Zq

3. P −→ V: responses s1 = e1 + c1x1 mod q, s2, c1 = c⊕ c2, c2

V then checks if gsi
i = wiy

ci
i for i ∈ {1, 2}. Similar to Schnorr identification

protocol, Disjunctive Schnorr identification protocol can be converted into a
non-interactive form.

Permutation Matrices A matrix (Aij)n×n is a permutation matrix if there
exists a permutation φ so that ∀i, j ∈ {1, ..., n}

Aij =
{

1 mod q if φ(i) = j
0 mod q otherwise

It is proved in [6] that an integer valued matrix (Aij)n×n is a permutation
matrix if and only if ∀i, j, k ∈ {1, ..., n}

n∑
h=1

AhiAhj =
{

1 mod q if i = j
0 mod q otherwise (1)

n∑
h=1

AhiAhjAhk =
{

1 mod q if i = j = k
0 mod q otherwise (2)

Pairwise permutation network Abe [2, 3] used permutations that were con-
structed from switching gates. A permutation network is a circuit, which, on
input (1, ..., n) and an arbitrary permutation Π : {1, ..., n} → {1, ..., n}, out-
puts (Π(1), ...,Π(n)). A switching gate is a permutation network for two input
items. A pairwise permutation network [25] is a permutation network that is
constructed from switching gates and requires n log2 n− n + 1 switching gates.

3 Mix-nets

In this section we recall two mix-nets that are subjected to the attacks proposed
in this paper.

3.1 Furukawa-Sako01 Mix-net

Overview This is one of the two most efficient mix-nets with optimal universal
resiliency. Let p, q, private key x and public key (y, g) be set as above, with
p = 2kq + 1, where k is a positive integer. Input to a mix-server is a set of El
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Gamal ciphertexts {(gi,mi)|i = 1, ..., n} encrypted by the public key (y, g), and
so gi,mi ∈ Gq, i = 1, ..., n. A mix-server uses a permutation φ and re-encryption
exponents {ri|i = 1, ..., n} to compute its output {(g′i,m′

i)|i = 1, ..., n} as follows:

g′i = grigφ−1(i)

m′
i = yrimφ−1(i)

To prove the correctness of its operation, the mix-server needs to show the
existence of a permutation matrix (Aij)n×n and {ri|i = 1, ..., n} so that:

g′i = gri

n∏
j=1

g
Aji

j (3)

m′
i = yri

n∏
j=1

m
Aji

j (4)

This can be done by a verification protocol below that proves the following
statements:

– Given {gi} and {g′i}, {g′i} can be expressed as equation (3) using {ri} and a
matrix that satisfies equation (1).

– Given {gi} and {g′i}, {g′i} can be expressed as equation (3) using {ri} and a
matrix that satisfies equation (2).

– The matrix and {ri} in the above two statements are the same.
– For each pair (g′i,m

′
i), the same ri and {Aij} has been used.

Verification The input is p, q, g, y, g̃, {g̃i}, {(gi,mi)}, {(g′i,m′
i)}, i = 1, ..., n,

where {g̃, g̃1, ..., g̃n} is a basis generated randomly and independently from the
input ciphertexts, so that, under discrete logarithm assumption, it is computa-
tionally infeasible to obtain {ai} and a satisfying g̃a

∏n
i=1 g̃i

ai = 1. The prover
is P and the verifier is V.

1. P generates: δ, ρ, τ, α, αi, λ, λi ∈R Zq, i = 1, ..., n
2. P computes:

t = gτ , v = gρ, w = gδ, u = gλ, ui = gλi , i = 1, ..., n

g̃i
′ = g̃ri

n∏
j=1

g̃j
Aji , i = 1, ..., n (5)

g̃′ = g̃α
n∏

j=1

g̃j
αj (6)

