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Abstract—The widely used Tor anonymity network is designed
to enable low-latency anonymous communication. However, in
practice, interactive communication on Tor—which accounts for
over 90% of connections in the Tor network [1]—incurs latencies
over 5x greater than on the direct Internet path. In addition, since
path selection to establish a circuit in Tor is oblivious to Internet
routing, anonymity guarantees can breakdown in cases where an
autonomous system (AS) can correlate traffic across the entry
and exit segments of a circuit.

In this paper, we show that both of these shortcomings in Tor
can be addressed with only client-side modifications, i.e., without
requiring a revamp of the entire Tor architecture. To this end,
we design and implement a new Tor client, LASTor. First, we
show that LASTor can deliver significant latency gains over the
default Tor client by simply accounting for the inferred locations
of Tor relays while choosing paths. Second, since the preference
for low latency paths reduces the entropy of path selection,
we design LASTor’s path selection algorithm to be tunable. A
user can choose an appropriate tradeoff between latency and
anonymity by specifying a value between 0 (lowest latency) and
1 (highest anonymity) for a single parameter. Lastly, we develop
an efficient and accurate algorithm to identify paths on which
an AS can correlate traffic between the entry and exit segments.
This algorithm enables LASTor to avoid such paths and improve a
user’s anonymity, while the low runtime of the algorithm ensures
that the impact on end-to-end latency of communication is low.
By applying our techniques to measurements of real Internet
paths and by using LASTor to visit the top 200 websites from
several geographically-distributed end-hosts, we show that, in
comparison to the default Tor client, LASTor reduces median
latencies by 25% while also reducing the false negative rate of
not detecting a potential snooping AS from 57% to 11%.

I. INTRODUCTION

Tor [2] is a widely used and deployed network for anony-
mous communication on the Internet. Unlike other systems
that facilitate anonymous communication [3], [4], Tor distin-
guishes itself by enabling low-latency communication. Indeed,
a vast majority of users—accounting for over 90% of TCP
connections [1] on Tor—use Tor for interactive traffic.

However, several measures for increasing client anonymity
in Tor fundamentally inflate communication latencies. For
example, the default Tor client sets up a tunnel between itself
and a destination via three relays selected at random, with
some preference for relay stability and access link bandwidth.
This random selection of relays can lead to circuitous rout-
ing of tunnels around the globe, resulting in high latencies.
Previous solutions for improving performance on Tor have
either focused on increasing throughput [5], or those that
focused on improving latencies mandate a revamp of the Tor

network, e.g., by having all Tor relays participate in a network
coordinate system [6], [7] or by modifying traffic management
at relays [8]. Due to the undoubtedly significant development
effort required to implement these changes, these solutions are
yet to be deployed.

In addition, Tor’s anonymity guarantees breakdown in some
cases due to its path selection being oblivious to Internet
routing. For example, on some paths, an Autonomous System
(AS) may be present on the Internet routes both between the
client and the entry relay and between the exit relay and the
destination. Such an AS can statistically correlate traffic on
the entry and exit segments of the path and potentially infer
the destination with which the client communicated. Though
this problem has been recognized previously [9], [10] and the
default Tor client attempts to preempt such cases by ensuring
that no two relays in a path are in the same /16 IP prefix,
we find that this heuristic is insufficient for detecting most
instances of potential snooping by ASes.

In this paper, we seek to address both of the above short-
comings with Tor today by making only client-side modi-
fications. This approach ensures that a user can obtain the
resultant benefits in latency and anonymity simply by updating
her Tor client, without having to wait for changes to the rest of
the Tor network. Therefore, we seek to answer the following
question: what latency improvements can a Tor client obtain
today, without any modifications to the rest of Tor, while
also avoiding paths on which an AS could break the client’s
anonymity by correlating traffic? Towards this end, we design
and implement LASTor, a new Tor client that differs from the
default Tor client only in its path selection algorithm.

In developing LASTor, we make three primary contributions.
First, we show that significant latency gains are possible by
solely accounting for the inferred geographic locations of
relays, rather than needing up-to-date latency information of
Internet paths (e.g., from network coordinates). We implement
the Weighted Shortest Path (WSP) algorithm that probabilis-
tically chooses paths with a preference for shorter paths.
However, with a naive implementation of WSP, an adversary
can increase the probability of a relay under his control being
on the chosen path by simply setting up a large number of
relays in the same location, which is close to the direct line
between the client and the destination. To preempt this attack,
we implement LASTor to execute WSP on a graph of the
Tor network where nearby relays are clustered together; this
increases the onus on an adversary to establish relays in several



locations in order to ensure a high probability for the chosen
path traversing a relay under his control. A side-effect of
clustering relays is that WSP’s runtime is significantly reduced.

Second, we make LASTor resilient to the attack where an AS
can correlate traffic on the entry and exit segments of the cho-
sen path by explicitly avoiding such paths. To do so, we need
to equip LASTor with the ability to predict Internet routing be-
tween relays and end-hosts; we cannot simply measure routes
from every relay since we seek a solution that only requires
client-side modifications. The use of existing approaches for
predicting Internet routes is however impractical since they
either require clients to download gigabytes of data daily [11],
[12] or have significantly high runtimes [13], which would
override the benefits of selecting a low latency path. Therefore,
we instead develop a computationally lightweight technique
that has a low false-negative rate in failing to identify paths
that permit the possibility of “snooping” ASes. Our key insight
here is to predict the set of ASes through which the Internet
may route traffic between a pair of IP addresses, rather than
predicting the precise route between them. Importantly, in
order to run this AS set prediction algorithm, clients need
download only 13 MB of data initially and 1.5 MB every
week thereafter.

Finally, LASTor makes path selection tunable. Probabilistic
selection of paths with a preference for shorter paths re-
duces the entropy of path selection, and all users may not
wish to trade-off the resulting reduction in anonymity for
reduced latency. Therefore, LASTor enables a user to choose
an appropriate tradeoff between latency and anonymity. By
choosing a value between 0 (lowest latency) and 1 (highest
anonymity) for a single parameter, a user can configure LASTor
to appropriately tailor path selection.

We demonstrate LASTor’s benefits in improving latency by
using it to visit the top 200 websites from 50 geographically
distributed PlanetLab nodes. We see that even without any
modification to the rest of Tor, LASTor provides a median
latency improvement of 25% over the default Tor client. We
also use measurements of AS-level routes on over 200K
Internet paths to evaluate LASTor’s ability to preempt the
possibility of snooping ASes jeopardizing the anonymity of
clients. We see that for the median (client, destination) pair,
LASTor fails to identify only 11% of the instances in which
a snooping AS can exist; in comparison, we observe a false-
negative rate of 57% with the default Tor client.

II. BACKGROUND AND MOTIVATION

In this section, we provide some background on Tor and
discuss results that motivate our work.

A. Tor overview

Tor [14], a low-latency open source application that allows
users to use the Internet anonymously, was developed in
September of 2002. In Tor, clients download a list of relays and
some information about these relays from directory servers. To
establish a connection to a destination, a client selects three
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Fig. 1. (a) Random relay selection can inflate end-to-end latencies
due to circuitous routing, and (b) an example in which an AS (AS2)
can subvert the client’s anonymity by correlating traffic across the
entry and exit segments.

relays—entry, middle, and exit nodes—and builds a circuit 1

through these three relays. The client appropriately encrypts
the data it sends to the entry relay so that each of these three
relays only knows the nodes before and after it on the path,
i.e., the entry relay knows the source and the middle relay, the
middle relay knows only the entry and exit relays, and the exit
relay knows only the middle relay and the destination. This
form of onion routing [15] preserves the client’s anonymity
by ensuring that no one other than the client knows that it
communicated with the destination.

