
CloudTransport:

Using Cloud Storage for

Censorship-Resistant Networking

Chad Brubaker1,2, Amir Houmansadr2, and Vitaly Shmatikov2

1 Google
2 The University of Texas at Austin

Abstract. Censorship circumvention systems such as Tor are highly
vulnerable to network-level filtering. Because the traffic generated by
these systems is disjoint from normal network traffic, it is easy to recog-
nize and block, and once the censors identify network servers (e.g., Tor
bridges) assisting in circumvention, they can locate all of their users.
CloudTransport is a new censorship-resistant communication system that
hides users’ network traffic by tunneling it through a cloud storage ser-
vice such as Amazon S3. The goal of CloudTransport is to increase the
censors’ economic and social costs by forcing them to use more expen-
sive forms of network filtering, such as large-scale traffic analysis, or else
risk disrupting normal cloud-based services and thus causing collateral
damage even to the users who are not engaging in circumvention. Cloud-
Transport’s novel passive-rendezvous protocol ensures that there are no
direct connections between a CloudTransport client and a CloudTrans-
port bridge. Therefore, even if the censors identify a CloudTransport
connection or the IP address of a CloudTransport bridge, this does not
help them block the bridge or identify other connections.
CloudTransport can be used as a standalone service, a gateway to an
anonymity network like Tor, or a pluggable transport for Tor. It does
not require any modifications to the existing cloud storage, is compatible
with multiple cloud providers, and hides the user’s Internet destinations
even if the provider is compromised.

1 Introduction

Internet censorship is typically practiced by governments [3,45,53] to, first, block
citizens’ access to certain Internet destinations and services; second, to disrupt
tools such as Tor that help users circumvent censorship; and, third, to identify
users engaging in circumvention. There is a wide variety of censorship technolo-
gies [30]. Most of them exploit the fact that circumvention traffic is easy to
recognize and block at the network level. Traffic filtering is cheap, effective, and
has little impact on other network services and thus on the vast majority of
users in the censorship region who are not engaging in circumvention. Another
problem with the existing censorship circumvention systems is that they cannot
survive partial compromise. For example, a censor who learns the location of

2

a Tor bridge [6] can easily discover the locations of all of its users simply by
enumerating the IP addresses that connect to the bridge.

While there is no comprehensive, accurate data on the technical capabilities
of real-world censors, empirical evidence suggests that they typically perform
only line-speed or close-to-line-speed analysis of Internet traffic. In particular,
they neither store huge Internet traces for a long time, nor carry out resource-
intensive statistical analysis of all observed flows. Furthermore, many state-level
censors appear unwilling to annoy regular users, who are not engaged in circum-
vention, by significantly disrupting popular services—even if the latter employ
encrypted communications. This is especially true of services used by businesses.
For example, Chinese censors are not blocking GitHub because of its popularity
among Chinese users and the gigantic volume of traffic they generate [17], nor
are they blocking some of Google’s encrypted services [19].

Some censors are willing to risk popular discontent by taking more dras-
tic measures. Ethiopia has been reported to block Skype [13] (denied by the
Ethiopian government [14]), Iran occasionally blocks SSL [26], and the Egyptian
government cut the country off the Internet entirely during an uprising [12]. We
focus on the more common scenario where, instead of blocking all encrypted
communications, the censors aim to distinguish censorship circumvention traffic
from “benign” encrypted traffic and block only the former.

Our contributions. We design, implement, and evaluate CloudTransport, a
new system for censorship-resistant communications. CloudTransport is based
on the observation that public cloud storage systems such as Amazon S3 provide
a very popular encrypted medium accessible from both inside and outside the
censor-controlled networks. For example, Amazon’s cloud services are already
used to host mirrors of websites that are censored in China, yet Chinese censors
are not blocking Amazon because doing so would disrupt “thousands of services
in China” with significant economic consequences [20].

CloudTransport is a general-purpose networking system that uses cloud stor-
age accounts as passive rendezvous points in order to hide network traffic from
censors. Since censors in economically developed countries like China are not
willing to impose blanket bans on encrypted cloud services—even if these ser-
vices are known to be used for censorship circumvention [20]—they must rely on
network filters to recognize and selectively block circumvention traffic. Cloud-
Transport uses exactly the same cloud-client libraries, protocols, and network
servers as any other application based on a given cloud storage (we refer to this
property as entanglement). Consequently, simple line-speed tests that recognize
non-standard network protocols are not effective against CloudTransport.