g′ = gα
n∏

j=1

g
αj

j
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m′ = yα
n∏

j=1

m
αj

j

ṫi = g

∑n

j=1
3αjAji+τλi , i = 1, ..., n

v̇i = g

∑n

j=1
3α2

jAji+ρri , i = 1, ..., n

v̇ = g

∑n

j=1
α3

j+τλ+ρα

ẇi = g

∑n

j=1
2αjAji+δri , i = 1, ..., n

ẇ = g

∑n

j=1
α2

j+δα

3. P −→ V: t, v, w, u, {ui}, {g̃i
′}, g̃′, g′,m′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, i = 1, ..., n

4. P ←− V: challenges {ci|i = 1, ..., n}, ci ∈U Zq

5. P −→ V:

s =
n∑

j=1

rjcj + α

si =
n∑

j=1

Aijcj + αi mod q, i = 1, ..., n

λ′ =
n∑

j=1

λjc
2
j + δ mod q

6. V verifies:

g̃s
n∏

j=1

g̃j
sj = g̃′

n∏
j=1

g̃j
′cj (7)

gs
n∏

j=1

g
sj

j = g′
n∏

j=1

g
′cj

j (8)

ys
n∏

j=1

m
sj

j = m′
n∏

j=1

m
′cj

j (9)

gλ′ = u
n∏

j=1

u
c2

j

j

tλ
′
vsg

∑n

j=1
(s3

j−c3
j ) = v̇

n∏
j=1

v̇j
cj ṫj

c2
j

wsg

∑n

j=1
(s2

j−c2
j ) = ẇ

n∏
j=1

ẇj
cj

3.2 Millimix

Overview Millimix is a mix-net for small input batches that provides optimal
universal resiliency with internal verification. Millimix uses El Gamal scheme for
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encryption. The two primes p and q, private key x and public key (y, g) are set
up as described above, and p = 2q + 1. To satisfy non-malleability, El Gamal-
Schnorr non-malleable encryption scheme can be used. Input to the mix-net is a
set of ciphertexts encrypted by the public key (y, g). If El Gamal-Schnorr non-
malleable encryption scheme is used, and an input ciphertext (α, β, c, z) needs
to pass non-malleability test before (α, β) is taken to the first mix-server. Each
mix-server, except the first one, takes output of the previous mix-server as its
input, and the output of the mix-net is the output of the last mix server.

Each mix server simulates a pairwise permutation network consisting of a
number of switching gates. Each switching gate re-encrypts and permutes the two
input ciphertexts. The mix server outputs the result of permutation and proves
the correctness of each of its switching gate’s operations using a verification
protocol described in the following section. Once a corrupt mix server is found,
it is expelled and its input is passed to the next mix server. If the corrupt mix-
server is the last mix-server, its input is posted to the bulletin board as the
output of the mix-net.

The system is efficient because for an input batch of n items, each mix server
needs O(nlogn) modular exponentiations with low constant to perform the re-
encryption and internal verification.

Millimix uses threshold decryption to decrypt the input list of ciphertexts.
We omit the details of this as it is not relevant to the attack described below,
which breaks the correctness of the system.

Verification The verification is by proving correctness of the output of each
switching gate. The input to a switching gate is a pair of ciphertexts (α1, β1),
(α2, β2) of the two plaintexts m1, m2 respectively, and the output is a pair
of ciphertexts (α′

1, β
′
1), (α′

2, β
′
2) of the two plaintexts m′

1, m′
2 respectively. The

server shows its correctness of the switching gate by proving the following two
statements:

– Statement 1: m1m2 = m′
1m

′
2 using Plaintext Equivalent Proof (PEP ) for

ciphertexts (α1α2, β1β2) and (α′
1α

′
2, β

′
1β

′
2).

– Statement 2: m1 = m′
1 OR m1 = m′

2 using DISjunctive Plaintext Equivalent
Proof (DISPEP )

PEP proves a ciphertext (α′, β′) is a valid re-encryption of a ciphertext
(α, β) encrypted using El Gamal public key (y, g). That is there exists γ ∈ Zq

such that α = α′yγ and β = β′gγ . Jakobsson et al [11] showed that this proof
can be obtained using Schnorr identification protocol (or Schnorr signature for
non-interactive case) as described below. Assume two ciphertexts (α, β) and
(α′, β′) are given, compute (ys, gs) = ((α/α′)z(β/β′), yzg). Now if (α, β) and
(α′, β′) are encryptions of the same message, then there exists γ ∈ Zq such
that (ys, gs) = ((yzg)γ , yzg). The prover (mix-server) uses Schnorr identification
protocol to show that it knows γ.