To avoid statistical profiling attacks, the default Tor client
restricts its choice of entry nodes to a persistent list of three
randomly chosen nodes named “entry guards” [16]. For the
middle node, the Tor client sorts Tor relays based on their
access link bandwidth and randomly selects a relay, with the
probability of selection being higher for relays with higher
bandwidth. For the selection of the exit node, clients are
constrained by the fact that a large fraction of relays choose
to not serve as exit nodes. This is because destination servers
see the exit node as the computer that communicates with
them; if any malicious activity is detected by the destination, it
will assume that the exit relay is responsible. Therefore, when
selecting an exit node, a client chooses at random (again with
bias for higher bandwidth relays) among those relays willing
to serve as an exit node for the particular destination that the
client is attempting to contact and the particular service with
which this communication is associated.

B. Motivation

The motivation for our work stems from two sources of
inefficiency in path selection as above in Tor today—high
latency due to circuitous routing and degradation of anonymity
because of path selection being oblivious to Internet routing.

Poor latency. First, as discussed above, a client selects en-
try, middle, and exit nodes in a circuit more or less at random.
As a result, the circuit between a client and a destination

1We use the terms path, circuit, and tunnel interchangeably in this paper.
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Fig. 2. (a) Comparison of latencies on the direct Internet path, with
Shortest Path routing on Tor, and with the default Tor client. (b) False
negatives in detecting snooping ASes with default Tor client.

can often be circuitous, causing significant latency overhead
compared to latency on the default Internet path between the
client and the destination. Since Tor is predominantly used
for interactive communication [1], e.g., to visit websites, this
increased latency degrades user experience. Fig. 1(a) presents
such an example. A client in the US communicates with a
server in Canada. The client incurs significant latency overhead
due to relay selection inefficiencies because all packets from
the client travel around the world two times before they reach
their destination.

To quantify the extent of this latency overhead, we measured
the latency of visiting the top 200 websites [17] from 50
PlanetLab nodes [18] spread across the globe. We measured
the latency between every PlanetLab node and every website
as the median latency of 5 HTTP HEAD requests. We first
measured latencies by having the PlanetLab nodes contact the
websites directly. Next, we repeated the same with the com-
munication happening over the default Tor setup. We finally
measured latencies via Tor when choosing entry, middle, and
exit nodes that result in the shortest end-to-end path based
on the geographical locations (inferred using MaxMind’s IP
geolocation database [19]) of the client, the destination, and
the relays on the path. Fig. 2(a) shows the distribution across
(PlanetLab node, website) pairs of the latencies measured in
the three cases. First, we see that latencies measured using
default Tor are more than 5x greater than via the direct Internet
path (no Tor) in the median case. Second, latencies over the
shortest path on Tor (SP Tor) result in a 2x reduction in median
latency compared to default Tor.

Circuit establishment in Tor however cannot simply be
modified to select the shortest path between the client and
the destination; this makes path selection deterministic and
enables adversaries to strategically setup relays that can sub-
vert the client’s anonymity. Instead, motivated by the latency
improvements possible by choosing geographically shorter
paths, our goal is to enable probabilistic path selection that
can deliver some of these latency benefits without significantly
compromising client anonymity.

Lack of AS-awareness. Though Tor’s use of onion routing
tries to ensure that no one other than the client has knowledge
of the destinations with which it communicates, there are a

variety of attacks possible (e.g., [20] [21]) from which this
information can be inferred. One such attack arises because
of Tor’s path selection being oblivious to Internet routing. In
the case where the routes through the Internet from the client
to the entry node and from the exit node to the destination
both traverse a common Autonomous System (AS), such an
AS can correlate the traffic it observes to infer the (client,
destination) pair [22], [23]. Fig. 1(b) shows an example in
which AS2, which appears on both the routes from the source
S to the entry relay R1 and from the exit relay R2 to the
destination D, can potentially infer that S is communicating
with D. We hereafter refer to such ASes that have the potential
of correlating traffic by snooping as snooping ASes. Note that
even though traffic between the client and the entry node is
encrypted, ASes can observe the client’s IP address in the
headers of the packets that the client sends to the entry node.

Feamster and Dingledine [9] showed that the probability
of existence of snooping ASes is 10–30%. This observation
was re-evaluated 5 years later by Edman and Syverson [10].
They observed that while there are many more Tor relays
than before, this growth has only a slight effect on mitigating
attacks by snooping ASes. This is because Tor relays are not
scattered uniformly among ASes, and so the growth of the
network does not guarantee path location diversity. Further,
the presence of ASes that can snoop is especially likely in
cases where the client and destination are in the same location,
because the entry and exit segments of the circuit may go
through the same ASes with presence in that region.

Therefore, to protect its anonymity, a Tor client needs to
ensure that its algorithm for path selection prevents, or at least
minimizes, the existence of common ASes across both ends of
a circuit. To preempt AS-level attacks and preserve anonymity,
Tor’s default path selection algorithm ensures that the entry
and exit nodes on any particular circuit do not share the same
/16 IP address prefix [24].

We however find that this heuristic performs poorly in
practice in avoiding snooping ASes. First, in the deployment
of Tor as of June 2011, we observe that 60% of ASes that
have Tor relays resident in them have at least two relays that
are in different /16 subnets. In addition, we evaluated the /16
prefix heuristic on a dataset of measured AS paths (the PL-
BGP-Rand dataset described later in Section III). For every
(client, destination) pair in our dataset, we computed the false
negative rate of the /16 heuristic, i.e., of all entry and exit
node combinations in which there was a common AS across
the entry and exit segments, the fraction that the /16 heuristic
deemed as safe from snooping ASes. Fig. 2(b) plots this false
negative rate for this heuristic across (client, destination) pairs.
The /16 heuristic for avoiding snooping ASes miss over 40%
of instances of snooping ASes for more than 80% of (client,
destination) pairs. Furthermore, we find that simply accounting
for the ASes in which the relays reside (the “Same AS” line
in Fig. 2(b)) is also insufficient.

To address the shortcomings of these heuristics, Tor clients
need to determine the ASes through which the Internet routes
traffic between them and entry nodes and between exit nodes



Goal Technique Section
Reduce latency of communication on Tor Weighted Shortest Path (WSP) algorithm for probabilistic selection of paths

with preference for low-latency paths
IV-A

Defend against strategic establishment of relays to increase
probability of compromised relays on chosen path

Clustering of relays in nearby locations IV-B

Enable user to choose trade-off between latency and anonymity Augment WSP with parameter α that can be varied between 0 (lowest
latency) and 1 (highest anonymity)

IV-D

Account for distributed destinations DNS lookup service on PlanetLab nodes IV-C
Preempt traffic correlation attacks by ASes Lightweight algorithm to determine set of ASes through which Internet

may route traffic between a pair of IP addresses
V

TABLE I
OVERVIEW OF TECHNIQUES DEVELOPED TO BUILD LASTor.

and destinations. Since we seek only client-side solutions,
modifying relays to measure routes is not an option. Querying
a route prediction service (e.g., iPlane [12]) for this informa-
tion is not an option either since the client and destination will
be revealed to the service. On the other hand, having clients
download pre-computed AS paths between themselves and all
entry guards and between all exit relays and all end-hosts will
require clients to download a prohibitively large dataset. For
example, even if we aggregate Tor relays and all end-hosts on
the Internet into BGP atoms [25] 2, based on the average AS
path length of 4 on the Internet, we estimate that clients will
have to download on the order of 500 MB of data. Further,
this data will have to be continually updated to account for
flux in the Internet’s routing.

Instead, it is imperative that clients download a snapshot
of Internet topology and routing information and make route
predictions locally. However, enabling such local route predic-
tions with current techniques poses two problems. First, it is
impractical to expect clients to download several gigabytes of
data, e.g., iPlane’s Internet atlas, to make such predictions.
Second, AS path inference techniques that operate on a
compact Internet atlas [11], [13], have high computational
overhead and take on the order of a second to estimate the AS
path between a pair of IP addresses. Since a Tor client has to
choose from around 1000 exit relays in setting up a circuit, the
use of such computationally-heavy techniques to estimate AS
paths can impose high overhead on path selection, rendering
the latency benefits of avoiding circuitous routes moot.