CloudTransport’s passive-rendezvous protocol helps survive partial compro-
mise. Because CloudTransport clients never connect to a CloudTransport bridge
directly, a censor who discovers a CloudTransport connection or learns the IP
address of a bridge can neither block this bridge, nor identify its other users.
The bridge can also transparently move to a different IP address without any
disruption to its clients (e.g., if it experiences a denial of service attack). Our
rendezvous protocol may be useful to other censorship resistance systems, too.

3

CloudTransport

Client

Censorship Region

Uncensored
Internet

Encrypted
Traffic

CloudTransport
Bridges

Oblivious Cloud System
(e.g., Amazon S3)

Internet
Traffic

Encrypted
Traffic

…..

Cloud File Backups

Games with Cloud-hosted Assets

Cloud-hosted Websites

Fig. 1. High-level architecture of CloudTransport.

CloudTransport is versatile and lets the user select a trusted cloud storage
provider in a jurisdiction of the user’s choice. On the user’s machine, it presents
a universal socket abstraction that can be used as a standalone communication
system, a gateway for accessing proxies or Tor, or a pluggable transport for Tor.

The goal of CloudTransport is to raise the economic and social costs of cen-
sorship by forcing the censors to use statistical traffic analysis and other compu-
tationally intensive techniques. False positives of statistical traffic classification
may cause the censors to disrupt other cloud-backed services such as enter-
prise applications, games, file backups, document sharing, etc. This will result
in collateral damage, make censorship tangible to users who are not engaging in
circumvention, and increase their discontent.

We analyze the properties provided by CloudTransport against ISP-level cen-
sors, cloud providers, and compromised bridges. We also show that its perfor-
mance is close to Tor pluggable transports on tasks such as Web browsing,
watching videos, and uploading content.

2 Protocol Design

The overall architecture of CloudTransport is shown in Fig. 1. The user installs
CloudTransport client software on her machine and creates a rendezvous ac-

count with a cloud storage provider such as Amazon S3 in a jurisdiction of her
choice outside the censor’s control. The user must also choose a CloudTransport
bridge and send the rendezvous account’s access credentials to the bridge via
the bootstrapping protocol described in Section 3. We envision CloudTransport
bridges being run by volunteers in uncensored ISPs. A natural place to install
CloudTransport bridges is on the existing Tor bridges [6], so that CloudTrans-
port users benefit from Tor’s anonymity properties in addition to the censorship
circumvention properties provided by CloudTransport.

On the user’s machine, the CloudTransport client presents a socket that can
be used by any application for censorship-resistant networking. For example,
the user may run a Web browser or a conventional Tor client over CloudTrans-
port. The CloudTransport client uses the cloud storage provider’s standard client
library to upload application-generated network packets to the rendezvous ac-
count; the bridge collects and delivers them to and from their destinations.

4

Application Client

SOCKS5 connect

SOCKS5 response

Rendezvous account Bridge Destination

FetchAndDelete('resp')

Wait until
FileExists('resp')

WriteFile('init',request)

Wait until FileExists('init')

FetchAndDelete('init')

WriteFile('resp',responses)

Establish TCP
connections

Client chooses a random UUID

Enqueue initialization

request

Fig. 2. Cirriform: connection initialization.

CloudTransport uses existing cloud storage services “as is,” without any mod-
ifications. This is a challenge because cloud-storage APIs are designed for occa-
sional file uploads with many downloads, not for fast sharing of data between
two parties. They do not typically support file locking or quick notification of
file changes. CloudTransport clients and bridges, on the other hand, write to
cloud storage often and must learn as quickly as possible when the other party
has uploaded data to the shared account. To solve this challenge, each file used
by CloudTransport is written by only one connection and read by only one con-
nection. Writes happen only if the file does not already exist and all reads delete
the file, to signal that it is safe to create the file anew and write into it.

We designed and implemented two variants of CloudTransport, Cirriform
and Cumuliform. The protocol flow is the same, the only difference is how often
they write into the cloud-based rendezvous account and poll for updates.