DISPEP proves that a ciphertext (α1, β1) represents a re-encryption of one
of the two ciphertexts (α′

1, β
′
1) and (α′

2, β
′
2). DISPEP is implemented by having
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the prover to perform Disjunctive Schnorr identification protocol. Jakobsson et
al. suggested to find (ys1, gs1) = (α1/α′

1, β1/β′
1) and (ys2, gs2) = (α1/α′

2, β1/β′
2)

as two valid Schnorr public keys and use Disjunctive Schnorr identification pro-
tocol to show knowledge of one of the Schnorr private keys, which is also the El
Gamal private key x of the ciphertexts. Therefore, this requires the mix-server
to know the El Gamal private key x of the ciphertexts, which is not acceptable.
In section 4.2, we show a revised version of this protocol which uses the approach
in PEP and removes this problem.

4 Attacks

In this section we propose two attacks that break the resiliency of a number of
mix-nets. We describe the first attack on Furukawa-Sako01 scheme and comment
on its application to other schemes.

4.1 Attacking Furukawa-Sako01 Scheme

Description It is possible to break correctness of this mix-net with a success
chance of at least 50%.

Let a be a generator of Zp. Then akq 6= 1 and a2kq = 1. The mix server
modifies one of the output ciphertexts as

g′i0 = gri0 gφ−1(i0)

m′
i0 = yri0 mφ−1(i0)a

kq

where i0 ∈ {1, ..., n}. (g′i0 ,m
′
i0

) is not a valid re-encryption of (gφ−1(i0),mφ−1(i0)).
However, if the challenge ci0 is even, then the verification protocol still accepts
the output as correct, as shown below.

The mix server only modifies m′
i0

which only affects equation (9) in the verifi-
cation protocol. If the verifier can successfully verify equation (9), the verification
protocol produces incorrect results. Because ci0 is even, aci0kq = 1. So

m
′ci0
i0

= (yri0 mφ−1(i0)a
kq)ci0 = (yri0 mφ−1(i0))

ci0

Therefore, equation (9) remains correct.
In another version of this attack, the mix server modifies g′i0 in a similar

manner so that the incorrect ciphertext becomes

g′i0 = gri0 gφ−1(i0)a
kq

m′
i0 = yri0 mφ−1(i0)

.
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Countermeasure Multiplying yri0 mφ−1(i0) by akq generates a m′
i0

that is not
in Gq. The attack can be detected if the verifier checks to see if g′i,m

′
i ∈ Gq,

i = 1, ..., n . If k = 1, it is the same as checking the Legendre symbol of g′i,m
′
i,

for which an algorithm can be found in [16] (p. 73). The algorithm requires one
extra modular multiplication.

If k 6= 1, two extra modular exponentiations are required. So the verification
cost at each mix server will increase by 2n modular exponentiations, where n is
the number of input items.

Security Furukawa-Sako01 protocol has been proved to be complete, sound and
zero-knowledge. In the following, we show the effect of the above attack on the
proof of soundness and note that completeness and zero-knowledgeness proofs
will not be affected by the proposed attack.

The proof of soundness is based on Lemma 1 restated from [6]. We show
the short-coming of the original proof of the lemma and how the proposed fix
completes the proof.

Lemma 1. Assume P knows {Aij}, {ri}, {αi} and α satisfying equations (5)
and (6), and {si} and s satisfying equation (7). If equations (8) and (9) hold
with non-negligible probability, then either the relationships

g′ = gα
∏n

j=1 g
αj

j

g′i = gri
∏n

j=1 g
Aji

j , i = 1, ..., n
m′ = yα

∏n
j=1 m

αj

j

m′
i = yri

∏n
j=1 m

Aji

j , i = 1, ..., n

hold or P can generate nontrivial integers {ai} and a satisfying g̃a
∏n

i=1 g̃i
ai = 1

with overwhelming probability.