III. OVERVIEW

Next, we define the precise problem statement that we target
and provide a brief overview of our work. We also discuss
the datasets that we use throughout our work to evaluate the
techniques that we develop.

A. Problem statement

Our goal in this paper is to address the shortcomings in
Tor discussed above with respect to latency and anonymity
without requiring a revamp of Tor’s design. Leveraging the fact
that intelligence in Tor resides at the client, we seek to only
modify the client-side path selection algorithm so that clients
can benefit today without waiting on updates to relays to be
developed and deployed. In doing so, we respect conventional

2All IP addresses in the same atom have identical AS paths from/to them
to/from the rest of the Internet.

Dataset Clients Relays Destinations
PL-Tor-Web 50 2423 200

PL-BGP-Rand 50 378 500
PL-PL-Web 50 50 500

TABLE II
SUMMARY OF DATASETS.
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wisdom on how to preserve client anonymity in Tor, e.g.,
the use of three entry guards to protect against statistical
profiling attacks and the need for sufficient randomness in
relay selection to protect against colluding relays.

Table I summarizes the techniques that we present in the rest
of the paper to address this problem by developing LASTor.

B. Measurement datasets

To evaluate LASTor’s components, we make use of three
datasets (summarized in Table II), with PlanetLab nodes serv-
ing as clients in all three cases; we pick 50 PlanetLab nodes to
use as clients, in keeping with the distribution across countries
of Tor clients [26]. In our first dataset, PL-Tor-Web, we use 200
websites [17] as destinations and the relays in the actual Tor
network serve as relays. In this dataset, while we can measure
both latencies and AS-level routes from PlanetLab nodes to
Tor relays, we do not have access to either information on
paths from relays to destinations. Second, we use the PL-
BGP-Rand dataset, in which BGP routers seen in various
BGP feeds [27], [28] serve as relays and the .1 IP address
in 500 randomly chosen /24 prefixes serve as destinations.
Here again, we can directly measure latencies and AS paths
from PlanetLab nodes to BGP routers. In addition, we obtain
the AS paths from the BGP routers to the destinations from
various BGP feeds, but we do not have latencies along these
paths. This dataset enables to evaluate our techniques for AS-
awareness in path selection using measured AS-level Internet
routes, unlike prior work in this area [9], [10] that has relied on
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inferred AS-level routes. Though we have to use BGP routers
as proxy for Tor relays for this purpose, Fig. 3 shows that the
distribution of relays across ASes in the PL-BGP-Rand dataset
is similar to that in the case of real Tor relays.

Finally, in the PL-PL-Web dataset, we use PlanetLab nodes
as both clients and relays and the top 200 websites as
destinations. In this case, we can measure latencies and AS
paths both from all clients to all relays and from all relays
to all destinations. To emulate typical Tor clients, we ensure
throughout our evaluation that we do not provide as input
to iPlane [12] any Internet topology measurements from the
50 PlanetLab nodes used as clients; as we describe later in
Section V, we use AS path length estimates from iPlane for
our AS set prediction.

IV. PATH SELECTION

Path latency on the Internet is a sum of three factors—
propagation delay (time spent by packets on the wire), queue-
ing delay (time spent by packets enqueued at end-hosts or
intermediate routers, waiting to be put onto the wire), and
transmission delay (time to put a packet onto the wire). Since
access link bandwidths of the client and Tor relays is beyond
our control, we cannot reduce transmission delay. On the
other hand, as we show later in Section VII, a modification
of Tor relays would be necessary to reduce queueing delays.
Therefore, we focus here on reducing propagation delay.

A. Preferential selection of low-latency paths

To reduce propagation delays, we need to reduce the prob-
ability of selection of circuitous paths. We cannot however
simply pick the shortest possible path through three relays
between a client and a destination. This would make path
selection deterministic and hence, susceptible to strategically
placed adversarial Tor relays. Therefore, we implement a
Weighted Shortest Path (WSP) algorithm. WSP orders all
possible paths between a client and a destination based on
the expected latency on each path. The latency along a path is
the sum of latencies on each of the four segments of the path—
(client, entry relay), (entry relay, middle relay), (middle relay,
exit relay), and (exit relay, destination). The probability of a
particular path being selected is then inversely proportional to
the expected latency on it.

However, in order to estimate the latency along every possi-
ble path of three relays between the client and the destination,

we would need latencies between the client and all candidate
entry relays, between all candidate exit relays and the destina-
tion, and between all pairs of relays. As proposed in previous
approaches to improve latency in Tor [6], [7], gathering this
latency information would require a modification of Tor relays.
Instrumenting measurements of the Internet at such a scale is
a non-trivial undertaking. As a result, these prior proposals are
yet to translate into practice.

Our focus here instead is on a practical implementation
of WSP, with changes only at the Tor client. Therefore, we
use the end-to-end geographical distance along a path as a
proxy for the latency along it. This ensures that we do not
need to modify relays to track latencies between them, but
we can rely instead on the estimated geographic locations
of clients, relays, and destinations. We compute the end-to-
end geographical distance along a path by summing up the
distance along each segment, which we in turn compute based
on the (latitude, longitude) coordinates of the hosts at either
end of a segment. We can estimate the geographic locations
of end-hosts and relays using an IP geolocation database,
such as MaxMind [19]. Out of all candidate paths, WSP then
selects one path with the probability of a path’s selection
being proportional to the weight associated with it; the weight
associated with a path is the difference between the maximum
end-to-end distance across all paths and the distance along this
particular path.

Though the use of geographical distance ignores the effect
of routing on latency (the Internet may forward packets along
a circuitous route [29]), we confirm empirically that our use of
geographical distance as the weight for every edge in the graph
when running WSP is a reasonable substitute for the latency
of every edge. Since we can compute end-to-end latencies of
paths only on the PL-PL-Web dataset, we perform this analysis
on that data. We perform this analysis first using latency as
the edge weight metric for running WSP and then repeat
the same using geographic distance for edge weights. Fig. 4
shows that the end-to-end latencies of chosen paths are similar
irrespective of whether WSP uses latencies or geographic
distances as edge weights. Therefore, we believe that our
use of geographic distances delivers most of the benefits of
reducing propagation delays without warranting the need for
a distributed infrastructure that measures latencies between all
pairs of relays, an unarguably arduous undertaking.

B. Clustering of relays

A straightforward implementation of WSP however causes
two problems. First, WSP’s preference for paths with lower
end-to-end geographical distance results in a greater prefer-
ence for paths through relays that are close to the direct
line between the client and the destination. For example, in
Fig. 5, WSP will select the path through relay R1 with a
higher probability than the path through R2. As a result, if
an adversary wishes to ensure that a relay under his control
is on the chosen path between S and D, then the adversary
can choose a location that is close to the direct line between S
and D and setup a large number of relays at that location. It is
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Fig. 6. (a) Clustering with higher cell sizes provides better resilience. Clustering of relays (b) reduces the probability of an adversary
compromising a large fraction of paths, but (b) increases the length of the chosen path. (d) WSP yields latencies lower than those obtained
with the default Tor client.

Fig. 5. WSP results in greater preference for paths through relays
located close to the direct line between the client and the destination.

relatively easy for an adversary to setup several relays in the
same location, for example, by renting several virtual machines
in a cloud service. The high probability of at least one of the
adversary’s relays being on the selected path increases the
chances for the adversary to use recent traffic analysis attacks
on Tor [30] and infer that S is communicating with D.

The second problem with a strawman implementation of
WSP is its runtime. Today, Tor has over 2500 relays with
roughly 1000 of these relays willing to serve as exit nodes. The
number of candidate paths between a client and a destination
is therefore in the order of billions. So, a naive computation of
the end-to-end geographical distance on every candidate path
is computationally expensive and takes roughly 6.5 seconds
to run even on a 2.5 GHz processor. This large runtime—in
comparison to Internet path latencies that are of the order of
tens or hundreds of milliseconds—to even select a path can
render the selection of a low latency path redundant.