Cirriform. Cirriform uses one file in the rendezvous account per connection
per direction, plus one file per direction for connection setup.

Figure 2 shows the protocol for setting up a new Cirriform connection. Con-
nection requests and responses are queued and uploaded in batches. The client
and the bridge periodically check the rendezvous account for pending messages.
Once the connection is established, Figures 3 and 4 show how data is transferred
from the application and the destination, respectively.

Typical cloud-storage API does not support pushing storage updates to cus-
tomers, thus the client and the bridge must poll the rendezvous account. In our
prototype, the polling rate for initialization requests and responses is set ran-
domly and independently by each client, with the expected value of once per
0.5 seconds. For maximum performance, polling for data connections starts at
once per 0.1 seconds, halves after every 20 failed checks, and resets to once per
0.1 seconds after every successful check. To avoid generating a regular signal,
random jitter is added or subtracted to the interval after each poll.

Cumuliform. Applications such as Web browsing create many parallel con-
nections, and polling cloud storage on all of them can incur a non-trivial cost

5

Application Client

Data

Rendezvous account Bridge Destination

Wait until
NOT FileExists('client-uuid')

WriteFile('client-uuid',message)

Wait until
FileExists('client-uuid')

FetchAndDelete('client-uuid')

Data

Fig. 3. Cirriform: client sending data.

Client

Data

Rendezvous account Bridge Destination

Wait until
FileExists('bridge-uuid')

WriteFile('bridge-uuid',message)

Wait until
NOT FileExists('bridge-uuid')

FetchAndDelete('bridge-uuid')

Data

Application

Fig. 4. Cirriform: destination sending data.

Table 1. Prices charged by cloud storage providers (2013).

Provider Bandwidth cost Storage cost Operation cost

Amazon S3
$0.12/GB

$0.0950/GB
$0.004/10000 GET

after first GB $0.005/1000 PUT
Rackspace $0.12/GB

$0.1000/GB None
CloudFiles after first GB
Google $0.12/GB

$0.0865/GB

$0.01/10000 GET
Cloud (USA/Europe) $0.01/1000 PUT
Storage $0.21/GB

(Asia/Pacific)

if the provider charges per operation (see Table 1). To reduce the polling cost,
Cumuliform uses one file per direction rather than per connection. All requests
are enqueued; the client and the bridge check 5 times a second for pending re-
quests. Unlike Cirriform, which uploads data as soon as it is ready, Cumuliform
uploads in batches, which can add extra delays.

Usage modes. CloudTransport can be used directly to send and receive net-
work packets. We refer to this as the transport mode. The transport mode does
not provide any privacy against the cloud storage provider since the provider can
observe all of the user’s packets in plaintext. To provide some protection against

6

Uncensored
Internet

CloudTransport
Bridge

Oblivious Cloud System

CloudTransport

Client

Censorship Region

(a) Tunnel mode

Proxy Uncensored
Internet

CloudTransport
Bridge

Oblivious Cloud System

CloudTransport

Client

Censorship Region

(b) Proxified-light mode

Tor Network

CloudTransport

Client

Censorship Region

Uncensored
Internet

CloudTransport
Bridge

Oblivious Cloud System

(c) Proxified-Tor mode

Fig. 5. Usage modes of CloudTransport.

malicious or curious cloud providers and CloudTransport bridges, we developed
three usage modes illustrated in Figure 5. These modes represent different points
in the tradeoff space between performance and censorship resistance.

The tunnel mode of CloudTransport hides the user’s Internet destinations—but
not the fact that she is using CloudTransport —from the cloud provider. In this
mode, the user uses a CloudTransport bridge as a gateway to censored desti-
nations. The traffic between the user’s CloudTransport client and the bridge is
encrypted, preventing the cloud provider from observing traffic contents. The
bridge runs an OpenSSH server and authenticates the client using the tempo-
rary public key from the client’s bootstrapping ticket (see Section 3.2). The client
connects to this server via the rendezvous account, as described in Section 2, and
tunnels all of its traffic over SSH.

In the proxified-light mode, the client uses CloudTransport to access a one-
step proxy, e.g., Anonymizer [2]. The user’s activities are thus hidden from the
bridge if the traffic between the client and the proxy is encrypted end-to-end.