Proof. Replace g̃′ and {g̃′i} in equation (7) by those corresponding values in
equation (5) and (6), we have the following:

g̃

∑n

j=1
rjcj+α−s

n∏
i=1

g̃i

∑n

j=1
Aijcj+αi−si = 1

Therefore, either the equations{
s =

∑n
j=1 rjcj + α

si =
∑n

j=1 Aijcj + αi

hold or P can generate nontrivial integers {ai} and a satisfying g̃a
∏n

i=1 g̃i
ai = 1

with overwhelming probability.
If the equations hold, replace s and {si} in equation (8), we have the following

equation holds with non-negligible probability

1 = b0

n∏
i=1

bci
i (10)
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where

b0 =
gα

∏n
j=1 g

αj

j

g′

bi =
gri

∏n
j=1 g

Aji

j

g′i
, i = 1, ..., n

.
At this point, the proof in [6] reached the conclusion that bi = 1, i = 0, ..., n.

This conclusion is only correct if bi ∈ Gq, i = 0, ..., n, as shown below.
Suppose C is the vector space that is spanned by the set S of all vectors

u = (1, c1, c2, ..., cn)

such that c1, c2, ..., cn satisfy equation (10). As bi ∈ Gq, i = 0, ..., n, we can
assume bi = gei , i = 0, ..., n, where ei ∈ Zq. Define the vector e = (e0, ..., en),
each vector u ∈ S satisfies the equation

eu = 0

If dim(C) < n+1, the size of the set S is at most qn−1 and so the probability that
equation (10) holds is at most qn−1/qn = 1/q, which is negligible. If dim(C) =
n + 1, then e = 0 and so bi = 1, i = 0, ..., n.

By repeating the same argument for m′ and {m′
i}, Lemma 1 has been proved.

4.2 Millimix Attack

Description Millimix is vulnerable to two attacks. An attack similar to the one
against Furukawa-Sako01 mix-net described above can be applied to Millimix.
That is a malicious mix-server can output incorrect ciphertexts without being
detected and the success chance is at least 50%. The attack can be prevented
using the same proposed countermeasure. That is, at the beginning of the verifi-
cation protocol, the verifier must verify if α′

i, β
′
i ∈ Gq, i = 1, 2. This is the same

as calculating the Legendre symbol of α′
i, β

′
i, for which the algorithm described

in [16] (p. 73) requires one modular multiplication.
In the following, we describe a second attack and a method of countering

the attack. As noted earlier, the original DISPEP in [11] computes (ys1, gs1) =
(α1/α′

1, β1/β′
1) and (ys2, gs2) = (α1/α′

2, β1/β′
2) as two Schnorr public keys and

shows knowledge of one of the Schnorr private keys using Disjunctive Schnorr
identification protocol. However, this requires the mix-server to know the El
Gamal private key x of the ciphertexts, which is not acceptable. To remove this
problem, we show a corrected version of DISPEP , which uses the approach in
PEP , and then show that even with this modification, the correctness of the
mix-net can be broken.

Modified DISPEP : DISPEP proves that a ciphertext (α1, β1) represents a
re-encryption of one of the two ciphertexts (α′

1, β
′
1) and (α′

2, β
′
2). Compute

(ys1, gs1) = ((α1/α′
1)

z1(β1/β′
1), y

z1g)
(ys2, gs2) = ((α1/α′

2)
z2(β1/β′

2), y
z2g)
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as two Schnorr public keys. Assume w.l.o.g. that (α1, β1) is a re-encryption
of (α′

1, β
′
1), then there exists γ1 ∈ Zq such that (ys1, gs1) = ((yz1g)γ1 , yz1g).

The prover (mix-server) uses Disjunctive Schnorr identification protocol with
(ys1, gs1), (ys2, gs2) to show that it knows γ1.

Attack against Verification:
The attack exploits the fact that the exponents z in PEP and z1, z2 in DISPEP
can be arbitrarily chosen. Let (α1, β1) and (α2, β2) denote the two input cipher-
texts to a switching gate of a malicious mix-server. The server computes its
output ciphertexts as follows.