To address both of these problems, we cluster Tor relays
that are located in geographically nearby locations. We employ
a simple clustering algorithm in which we divide the globe
into a grid of square cells and cluster all relays within a cell;
the edge length of the cells is a configurable parameter. We
then execute WSP on the clustered Tor network where every
node is a cluster of relays, and each candidate path is through
three clusters. WSP computes the end-to-end distance on every
cluster-level path and then selects one path with preference to
shorter paths as before. We translate the chosen cluster-level
path to a path through three Tor relays by picking one relay
at random from each of the clusters on the selected path.

This modification of WSP reduces its runtime to select a
path between a client and a destination through today’s Tor
network to 245 milliseconds, in comparison to the runtime of
6.5 seconds with the naive implementation. More importantly,
the modified WSP ensures that the establishment of a large
number of relays in the same location does not bias the
selection of paths through them since WSP considers paths
at the granularity of the cluster to which all of them belong;
paths through different relays in a cluster are not considered
independently. Thus the modified WSP increases the onus on
an adversary to establish relays in multiple locations in order
to have one of those relays be on the chosen path with a very
high probability.

We conduct the following experiment 1) to choose the cell
size to be used in clustering of relays, and 2) to demonstrate
the improved resilience of WSP to an adversary as discussed
above. In the PL-Tor-Web dataset, for every (client, destina-
tion) pair, we emulate an adversary who controls the 5% of
relays that are closest to the direct line between the client
and the destination. We then model the adversary increasing
the number of relays that he controls by replicating these
5% of closest relays by a factor of 25. We run WSP on
this modified Tor network with and without clustering of
relays. In either case, given a (source, destination) pair, we
compute the probability of the path between them selected
by WSP traversing at least one compromised relay. This value
represents an upper bound on the fraction of cases in which the
chosen path will traverse a relay controlled by the adversary,
if the adversary controls at most 5% of relays.

Fig. 6(a) compares the distribution across (source, destina-
tion) pairs of this upper bound when clustering relays with
different cell sizes. We vary the edge length of every cell
from 0.25 to 4—measured in terms of the difference in latitude
or longitude—and, in each case, we compute the fraction of
paths that traverse a relay controlled by the adversary. We
see that using a edge length of 2 for each cell significantly
decreases the influence of the adversary compared to the effect
when using lower edge lengths, and increasing the edge length
further has minimal impact.

Next, we evaluate the resilience offered by running WSP
after the clustering of relays. Fig. 6(b) compares the distri-



bution across (source, destination) pairs of the fraction of
paths that traverse a compromised relay in the following
three cases: 1) when running WSP on the PL-Tor-Web dataset
without clustering of relays (No clusters, default), and when
an adversary replicates relays in this dataset as above and
WSP is executed 2) after clustering relays (using a cell size
of 2x2) (With clusters, 25x), or (3) without clustering (No
clusters, 25x). By comparing the “No clusters, default” and
“No clusters, 25x” lines, we see that, in the absence of
clustering, the adversary can increase the fraction of paths
that traverse a compromised relay from around 35% to over
65% on average by replicating the relays that he controls by
25x. In contrast, when relays are clustered into cells of size
2x2, the adversary gains nothing by replicating relays.

Clustering of relays however has a negative impact on the
latencies along paths chosen by WSP. This is because, in
cases where there are several relays in a location close to the
direct line between the source and the destination, the basic
version of WSP can choose from the several candidate paths
through these relays. In contrast, after these relays have been
clustered, WSP has only path of choice through these relays.
Hence, as shown in Figure 6(c), the geographic distance along
the path chosen by WSP increases by roughly 15% in the
median case when relays are clustered. This inflation in path
length due to relay clustering is a compromise that we have
to bear, in exchange for increasing the onus on adversaries
to setup relays in several locations to attract traffic through
compromised relays with high probability.

Finally, we evaluate the latency improvement obtained
with WSP in practice. We modify the default Tor client to
implement the WSP path selection algorithm and use the
modified client to measure latencies over the Tor network
to the top 200 websites from 50 PlanetLab nodes. For each
(client, destination) pair, we run WSP 5 times and on each
attempt, we measure the median latency of 5 HTTP HEAD
requests. We then compute the median latency across the
5 attempts. We repeat the same process using the default
Tor client and compute the median latency across 5 paths
chosen by it, considering the median latency across 5 HTTP
HEAD requests on each path. Fig. 6(d) presents the latency
distribution measured across (client, destination) pairs when
using WSP as compared to that when using the default Tor
client. We see that WSP results in a 25% reduction in latency
in the median case.

C. Accounting for distributed destinations

Thus far, our exposition of WSP has assumed that the desti-
nation has a single location associated with it. In practice, the
destinations associated with interactive communication (e.g.,
webservers) are often replicated across several geographic
locations. In such cases, users specify the destination by its
hostname, and upon DNS resolution of the hostname, the
webservice provider returns the IP address of the server located
closest to the end-host that performs the DNS lookup. This
implies that when a client uses a Tor circuit to contact a
destination, the particular server with which the client ends
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Fig. 7. Lower latencies obtained with WSP when accounting for
distributed destinations.

up communicating depends on DNS resolution of the desti-
nation’s hostname at the exit node on that circuit. Therefore,
when WSP estimates the end-to-end distance on any candidate
path, it must take into account the location of the particular IP
address to which the exit node on that path will be redirected.

However, at the time of path selection, it is impractical to
perform DNS lookups for the destination on all candidate exit
relays. Doing so would require the client to setup a circuit
for every candidate exit relay; the client cannot simply ask
a relay to resolve the destination hostname since that would
leak the client’s anonymity. Establishing one circuit for every
candidate exit relay every time a path needs to be selected
would not only impose significant overhead on Tor but also
take several tens of seconds, thus nullifying the benefits of
selecting a low-latency path.

Instead, we setup a DNS lookup service across a set of
15 geographically distributed PlanetLab nodes. When a client
needs to run WSP for a destination, it submits a request to
resolve the destination’s hostname to each of the PlanetLab
nodes running the DNS lookup service. The client submits
these requests via any one of the circuits that it had previously
established, e.g., the default Tor client establishes three circuits
when it starts up. The client uses HTTPS to submit these DNS
resolution requests to the PlanetLab nodes so that the exit
node on the circuit used for communicating with the PlanetLab
nodes cannot infer the destination. Once the client receives the
set of IP addresses obtained for the destination, we assume any
candidate exit relay would be redirected to the IP address that
is geographically closest to it amongst this set. Thus, when
we subsequently run WSP to pick a path to the destination,
we compute the end-to-end distance on each candidate path
by using the distance along the exit segment as the distance
between the exit node on that path and the destination’s IP
address to which we believe the exit node will be redirected.

To evaluate the utility of this modification to WSP, we
consider the top 1000 websites from Quantcast and focus
on those that return IP addresses in multiple locations when
resolved from all PlanetLab nodes. We then measure latencies
over the Tor network to these websites with 50 PlanetLab
nodes as clients. We measure latencies in two cases. In the
first case, we run WSP as described above where it uses
IP addresses obtained by resolving the destination on 15
geographically distributed PlanetLab nodes. In the second
case, we run WSP assuming the destination to have a single
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Fig. 8. Increasing the value of α when using WSP results in (a)
higher latencies and (b) greater entropy of path selection.
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Fig. 9. End-to-end distances on paths chosen with WSP when using
α to tailor the set of relays from which we select entry guards.

IP address obtained by DNS resolution at a randomly chosen
exit relay. Fig. 7 compares the latencies measured in these two
cases. We see that accounting for the fact that destinations
could be potentially distributed reduces path latency in the
median case by 15%.