For strongest privacy, the client can use a system that aims to provide protec-
tion against itself, e.g., the Tor anonymity network in conjunction with Cloud-
Transport. In the proxified-Tor mode, the client either runs a conventional Tor
client and forwards Tor traffic over CloudTransport, or else uses CloudTransport
as a pluggable transport [39] for Tor.

3 Bootstrapping

Bootstrapping is a critical part of any circumvention system. Many systems [4,7,
25,35,37,39,51] must send their clients some secret information—for example, IP

7

addresses of circumvention servers or bridges, URLs of websites covertly serving
censored content, etc.—and hope that this information does not fall into the
censors’ hands. As shown in [33, 34], censors can easily obtain these secrets by
pretending to be genuine users and then block the system. Existing, trusted
clients can help bootstrap new clients [49, 50], but this limits the growth of the
system, especially in the early stages. Another way for the clients to discover
circumvention servers is by probing the Internet [23,54].

By contrast, bootstrapping in CloudTransport is initiated by users and per-
formed “upstream”: clients send information to the bridges without needing
to obtain any secrets first. Therefore, insider attacks cannot be used to block
CloudTransport bridges or discover other users.

3.1 Selecting a cloud provider and a bridge

To start using CloudTransport, the user must set up a rendezvous account with
a cloud storage provider. The user should select a cloud storage provider which
is (1) outside the censor’s jurisdiction, (2) already used by many diverse applica-
tions unrelated to censorship circumvention, and (3) unlikely to cooperate with
the censor. We believe that using a cloud storage account for CloudTransport
does not violate the typical terms of service, e.g., Amazon S3’s “Conditions of
Use” [1] or Dropbox’s “Acceptable Use Policy” [9], since CloudTransport does
not cause harm to other users or the provider itself.

Global providers such as Amazon S3 let customers specify a region for their
data, e.g., “US West (Oregon)”, “Asia Pacific (Tokyo)”, etc. To evade flow corre-
lation attacks discussed in Section 4.4, a CloudTransport bridge should access its
clients’ rendezvous accounts through the cloud provider’s servers located outside
the censorship region.

Due to the distributed nature of cloud storage, there is a delay between
uploading a file and this file becoming visible for download, as well as other
temporary inconsistencies between customers’ views of the same account. This
is typically a non-issue for conventional uses of cloud storage, but the primary
source of delays for CloudTransport. Delays are much smaller and consistency
achieved much faster by services such as Amazon S3 that charge per storage
operation, as opposed to services such as Google Drive that simply charge per
amount of storage regardless of how frequently this storage is accessed.

The monetary costs of using cloud storage is another consideration (see Ta-
ble 1). We hope that some providers would be willing to donate their storage
services (e.g., in the form of free accounts) to support censorship resistance.

The user must also select a CloudTransport bridge. Unlike Tor bridges [6],
which must remain hidden from the censors, the list of CloudTransport bridges,
along with other information needed for their usage, can be publicly advertised.
It can be hosted on a directory server similar to the directory server of Tor
relays [48]. For each CloudTransport bridge, this public directory should contain
(1) a certificate with the bridge’s public key, and (2) the URL of the bridge’s
dead drop, whose purpose is explained in Section 3.3.

8

We distinguish between the login credentials (e.g., username and password)
and access credentials (e.g., API Key and Access Key in Amazon S3) for the
rendezvous account. Access credentials allow reading and writing files, but do
not give access to management data such as the billing information, IP addresses
from which the account was accessed, etc. Only the access credentials for the
rendezvous account should be sent to the bridge. The user can do this via one
of the methods described in Section 3.3.

3.2 Creating a bootstrapping ticket

To use a bridge, a CloudTransport client first obtains the bridge’s public key KB

from CloudTransport’s directory server. The client then creates a bootstrapping

ticket with (1) the name of the cloud provider chosen by the user, (2) the access
credentials for the rendezvous account (API Key and Access Key in the case of
Amazon S3), and (3) optionally, the client’s temporary public key, which is used
in the tunnel mode (Section 2) to authenticate the client. The ticket is encrypted
using KB as an S/MIME [42] message in the EnvelopedData format.