(α′
1, β

′
1) = (α1y

−r1−s1z1g−s1 , β1g
−r1)

(α′
2, β

′
2) = (α2y

−r2+s1z1−szgs1−s, β2g
−r2)

Although (α′
1, β

′
1), (α

′
2, β

′
2) are not valid outputs of the switching gate, but, us-

ing PEP and DISPEP the server can still show that: (i) (α′
1α

′
2, β

′
1β

′
2) is the

re-encryption of (α1α2, β1β2), and (ii) either (α′
1, β

′
1) or (α′

2, β
′
2) re-encrypts

(α1, β1). To show (i), the server computes

(α/α′, β/β′) = (α1α2/α′
1α

′
2, β1β2/β′

1β
′
2)

= (yr1+r2+szgs, gr1+r2)
(ys, gs) = ((α/α′)z(β/β′), yzg) = ((yzg)r1+r2+sz, yzg)

= (gr1+r2+sz
s , gs)

Now Schnorr identification protocol will be performed as follows.

1. P −→ V: a commitment w = ge
s

2. P ←− V: a challenge c

3. P −→ V: a response s = e + c(r1 + r2 + sz)

V then check if gs
s = wyc

s. This equation is correct and PEP has been broken.
To show (ii), we note that

(ys1, gs1) = ((α1/α′
1)

z1(β1/β′
1), y

z1g) = ((yz1g)r1+s1z1 , yz1g)
= (gr1+s1z1

s1 , gs1)

and so Disjunctive Schnorr identification protocol can be performed as follows.

1. P −→ V: two commitments w1 = ge1
s1, w2 = gs2

s2y
−c2
s2

2. P ←− V: a challenge c

3. P −→ V: responses s1 = e1 + c1(r1 + s1z1), s2, c1 = c⊕ c2, c2

V then check if gsi
si = wiy

ci
si , i = 1, 2. These equations hold, so DISPEP suc-

ceeds.

11



Countermeasures To counter the attack against PEP , z must be either chosen
interactively by the verifier after the switching gate has produced the output,
or non-interactively calculated as z = H(α′ ‖ β′ ‖ α ‖ β), using a hash function
H : {0, 1}∗ → 2|q|. With this modification, the non-interactive version of the
protocol will be as follows.

To prove that (α′, β′) is a re-encryption of (α, β), the prover provides a tuple
(z, c, s). A verifier can verify the proof by checking if

z
?= H(α′ ‖ β′ ‖ α ‖ β) mod q

c
?= H(g′ ‖ y′ ‖ g′sy′c) mod q

where (y′, g′) = ((α/α′)z(β/β′), yzg).
DISPEP can be modified in a similar way. That is both z1 and z2 must be

either chosen by the verifier after the switching gate has produced the output,
or computed as z1 = z2 = H(α′

1 ‖ β′
1 ‖ α′

2 ‖ β′
2 ‖ α1 ‖ β1 ‖ α2 ‖ β2). The

prover then performs Disjunctive Schnorr identification (or signature) protocol,
in which the public keys are

(ys1, gs1) = ((α1/α′
1)

z1(β1/β′
1), y

z1g)
(ys2, gs2) = ((α1/α′

2)
z2(β1/β′

2), y
z2g)

Security Verification protocol in Millimix has been proved to be complete,
sound and honest-verifier zero-knowledge. In the following, we show the effect
of the above attack on the proof of soundness and note that completeness and
zero-knowledgeness proofs will not be affected by the proposed attack.

The proof of soundness is based on Lemmas 2 and 3 taken from [11]. The proof
of the Lemmas have not been given in the original paper and in any case because
of the attack, the proofs must be revisited. We show a revised statement and
proof of Lemma 2, which shows the importance of choosing z carefully. Lemma
3 can be revised similarly.

Lemma 2. Let (α, β) and (α′, β′) be two ciphertexts for which PEP produces
accept response.

– if z is chosen by the prover, then (α′, β′) is not necessarily a valid re-
encryption of (α, β).

– if z is chosen by the verifier or computed by hash function as shown above,
then either (α′, β′) is a valid re-encryption of (α, β) or the prover can find
the El Gamal private key x.