D. Latency versus anonymity tradeoff

Though clustering of relays reduces the chances of com-
promised relays being present on a large fraction of chosen
paths, WSP’s preference for shorter paths naturally reduces
the entropy of path selection. All users may not wish to trade-
off this reduction in entropy for lower latencies. Therefore,
we make path selection with WSP tunable with a parameter
α. A user can vary α in the range 0 to 1, with a value
of 0 corresponding to lowest latencies and a value of 1
corresponding to highest entropy.

We incorporate this parameter α into WSP as follows. As
previously mentioned, after computing the end-to-end distance
on every candidate path, WSP associates a weight with every
path that is equal to the difference between the maximum
end-to-end distance across all paths and the distance on that

path. The probability of WSP choosing a particular path is
then proportional to its weight. We now modify this weight
w for a path to instead be w(1−α). In the case when α is
equal to 0, WSP defaults to the original version we presented
above, which picks paths with a preference for shorter ones.
On the other hand, when α is equal to 1, all paths have a
weight of 1 and thus, any particular path is chosen at random.
For any other value of α between 0 and 1, path selection is
appropriately biased towards low latency or higher entropy.

Fig. 8 shows the effect that varying α has on both latencies
and entropy. Figure 8(a) shows latencies measured with α
equal to 0, 0.25, 0.5, 0.75, and 1 in the same setting as that
used in Section IV-B—median latency from 5 HEAD requests
each to the top 200 websites from 50 PlanetLab nodes as
clients. Lower values of α result in lower latencies.

To capture the corresponding variance in entropy, we use the
Gini coefficient metric [31], which has previously been used to
measure anonymity of path selection in Tor, e.g., in [5]. Gini
coefficient is a measure of skew in a set of values. A value
of 0 for the Gini coefficient indicates perfect equality—that
all values in the set are equal, whereas a value of 1 indicates
perfect inequality. We use this metric to measure, for each
(client, destination) pair in the PL-Tor-Web dataset, the skew
across candidates paths of the probability of them selected by
WSP. Fig. 8(b) shows that higher values of α result in lower
values for the Gini coefficient, which corresponds to a lower
skew across paths in the probability of their selection.

Finally, we use the parameter α to also guide the selection of
entry guards. To avoid statistical profiling attacks, the default
Tor client restricts its choice of entry nodes to a persistent list
of three randomly chosen nodes selected when the client starts
up [16]. All circuits setup by the client thereafter choose entry
relays from one of these three entry guards. As one would
expect, this constraint on the selection of entry relays, though
good for anonymity, hurts the selection of low-latency paths
by WSP; the path between a client and a destination may be
unavoidably circuitous if all three entry guards chosen happen
to be distant from both the client and the destination.

Therefore, in keeping with our goal of making path selection
tunable between a preference for low latency or anonymity,
we modify the selection of entry guards as follows. After
we cluster relays as above, we order all clusters that contain
candidate entry relays 3 based on their distance from the
client. We then choose three clusters at random from the
closest (g + α · (100 − g))% clusters in this ordering, and
pick one relay at random from each of these clusters as the
three entry guards, where g is a configurable parameter; in
our implementation we use a value of 20 for g. Thus, when
α equals 0—a preference for the lowest latencies—we choose
the entry guards at random from the closest 20% of relays to
the client. This minimizes the probability of circuitous routes
when α = 0, while still providing good anonymity by selecting
entry guards from a fairly large subset (20%) of the candidate

3The default Tor client considers a subset of all Tor relays for selection as
entry guards based on their stability.



entry relays. On the other hand, when a user chooses a value
of 1 for α to get the best level of anonymity, selection of
entry guards defaults to the current best practice of choosing
from all candidate entry relays at random. Fig. 9 shows the
effect that this modified entry guard selection algorithm has
on the end-to-end distance of the chosen path in the PL-Tor-
Web dataset. With increasing α, the randomness of entry guard
selection increases and results in longer path lengths.

V. AS AWARENESS

Next, we address the second limitation of interest in the
default Tor client—avoiding paths in which an Autonomous
System (AS) can correlate traffic across the routes between
the client and entry relay and between the exit relay and the
destination. Since our goal is to not require any modifications
to Tor relays, we cannot avoid such paths by simply having
all relays measure routes from them to the client and to the
destination. Therefore, we next discuss how a client can locally
make estimations of routing in the Internet in order to identify
and ignore paths that present the possibility of snooping ASes.

A. AS set estimation

Precise inference of AS-level routes between arbitrary IP
addresses is hard, as seen in the fact that no existing technique
for doing so [32], [11], [33], [12], [13] is close to perfect.
Therefore, when evaluating whether a particular combination
of entry and exit relays offers the possibility of a snooping AS,
we preclude the approach of estimating the AS-level route on
the entry and exit segments of the circuit. Instead, we take the
approach of predicting for either segment, a set of candidate
ASes through which the Internet is highly likely to route traffic
on the segment. We can then determine the potential existence
of snooping ASes by checking if the intersection between the
AS sets for the paths between the client and the entry relay
and between the exit relay and the destination is non-empty.

To enable such inference of AS sets by Tor clients, we
require clients to download three inputs. First, we use the
Internet’s AS-level topology represented as a set of inter-AS
links. Second, we need an estimate of the AS path length
between every Tor relay and every end-host on the Internet.
We need this information as input because the AS path selected
by BGP is often longer than the shortest path in the AS
topology [13]. As we show later, AS path lengths can be
stored much more compactly and are significantly more stable
compared to AS paths. Third, we store AS three-tuples as
described below to represent routing policies being employed
by ASes.

Given this AS-level topology and an estimate L for the
AS path length between a source S and destination D, we
put together the set of ASes through which traffic may be
routed from S to D as comprising any AS that is on any
policy-compliant route of L AS hops between S and D in
the topology. Here, we stress on policy-compliance because
every path in the AS-level topology does not conform to
routing policies of ASes. Therefore, to ensure that we only
consider the ASes on policy-compliant paths, we borrow the

Algorithm 1 Pseudocode of AS set estimation algorithm.
1: Inputs: AS graph G, AS three-tuples set T , source S, destination
D, AS path length L

2: Shortest Path(G,T,D)
3: Queue Q
4: List Node PossibleSet
5: List Node AS set
6: S.hops = 0
7: Add S to Q
8: while Q is not empty do
9: cur ← Q.pop

10: cur.added← 0
11: Add cur to PossibleSet if cur /∈ PossibleSet
12: for n ∈ cur.neighbors do
13: Skip n if (cur.parent, cur, n) /∈ T
14: Skip n if @ m ∈ n.neighbors such that m.pathLength+

cur.hops+ 2 = L
15: if n has ancestor p with p.pathLength <

p.parent.pathLength then
16: Skip n if n.pathLength > cur.pathLength
17: end if
18: n.hops = cur.hops+ 1
19: Add n to Q
20: cur.added += 1
21: end for
22: if cur.added = 0 then
23: Decrement n.added for every ancestor n of cur
24: end if
25: end while
26: for n ∈ PossibleSet do
27: Add n to AS set if n.added > 0
28: end for
29: return AS set

technique of using AS three-tuples from iPlane Nano [13].
From a collection of AS path measurements—obtained from
BGP feeds [27], [28] and by mapping traceroute measure-
ments [34], [12] to AS paths—we identify every sequence of
three consecutive ASes seen on any AS path and add them to
a set of AS three-tuples. For example, if we observe an AS
path AS1 → AS2 → AS3 → AS4 → AS5, then we add
(AS1, AS2, AS3), (AS2, AS3, AS4), and (AS3, AS4, AS5)
to our set of AS three-tuples. Any such AS three-tuple
(A,B,C) represents routing policy by showing that B is
willing to transit traffic from A on to C (in other words, B
passes along route announcements received from C on to A).
We generated such a set of AS three-tuples by aggregating
various BGP feeds, and we are able to represent this data
in about 1 MB. Note that though Internet routing can be
asymmetric in practice, i.e., the route from S to D can differ
from the route from D to S, we assume routing asymmetry
here and add the three-tuple (C,B,A) to our set of three-
tuples for every tuple (A,B,C) discovered from the AS path
measurements.