3.3 Delivering the ticket to the bridge

Dead drop. A bridge can set up its own cloud storage account, create a “dead
drop” in it as a world-readable and -writable file directory, and advertise its URL
in the bridge directory. Clients will write their tickets into the dead drop as files
with arbitrary names and the bridge will periodically collect them.

To protect tickets in network transit from tampering, the dead drop should be
accessible via HTTPS only (most cloud storage services use HTTPS by default).
Unlike rendezvous accounts used for actual networking, bootstrapping is not
latency-sensitive, thus free services like Dropbox, SkypeDrive, or Google Drive
can be used to set up the dead drop.

Out-of-band channels. Since latency is not critical for bootstrapping, a user
can deliver her bootstrapping ticket to the bridge by asking a trusted friend who
is already using CloudTransport, or by posting the ticket to an anonymous chat
room, social network, or public forum.

4 Analysis

Table 2 shows what information CloudTransport aims to hide from, respectively,
the censoring ISP, cloud storage provider, and CloudTransport bridges. The
cloud storage provider is trusted not to reveal to the censors the identities and
network locations of its customers who are using CloudTransport. The bridges
are trusted not to perform flow correlation (see Section 4.4). In the tunnel mode,
the bridges must also be trusted not to reveal the contents and destinations of
CloudTransport traffic; this assumption is not required in the proxified modes.

In the rest of this section, we discuss how CloudTransport resists different
types of attacks that may violate these properties.

9

Table 2. Intended properties of CloudTransport.

Users’ ISP
Cloud storage
provider

CloudTransport bridge

Network locations of
CloudTransport users

Hidden Known Hidden

Destinations of Cloud-
Transport traffic

Hidden Hidden Known (tunnel mode)

Hidden (proxified modes)

Content of Cloud-
Transport traffic

Hidden Hidden Known (tunnel mode)

Hidden (proxified modes)

4.1 Recognizing CloudTransport network traffic

CloudTransport aims to increase the technological complexity of censorship and,
in particular, to force censors into using computationally expensive techniques
such as statistical traffic analysis [10] as opposed to simple network-level tests.

Protocol discrepancies. CloudTransport’s encrypted tunnels use exactly the
same clients, same protocols, and same network servers as any other applica-
tion based on a given cloud storage API. Due to this “entanglement” property,
CloudTransport is immune to attacks that find discrepancies [21, 47] between
genuine protocols like SSL and Skype and the imitations used by systems such
as Tor and SkypeMorph [35]. This significantly raises the burden on the censors
because simple line-speed tests based on tell-tale differences in protocol headers,
public keys, etc. cannot be used to recognize CloudTransport. Also, CloudTrans-
port’s reaction to active perturbations such as dropping and delaying packets is
similar to any other application based on the same cloud API.

The network servers used by Tor, SkypeMorph, Obfsproxy [37] and similar
systems are disjoint from those used by other services. Once these servers are
discovered, censors can block them without zero impact on non-circumvention
users and their traffic. By contrast, blocking the network servers used by Cloud-
Transport would effectively disable all uses of a given cloud provider, causing
economic damage to users and businesses in the censorship region [20].

Statistical analysis. We do not claim that no statistical classification algo-
rithm can distinguish CloudTransport traffic from the traffic generated by other
cloud applications. We believe, however, that it will be technically challenging
for the censors to develop an algorithm that simultaneously achieves low false
negatives (to detect a significant fraction of CloudTransport traffic) and low false
positives (to avoid disrupting non-CloudTransport cloud services).

First, note an important difference between the encrypted cloud traffic and
the encrypted traffic generated by Skype and other standalone applications.
All of Skype traffic is generated by copies of the same client or, at most, a
few variations of the same client. Therefore, censors can whitelist typical Skype

10

patterns and block all traffic that deviates from these patterns (this includes
traffic generated by Skype imitators such as SkypeMorph or Stegotorus [21]).

By contrast, encrypted traffic to the cloud provider’s servers is generated by
thousands of diverse applications. This makes it difficult to create an accurate
whitelist of traffic patterns and block all deviations without disrupting permitted
services. Instead, censors must rely on blacklisting and use statistical analysis to
positively recognize traffic patterns characteristic of CloudTransport. Further-
more, this analysis must be performed on every cloud connection, increasing the
censors’ computational burden.