Proof. Suppose z is chosen by the prover. If (α′, β′) and (α, β) have the rela-
tionship shown in the attack, then PEP outputs accept whereas (α′, β′) is not
a valid re-encryption of (α, β).

Now let z be chosen by the verifier or computed using a secure hash function.
Suppose K is the set of all elements z in Zq such that the prover knows o ∈ Zq

satisfying (α/α′)z(β/β′) = (yzg)o. Let |K| be the number of elements in the

12



set K. If z is chosen randomly by the verifier or computed by the hash function
whose output is uniformly distributed over Zq, the probability that PEP outputs
accept is |K|/q. With sufficiently large q, we can assume |K| ≥ 3. Otherwise,
|K|/q is negligible and so is the success chance of PEP .

So w.l.o.g., assume there exists three distinct elements z0, z1 and z2 in K.
Let α/α′ = gu and β/β′ = gv. The prover knows o0, o1, o2 ∈ Zq satisfying
(α/α′)zi(β/β′) = (yzig)oi , i = 0, 1, 2 and so has the following system of three
linear equations with three unknowns u, v and x: z0u + v − o0z0x = o0

z1u + v − o1z1x = o1

z2u + v − o2z2x = o2

As α, β, α′, β′ ∈ Gq, then u, v, x must exist, and so the system of equations must
have a solution. If the solution is unique, the prover will be able to solve it and
find the value of x and that demonstrates a knowledge extractor for x.

On the other hand, if the system has more than one solution, the following
determinants are equal zero.

det =

∣∣∣∣∣∣
z0 1 −o0z0

z1 1 −o1z1

z2 1 −o2z2

∣∣∣∣∣∣ = 0

detx =

∣∣∣∣∣∣
z0 1 −o0

z1 1 −o1

z2 1 −o2

∣∣∣∣∣∣ = 0

This implies that,

0 = det + z0detx

= z0z2o0 − z0z2o2 + z2z1o2 − z2z1o1 + z1z0o1 − z1z0o0

+z2
0o2 − z2

0o1 − z0z1o2 + z0z2o1 + z0z1o0 − z0z2o0

= (o2 − o1)(z0 − z1)(z0 − z2)

and so o2 = o1. This leads to u = vx, which means that α/α′ = (β/β′)x and so
(α′, β′) is a valid re-encryption of (α, β).

Lemma 3. Let (α1, β1), (α′
1, β

′
1) and (α′

2, β
′
2) be ciphertexts for which DISPEP

produces accept response.

– if z1 and z2 are chosen by the prover, then (α1, β1) is not necessarily a valid
re-encryption of either (α′

1, β
′
1) or (α′

2, β
′
2).

– if z1 and z2 are chosen by the verifier or computed by hash function as
shown above, then either (α1, β1) is a valid re-encryption of either (α′

1, β
′
1)

or (α′
2, β

′
2) or the prover can find the El Gamal private key x.
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5 Conclusion

In this paper, we presented attacks against several universally resilient mix-nets
and showed countermeasures against these attacks. We also analyzed security
and efficiency of the proposed countermeasures. The first attack that is shown
against Furukawa-Sako01 mix-net and Millimix can also be used against a num-
ber of other mix-nets, more specifically, in breaking proofs of correctness of the
mixing phase in MiP-1, MiP-2 [2, 3] and Neff01 [19], and breaking proofs of cor-
rectness of the decryption phase in Abe98 [1] and MiP-2 [2, 3]. MiP-1 and MiP-2
are very similar to Millimix and so the first attack can be similarly used. The
correctness of Neff01 mix-net relies on the Iterated Logarithm Multiplication
Proof protocol that can be easily subjected to the first attack. Abe98 protocol
uses threshold El Gamal Decryption and introduces a way of jointly decrypting
and proving correctness. It can be shown that the attack is also applicable in
this case. The details of these attacks will be provided in the final version of
this paper. We note that all these proofs are based on the hardness of discrete
logarithm problem. It is conceivable that the attack could have wider implica-
tions for a range of proofs that are based on discrete logarithm assumption and
so must be carefully considered in all such proofs. The second attack breaks
the verification protocol of Millimix. The attack can be countered by carefully
choosing the challenge.
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