Given an estimate L for the AS path length between a
pair of IP addresses S and D, we estimate the set of ASes
that are likely to occur on the the route between them using
the following two phase algorithm. In the first phase, we
run Dijkstra’s shortest path algorithm to compute the length
of the shortest path from every AS to D’s AS. We modify
the standard Dijkstra’s algorithm to ensure that shortest path



lengths are computed only across those paths that satisfy the
criterion that any three consecutive ASes on a path are in the
set of AS three-tuples. Next, we determine for every AS in
the topology, the set of path lengths to D available via any of
the AS’s neighbors.

In the second phase, we determine the output set of ASes
by performing a modified breadth-first search (BFS) from S.
While performing BFS, we traverse a neighbor B of an AS
A that is k hops away from S only if B has a path of length
(L−k−1) available to D via one of its neighbors. In addition,
we enforce the valley-free nature of Internet routes [35] by
ensuring that once the BFS goes from a node A to a neighbor
B that has a shorter shortest path to D than from A, thereafter,
we never traverse a node’s neighbor that has a longer shortest
path to D than from that node. Furthermore, we again ensure
that the input AS three-tuples are respected; we traverse a
neighbor B of A, whose parent in the BFS is C, only if
(C,B,A) is in the input set of AS three-tuples. Algorithm
1—which takes as input the AS graph G, the set of AS three-
tuples T , the source S, the destination D, and the estimated
AS path length between them—summarizes the pseudocode
of this algorithm.

B. Avoiding snooping ASes

When selecting a path from itself to a destination, a client
needs to use the above procedure to determine AS sets for
paths between itself and its 3 entry guards and between all exit
relays and the destination. For the latter set of paths, we do not
compute the AS sets independently. Instead, we run the first
phase of our AS set estimation algorithm once, and thereafter
run the BFS in phase two of the algorithm from each exit relay
independently. We can then ignore from consideration all paths
that potentially have snooping ASes on them by ignoring those
combinations of entry and exit relays for which the intersection
between the AS sets for the (client, entry relay) and (exit relay,
destination) paths is non-empty. This algorithm can prune out
paths with snooping ASes in around 3 seconds, even when
choosing from 1000 exit relays.

Other than being efficient in terms of computation, our
approach also minimizes the data to be downloaded by a client
to make local inference of AS sets. First, the set of inter-AS
links and the set of AS three-tuples are each roughly about 1
MB in size and changes to these datasets are rare. Second, all
Tor relays and all end-hosts on the Internet can be grouped
into roughly 600 and 50K BGP atoms [25], [12], respectively.
Therefore, we need every client to download AS path lengths
for 30M paths—between every (relay, end host) pair.

We evaluate the expected size to store these AS path lengths
and the stability of this data using traceroutes gathered daily
by iPlane [36] from all PlanetLab nodes to all IP address
prefixes at the edge of the Internet. We analyze this data for the
period of three weeks in July 2011. On each day, we map all
traceroutes to their corresponding AS-level routes and compute
the AS path length, i.e., the number of ASes seen on the route.
First, we find that less than 0.05% of paths traverse more than
8 AS hops. So, every AS path length can be stored in 3 bits,
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Fig. 12. The probability of existence of snooping ASes across (src,
dst) pairs in the PL-BGP-Rand dataset.

making the size of the AS path length data to be downloaded
initially by a client to be around 11 MB.

For each week in the considered period, we then compare
AS path lengths on every day with those measured on the first
day in that week. We perform the comparison by computing
the fraction of paths that have a different AS path length on
day i compared to that on day 0. As shown in Figure 10, AS
path lengths changed on a little over 5% of paths even after
a week. Therefore, in summary, our design requires clients to
initially download 13 MB of data across inter-AS links, AS
three-tuples, and AS path lengths—a close to 40x reduction
in size compared to pre-computed AS paths between all Tor
relays and all end-hosts—and a client need only fetch less than
1.5 MB weekly thereafter to keep the data up-to-date.

C. Evaluation of AS-awareness

Next, we evaluate our technique for AS set estimation in two
parts. First, we examine if the estimated AS sets accurately
cover actual AS paths. For this, we estimate AS sets for
the paths from PlanetLab nodes to Tor relays in the PL-Tor-
Web dataset. Fig. 11(a) and 11(b) show that the estimated AS
sets are typically compact—90th percentile size less than 10
ASes—and at most one AS on the actual AS path is not in
the estimated set for over 75% of paths.

Second, we use the PL-BGP-Rand dataset to study the
accuracy with which AS sets enable prediction of potential
snooping ASes; we do not have AS paths from exit nodes
to destinations in the PL-Tor-Web dataset, and the PL-PL-
Web dataset is biased for this analysis 4. For every (client,
destination) pair in the PL-BGP-Rand dataset, we partition

4Paths between PlanetLab nodes typically traverse a different set of ASes,
e.g., research and educational ASes, compared to paths from PlanetLab nodes
to random destinations on the Internet
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Fig. 11. (a) Distribution of predicted AS set sizes, (b) accuracy of predicted AS sets encompassing actual AS paths, and distribution of (c)
false negative and (d) false positive rates in predicting the existence of snooping ASes.

all entry and exit relay combinations into those that have a
common AS across the entry and exit segments and those that
do not. We compute the false negative rate in predicting the
presence of snooping ASes as the fraction of entries in the
former partition not caught by our approach of computing
intersections between estimated AS sets. Fig. 11(c) shows
that our median false negative rate is 11%. This compares
to median false negative rates of 28–57% with alternate
approaches—using iPlane’s predicted AS paths, using the
approach proposed in [10] (the “E&S” line), or when only
accounting for ASes of end-hosts and relays (the “Same AS”
line). On the flip side, in Fig. 11(d), we see that AS sets
produce a much greater false positive rate—fraction of paths
that do not have a snooping AS but are declared as having one
by our technique—compared to other approaches. However,
as we see in Fig. 12, the fraction of paths with potential
snooping ASes is low for most (src, dst) pairs. So, pruning
out about 45% of candidate paths in the median case still
leaves a sizeable set of paths from which WSP can choose.

D. Impact of AS-awareness on path latency

Finally, we evaluate the impact that the incorporation of
AS-awareness has on path latencies obtained with WSP. WSP
has to now select from a subset of all possible candidate
paths, because it has to ignore those detected by our AS set
estimation algorithm as potentially traversing an AS capable
of inferring the (client, destination) pair by traffic correlation.
Though the subset of candidate paths with snooping ASes is
typically small in practice, the high false positive rate of our
detection procedure significantly reduces the subset of paths
considered. Therefore, we again use WSP (with α set to 0) to
measure latencies over the Tor network from 50 PlanetLab
nodes to the top 200 websites. Fig. 13(a) compares these
latencies with those obtained when using WSP without AS-
awareness and when using the default Tor client. We see that
the pruning of paths to avoid snooping ASes results in a
slight increase in latency. Fig. 13(b) shows that this increase
in latency is due to an increase in the length of the chosen
path when using WSP informed by AS sets. In future work,
we plan to pursue a reduction in false positives to further
improve latencies when using WSP with AS-awareness.
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Fig. 13. Comparison of (a) latencies and (b) normalized geographical
distance along paths chosen with WSP (α = 0) with and without AS-
awareness.

VI. IMPLEMENTATION

We implement all of the algorithms developed thus far—
to improve path latency, to make path selection tunable,
and to incorporate AS-awareness into path selection—in the
LASTor Tor client. In this section, we summarize LASTor’s
path selection algorithm and provide an overview of our
implementation.