Detailed analysis of traffic patterns generated by CloudTransport vs. all the
diverse uses of cloud storage is beyond the scope of this paper. The main chal-
lenge for accurate statistical recognition of CloudTransport traffic is that Cloud-
Transport is unlikely to account for more than a tiny fraction of all monitored
connections. Due to the base-rate fallacy inherent in detecting statistically rare
events, we expect that even an accurate classifier will either fail to detect many
CloudTransport connections, or occasionally confuse CloudTransport with an-
other cloud service. In the former case, some CloudTransport traffic will escape
detection. In the latter case, censorship will cause collateral damage to at least
some non-CloudTransport cloud applications. This will make censorship visible
to non-circumvention users and potentially disrupt cloud-based business services,
thus increasing the economic and social costs of censorship.

4.2 Abusing the CloudTransport bootstrapping protocol

The dead-drop variant of the CloudTransport bootstrapping protocol described
in Section 3.3 can be potentially abused by censors to deny service to bona fide
CloudTransport users. Since bridges publicly advertise their dead drops, censors
can read and write them like any other user.

Even though reading other users’ tickets does not reveal who these users
are because the tickets are encrypted under the bridge’s public key, censors may
delete or tamper with them in order to deny service to genuine users. Fortunately,
many cloud storage providers store all versions of each file (e.g., a free Dropbox
account keeps all file versions for 30 days1). Therefore, the bridge should collect
the first version of every file in the dead drop.

Censors may also stuff the dead drop with tickets that contain credentials
for non-existing rendezvous accounts or real rendezvous accounts that are never
used. The bridge will be forced to repeatedly poll these accounts, potentially
exhausting its resources. To partially mitigate these attacks, the bridge backs
off on polling if the account remains inactive (see Section 2). If the rate at which
the censors can stuff the dead drop with fake tickets is significantly higher than
the rate at which the bridge can check and discard them, this attack may hinder
the bootstrapping process.

1 https://www.dropbox.com/help/11/en

https://www.dropbox.com/help/11/en

11

4.3 Attacking a CloudTransport bridge

It is relatively easy for the censors to discover the IP addresses of CloudTrans-
port bridges. For example, a censor can pretend to be genuinely interested in
circumvention, pick a bridge, set up a rendezvous account, and find out the
bridge’s IP address from the account’s access logs.

CloudTransport clients do not connect to bridges directly. Therefore, the
censors cannot discover CloudTransport clients by simply enumerating all IP
addresses inside the censorship region that connect to the bridges’ addresses.
For the same reason, blacklisting the addresses of known bridges has no effect
on CloudTransport if these addresses are outside the censorship region. Unless
the censors take over a bridge, they cannot observe or disrupt the connections
between this bridge and the cloud provider because these connections take place
entirely outside the censorship region (see Fig. 1 and Section 3.1).

Censors may stage a denial-of-service attack by flooding the IP address of
a known bridge with traffic. In addition to standard defenses against network
denial of service, some operators may be able to move their bridges to another
IP address. This change is completely transparent to the users: as long as the
bridge is hosted at an address from which it can access the cloud storage, Cloud-
Transport remains operational even if the users don’t know this address. Censors
may also pose as genuine clients and send large volumes of requests via Cloud-
Transport, but this involves heavy use of rendezvous accounts and will incur
significant monetary costs. Furthermore, a bridge can throttle individual clients.

A denial-of-service attack on the bridge may cause a correlated drop in traffic
on CloudTransport connections utilizing that bridge, and thus help the censors
recognize CloudTransport connections by finding these correlations. This attack
requires large-scale traffic analysis, which will be more expensive for the censors
than simply enumerating all clients connecting to a bridge.

Finally, the censors may create their own bridge or take over an existing
bridge. In either case, they gain full visibility into the traffic passing through
this bridge, including the access credentials for the rendezvous accounts of all
CloudTransport users communicating through the bridge. These credentials do
not directly reveal these users’ identities or network locations. Furthermore, the
proxified modes of CloudTransport (see Section 2) encrypt traffic end-to-end
between the client and the apparent destination: either a proxy, or a Tor entry
node. Consequently, the censors in control of a bridge do not learn the true
destinations or contents of CloudTransport traffic.