A. Client in action
In the default Tor client, the client sets up a few circuits on

startup and thereafter, when the user chooses to communicate
with a particular destination via Tor, the client routes the user’s
traffic over one of the established circuits [24]. LASTor mimics
the default Tor client in this respect. In addition, once LASTor
learns the destination that the user wishes to communicate
with, it quickly selects a path using AS-aware WSP, sets up
a new circuit along the chosen path, and then transitions the
user’s traffic to the destination to this new circuit. Thus, the



latency obtained with LASTor matches that of the default Tor
client in the case when the user’s communication with the
destination is short. In the case when the user’s interaction
with the destination is prolonged, e.g., when the user visits
several web pages on a website, LASTor significantly improves
latencies for most of the user’s interaction, i.e., once LASTor
switches the user’s traffic to the circuit chosen with WSP.

To select a path to the specified destination, LASTor executes
the tunable AS-aware WSP algorithm with the following
sequence of steps.
• Upon initialization, the LASTor client clusters all available

relays, and using the value for α specified in its input
configuration, it chooses three entry guards at random from
the (20 + α · 80)% closest relay clusters to the client.

• When required to select a path to a destination, LASTor
resolves the destination’s hostname on a distributed set of
nodes that service requests to perform DNS lookups. These
requests are submitted via one of the circuits established
upon initialization of the client.

• LASTor estimates the AS sets for the paths from the client to
the entry guards and from all exit relays to the destination,
mapping every candidate exit relay to the closest among the
IP addresses obtained for the destination.

• LASTor then computes the end-to-end distance on every
candidate path through three clusters that satisfy the check
of the AS sets for the entry and exit segments being disjoint.
One cluster-level path is then selected with the probability
of a path being chosen dependent on the end-to-end distance
on it and the input value of α.

• The circuit to the destination is then established via one
relay selected at random from each of the clusters on the
chosen cluster-level path.

B. Modification of default Tor client

We implement LASTor by building upon the default Tor
client. We have implemented a Java application which con-
nects to the default Tor client on its control port. This control
port is a port on the Tor client which can be used to manage
and monitor the Tor client based on a standard protocol [37].
By issuing commands to the control port, our Java application
can either obtain information such as the description of all
available relays, or manage the Tor client by establishing or
closing a circuit, attaching streams to a circuit, and clearing
Tor’s DNS cache. To setup a circuit, our program first fetches
relevant information through the Tor control port and provides
this as input to our tunable path selection algorithm. It then
issues commands to the Tor client, again via the control port,
to build desired circuits. We implement LASTor to take as
part of its input configuration 1) a value of α to guide path
selection, and 2) a file with a list of nodes that provide the
DNS lookup service.

C. Input datasets

To run the tunable AS-aware WSP path selection algorithm,
our Java program needs several datasets as input. First, it
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Fig. 14. (a) Distribution of bandwidth across Tor relays, and (b)
comparison of end-to-end latencies with and without taking relay
bandwidth into account; median latency across 5 paths are shown.

fetches a IP geolocation database that maps IP addresses to
locations from MaxMind [19]. Second, the first time it is
executed, the program downloads 1) a AS-level representation
of the Internet topology, 2) the set of AS three-tuples used
to determine policy-compliant paths, and 3) a snapshot of AS
path lengths for paths in either direction between all Tor relays
and all end-hosts, grouped at the granularity of BGP atoms.
We put together the first two datasets by aggregating AS paths
from various sources [27], [28], [12], [34]. To estimate AS path
lengths, we issue queries to iPlane [38]. We find that iPlane
can process roughly 1000 queries per second, and so, we can
re-query iPlane every day for all 60 million IP pairs (600 BGP
atoms with Tor relays × 50K BGP atoms comprising all end-
hosts, in either direction) for which we need AS path length
information. As mentioned before, all three datasets can be
stored in less than 13 MB in size. Since these datasets are
the same across all clients and the information of a client
having downloaded this data does not hamper its anonymity,
clients can download this data from each other via a peer-
to-peer file distribution system such as BitTorrent, so as to
not overwhelm the bandwidth requirements of any central
server. Bandwidth-constrained clients can however download
relevant subsets of this data from the central server, e.g., only
AS path length information necessary for communication with
popular websites. Lastly, every week, the client downloads a
roughly 1.5 MB update for AS path length information, and
more infrequently, fetches updates for the set of inter-AS links
and AS three-tuples. These updates are fetched from a central
server since the update depends on the version of the data
already on the client. For all datasets required by LASTor, we
can enable clients to verify integrity of the data they download
using an approach similar to that used to guarantee integrity
of the default Tor client—by posting a cryptographic hash of
the dataset on the Tor website.

VII. DISCUSSION

In this section, we discuss the extensions to Tor necessary
to further reduce latencies and the impact on load balancing
if LASTor is widely adopted.
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A. Accounting for dynamic load

Though we showed that WSP can significantly reduce
latencies for communication on Tor, there remains a significant
overhead compared to communication over the default Internet
path. Therefore, to reduce latencies further, other than reducing
propagation delays with the use of the WSP path selection
algorithm, it is necessary to minimize queueing delays by
taking into account the load at each relay at the time of path
selection. Here, we present some preliminary results from our
efforts to do so.

First, we observe that access link bandwidths of Tor relays
are spread over a wide range, as shown in Figure 14(a).
Therefore, we investigate the potential for reducing queueing
delays by restricting the choice of relays among those with
high bandwidth. To study this, we measure path latencies on
the Tor network when visiting the top 200 websites from 50
PlanetLab nodes in two cases. We measure latencies first when
choosing relays at random from those which have bandwidth
greater than 100 KBps, and then repeat the same choosing
from all Tor relays. To keep propagation delay similar in
both settings, for every path that we pick from relays with
bandwidth greater than 100 KBps, we pick a corresponding
path with the entry, middle, and exit nodes in the same
locations, but with no restriction on relay bandwidth. For either
path selection strategy, we measure latencies between every
(client, destination) pair on five different paths. The lines “All
Relays” and “BW ≥ 100 KBps” in Fig. 14(b) show that the
distribution of median latency (across the 5 chosen paths) is
identical whether we account for relay bandwidth or not. In
this case, we use the “Estimated” bandwidth estimate for each
relay—the value used by the default Tor client to perform path
selection—but we found the results to be similar when using
other estimates of relay access link bandwidth provided by the
Tor directory.

Next, we studied the variation in latencies over time on
a given path. We selected 20 (client, destination) pairs at
random, and for each of them, we considered two different
disjoint paths with the same end-to-end geographical distance;
either path traversed three Tor relays. For each (client, destina-
tion) pair, we measured latencies once every half hour on either
path selected for it and noted the relative difference between
latencies measured on the first and second path; we randomly
order the two paths chosen for every (client, destination) pair
and fix that ordering across all measurement rounds. Fig. 15

shows the variation of this difference in measured latencies
across the period of a day. We see that, though the pair of
paths selected for every (client, destination) pair span identical
geographical distances, the path that provides better latencies
significantly varies over time.

Therefore, these results seem to indicate that we can reduce
queueing delays only by modifying relays—either by having
them track and report load at finer granularities of time
or by introducing a new queue management algorithm at
relays—which is outside the scope of our goal of enabling
immediate latency improvements for Tor clients. Given the
current implementation of Tor relays, biasing relay selection
based on their bandwidth may help improve throughput, but
this will not improve latencies for interactive transfers.

B. Load balancing

When choosing a path, the default Tor client currently
selects relays with a probability proportional to their access
link bandwidth. As a result, the fraction of all of Tor’s traffic
that traverses any particular relay is roughly proportional to
that relay’s access link bandwidth, thus balancing the load
across relays.

In contrast, load across Tor relays could be significantly
skewed if LASTor were widely used. If most users choose
to use LASTor with a value close to 0 for α, paths chosen
by each client will be biased towards traversing relays that
result in lower end-to-end distances to the destinations with
which the client communicates. On the other hand, even if
all users use LASTor with a value of 1 for α, the consequent
selection of relays at random will result in an equal distribution
of load across relays, which is undesirable given the significant
skew in access link bandwidths across relays (seen earlier in
Fig. 14(a)).