By controlling the bridge, the censors gain the ability to perform flow corre-
lation attacks—see Section 4.4. Furthermore, the censors in control of a bridge
can write content into rendezvous accounts that is legally prohibited in the cloud
provider’s jurisdiction. They can then use the presence of such content to shut
down the accounts and/or convince the cloud provider to ban CloudTransport.

4.4 Performing large-scale flow correlation

A censor who observes all traffic to and from the cloud storage provider may
attempt to identify flows that belong to the same CloudTransport connection

12

by correlating packet timings and sizes [8,22] In particular, the censor may look
for flows between a user and the cloud provider that are correlated with the
flows between the provider and a known or suspected CloudTransport bridge.
A precondition for this attack is the ability to observe the traffic between the
provider and the bridge. As explained in Section 3.1, we assume that the bridge
is connecting to the provider through a server located outside the censorship
region. That said, flow correlation can be feasible if the censors set up their own
bridges or compromise an existing bridge.

Flow correlation is resource-intensive. Passive correlation attacks [8] require
recording hundreds of packets from each flow and cross-correlating them across
all flows. Active correlation [22] requires fine-grained perturbations and delays
to be applied to all suspected flows. Furthermore, correlation must be done
separately and independently for each flow reaching a given bridge.

The censor may attempt a side-channel attack such as website fingerprint-
ing [5, 38, 44] to infer websites being browsed over CloudTransport. This attack
exploits patterns in object sizes which are preserved by encryption. Random
padding used by some SSH2 [43] (respectively, TLS) implementations greatly
complicates this attack against CloudTransport’s tunnel (respectively, proxified-
light) mode. Tor’s use of equal-sized cells mitigates this attack in the proxified-
Tor mode, but may not completely prevent it [5, 38]. To address this, Tor plug-
gable transports use traffic morphing [28], replaying old traffic traces [35, 51],
and format-transforming encryption [11]. A CloudTransport client, too, can de-
ploy these countermeasures, which can be hosted on users’ machines [31, 32] or
network proxies [31, 41], at the cost of additional bandwidth overhead.

5 Performance

We evaluated CloudTransport on four use cases: browsing the front pages of
the Alexa Top 30 websites, uploading 300 KB images via SCP to a remote
server, watching 5 minutes of 480p streaming video from Vimeo, and uploading
a 10MB video to YouTube. All experiments involved a single client and a single
bridge. The client was running on a machine with 16 Mb down- and 4 Mb
up-bandwidth, while the bridge was running in a datacenter 2,400 kilometers
(1,500 miles) away. Evaluating the performance of CloudTransport in a realistic,
large-scale deployment is a topic of future work.

Table 3. Browsing, per-page costs.

Provider Cirriform Cumuliform
Cirriform Cumuliform
Profixied Profixied

S3 0.00240¢ 0.00100¢ 0.00300¢ 0.00430¢

CloudFiles 0 0 0 0

Cloud
0.00570¢ 0.00234¢ 0.00600¢ 0.00900¢

Storage

2 http://www.gnutls.org/manual/gnutls.html#On-Record-Padding

http://www.gnutls.org/manual/gnutls.html#On-Record-Padding

13

Cloudfiles S3 Google Cloud Storage
0

2

4

6

8

10

12

14

S
e
c
o
n
d
s

Time to page fetch

Time to connection

Fig. 6. Browsing (different providers).

Fig. 6 compares different cloud storage providers with CloudTransport oper-
ating in the tunnel mode. Table 3 shows the corresponding costs. Amazon S3 and
Google Cloud Storage have similar performance and costs; S3 is slightly cheaper
and quicker to propagate changes. RackSpace CloudFiles does not charge per
operation and is thus much cheaper, but also significantly slower.

All of the following experiments were performed with a rendezvous account
hosted on Amazon S3.

Performance. Fig. 7 shows that the performance of Cirriform in tunnel and
profixied-Tor modes is similar to Tor with Obfsproxy [37]. Note that in the
proxified-Tor mode, CloudTransport traffic enters the Tor network after passing
through the bridge and is therefore subject to the same performance bottle-
necks as any other Tor traffic. Unlike CloudTransport, Tor+Obfsproxy is easily
recognizable at the network level and thus marked “(observable)” in the charts.