Though addressing this issue requires further investigation
outside the scope of this work, we present two recommen-
dations that we speculate would enable widespread use of
LASTor without harming the balance of load across Tor relays.
First, we recommend that Tor users who use the network for
bulk transfers, such as BitTorrent, should continue to use the
default Tor client. Since bulk transfers account for a majority
of the traffic on Tor [1], the use of the default Tor client for
such traffic will ensure a distribution of load across relays
that is reasonably close to the distribution of their access link
bandwidths. The loss of anonymity due to protocol-specific
path selection requires further investigation. Second, LASTor’s
path selection algorithm itself will need to be modified to take
the access link bandwidths of relays into account. However, to
do so, we will need to discover the distribution of the value of
α used by Tor users who use the LASTor client. Discovering
this distribution should be possible by means of an anonymous
survey across users. LASTor’s path selection algorithm can
then be tweaked to not simply have a preference for paths
with a lower end-to-end distance but to also account for the
access link bandwidths of relays and the distribution of α
across users.



VIII. RELATED WORK

We build upon three lines of prior work—1) improving
performance in Tor, 2) improving anonymity with Tor, and 3)
AS path inference. We discuss related efforts in these areas.

Improving performance in Tor. To improve performance
on Tor, Sherr et al. [6], [39] proposed a path selection algo-
rithm based on the concept of link-based relay selection. In this
approach, a client computes a cost for each path by aggregating
values for the chosen metric (e.g., latency, bandwidth) across
segments on the path, and then picks a path with probability
based on this cost. With the aid of simulations, they showed
that their approach offers better performance on each of
the objective functions mentioned above. In order to obtain
these performance benefits, they discuss relays disseminating
information among themselves using, for example, a network
coordinate system. However, modifying relays to build such
a distributed system for performing measurements and then
disseminating this information is not a trivial task. Therefore,
we focus on latency benefits possible without any modification
to relays. Furthermore, to evaluate the anonymity of their
approach, Sherr et al. count the number of traversed ASes
on the path and consider the traversal of a lower number of
ASes to provide better anonymity. Instead, we explicitly detect
common ASes on the entry and exit segments of a path and
avoid such paths.

Panchenko et al. [7] propose two algorithms to improve
the performance on Tor. First, to reduce latency, they measure
the latency between every pair of relays and choose a path
with a probability related to the end-to-end latency on that
path. Second, to help throughput-oriented applications, they
perform passive measurements to infer the available bandwidth
on each relay and pick a path based on the expected end-to-
end throughput. However, again, modifications to all Tor relays
are necessary to implement these approaches. Also, since most
connections on Tor correspond to interactive traffic [1], we
focus only on reducing latency and show how to do so with
only client-side modifications.

The authors of [40] studied the influence of geographical
diversity on the performance of Tor and found a tradeoff
between improved performance and anonymity. They found
that though low diversity of relays may lower the latencies in
setting up circuits, greater geographical diversity of nodes is
an important factor to provide strong anonymity guarantees.
We similarly illustrate the loss in anonymity when preferring
low latency paths, but make path selection tunable to enable
latency benefits to be overridden for better anonymity, when
desired.

Snader and Borisov [5] showed how a client can trade off
between performance and anonymity when selecting paths.
However, Snader and Borisov focused on improving through-
put on Tor (their evaluation revolved around the download of
a 1 MB file), while we focus on latency. We showed that the
selection of lower latency paths warrants the need for several
techniques not necessary when optimizing throughput, such as
the careful selection of entry guards and accounting for desti-

nations that are geographically distributed. DefenestraTor [8]
improves latencies in Tor by modifying traffic management in
Tor relays to reduce congestion-related queueing delays. We
pursue a complementary approach that reduces propagation
delays without any modifications necessary to Tor relays.

AS-awareness in path selection. In 2004, Feamster and
Dingledine [9] studied the Tor network to investigate the
problem of an AS eavesdropping both ends of a circuit.
First, they showed that there are Tor relays with different
IP addresses that are in the same AS, and that Tor clients
should avoid selecting two relays from the same AS. Second,
they discovered that the probability of an AS observing both
ends of a circuit varies between 10% and 30% across (client,
destination) pairs. To reduce this probability, they proposed
the passive monitoring of BGP feeds to determine AS paths.
However, they did not elaborate on how clients should fetch
and maintain up-to-date information from BGP routing tables.
Instead, motivated by their observation, we make AS-aware
path selection practical by reducing both time and space
complexity.

Later, in 2009, Edman and Syverson [10] showed that
although the number of Tor relays increased significantly since
Feamster and Dingledine’s analysis, the probability of an AS
being able to observe both ends of a connection did not
decrease much. To protect against occurrences of snooping
ASes, the authors suggest that all Tor server authorities agree
upon a snapshot of ASes based on Routing Information Bases
(RIB). Client can then use AS topology snapshots to select a
path in which AS-level routes from the client to the entry node
and from the exit node to the destination span a disjoint set of
ASes. As we showed in our evaluation, our approach of using
AS sets significantly reduces the rate of missing snooping
ASes compared to that proposed by Edman and Syverson.

AS path inference. Several systems and algorithms have
been developed for inference of AS paths between arbitrary IP
addresses on the Internet. Approaches for this can be broadly
classified into two classes. One set of approaches [12], [32],
[33] enable computationally efficient estimation of AS paths
but use a large corpus of path measurements as input. Such
approaches are ideal for hosting services that can be queried
for AS path inferences, but this is not an option in the case of
Tor since the queries for AS paths can leak client anonymity.
The second set of approaches [11], [13] for AS path inference
require much lesser data as input, e.g., only the Internet’s PoP-
level or AS-level topology, but are computationally prohibitive
in processing queries. The use of such techniques to select
paths that avoid snooping ASes will render the selection of
low latency paths moot. Given these shortcomings of prior
approaches for AS path inference, we develop a new technique
that both has low runtimes and requires compact inputs.

Other related work. Several measurement studies [41],
[42], [1] of the Tor network have been performed to determine
the location diversity of Tor users and the popularity of
different kinds of traffic such as HTTP, BitTorrent, and E-mail.
These studies have shown that though HTTP transfers account
for a small fraction of the traffic on Tor, they constitute a large



majority of connections. Hence, for most Tor users, latency is
more important than throughput. To the best of our knowledge,
we are the first to show how to improve latencies on Tor in a
practical manner with only client-side modifications.

Hopper et al. [21] studied the loss in a client’s anonymity by
knowing the latency on the circuit in use by the client. While
complementary to our effort, this study needs to be revisited
in the light of our tunable AS-aware WSP path selection
algorithm. We speculate that the knowledge that a client is
using WSP to choose paths probably leaks more information
about the client when path latency is known.

IX. CONCLUSIONS AND FUTURE WORK

Though Tor is the most widely used anonymity network to-
day for low latency anonymous communication, poor latencies
on it and the fear of traffic correlation attacks by underlying
ASes are the biggest problems with Tor’s usability today. Prior
proposals have either focused on improving the performance
on Tor in terms of throughput, which does not help interactive
communication, or they mandate significant modifications to
Tor relays, which places the onus on developers and thus are
yet to be deployed.

In this paper, we developed a new Tor client, called LASTor,
to demonstrate that both significant latency gains and pro-
tection against snooping ASes can be obtained on Tor today
without requiring any modifications to Tor relays. Based on
measurements along paths between 10K (client, destination)
pairs, we showed that LASTor can deliver a 25% reduction
in median path latency. To deliver these latency benefits, we
showed that it is important to carefully select entry guards and
account for replicated destinations. We also developed a space-
and time-efficient technique for enabling LASTor to reliably
detect the possible presence of snooping ASes on any path.
Moreover, we have made path selection in LASTor tunable so
that a user can easily choose an appropriate trade-off between
latency and anonymity.

We plan to make LASTor available for public use. We
are also investigating the use of latency estimation ap-
proaches [13], [12] that do not require measurements from
relays to further improve latencies on Tor without necessitating
modifications to relays.
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