Cumuliform is noticeably slower because it buffers messages for all connec-
tions (as many as 30 when browsing). The variance for CloudTransport is much
lower than for Tor+Obfsproxy, mainly because delays in CloudTransport are due
to waiting for data to become available in the rendezvous account and S3 has
fairly consistent delays in propagating small files used by CloudTransport.

Uploading files involves a lot of back-and-forth communication to set up the
SCP connection. This puts CloudTransport at a disadvantage because of its per-
message overheads, but Fig. 8 shows that it still outperforms Tor+Obfsproxy in
all modes but one. Uploading a video to Youtube has similar issues to uploading
small images, but with larger data sizes and more back-and-forth communica-
tion. Fig. 9 shows that CloudTransport still outperforms Tor+Obfsproxy in all
Cirriform modes. Cumuliform in tunnel and proxified-Tor modes is, respectively,
similar to and slower than Tor+Obfsproxy.

14

Tor w/ Obfsproxy
(Observable)

Cirriform
Tunnel

Cumuliform
Tunnel

Cirriform
Profixied-Tor

Cumuliform
Proxified-Tor

2

4

6

8

10

12

14

S
e
c
o
n
d
s

Time to page fetch

Time to connection

Fig. 7. Browsing (different usage modes).

Tor w/ Obfsproxy
(Observable)

Cirriform
Tunnel

Cumuliform
Tunnel

Cirriform
Profixied-Tor

Cumuliform
Proxified-Tor

5

10

15

20

25

30

S
e
c
o
n
d
s

Time to upload

Time to connection

Fig. 8. Image uploading.

CloudTransport in all modes consistently plays streaming videos without
pause after some initial buffering. Tor+Obfsproxy starts playing earlier but often
buffers again later in the clip. Fig. 10 shows the average time spent buffering.

Bandwidth. CloudTransport connections have minimal bandwidth overhead
per message: 350-400 bytes for S3, 700-800 for CloudFiles, and 375-450 for Google
Cloud Storage. HTTPS uploads and downloads have extra 2-3% overhead. When
Cirriform polls an S3 account 3 times per second and 5 times per second per
connection, its total overhead is 1.2KB + 2KB/connection per second.

Costs. Cirriform’s performance is consistently superior to Cumuliform in all
modes, but Cumuliform uses many fewer operations and is thus almost half
as cheap when using providers who charge per operation (Table 3). In profix-

15

Tor w/ Obfsproxy
(Observable)

Cirriform
Tunnel

Cumuliform
Tunnel

Cirriform
Profixied-Tor

Cumuliform
Proxified-Tor

5

10

15

m
in
u
te
s

Time to upload

Fig. 9. Youtube Uploading.

Tor w/ Obfsproxy
(Observable)

Cirriform
Tunnel

Cumuliform
Tunnel

Cirriform
Profixied-Tor

Cumuliform
Proxified-Tor

2

4

6

8

10

12

14

16

18

S
e
c
o
n
d
s

Time spent buffering

Fig. 10. Streaming Video.

ied modes, connections are re-used, thus Cumuliform no longer enjoys the cost
advantage. Cirriform’s polling costs are higher because it takes longer to run.

Table 4. Idle-polling costs.

Provider Cirriform Cumuliform

S3
$0.185/day +

$0.34/day
$0.34/day/connection

CloudFiles 0 0

Cloud Storage
$0.215/day +

$0.86/day
$0.86/day/connection

16

The costs of idle-polling the rendezvous account regardless of whether com-
munication is taking place are shown in Fig. 4. These assume one write per every
poll and are thus worst-case estimates. Real costs will be lower because uploads
to cloud storage propagate slower than CloudTransport’s polling rate.

6 Related Work

Proxy-based systems. IP address blacklisting is the most basic technique
used by many censors [30]. A natural way to circumvent the filter is to access
blacklisted destinations via a proxy, e.g., Psiphon [40]. GoAgent [18] is an HTTP
proxy implemented as a cloud-hosted application in Google App Engine [16]. In
contrast to CloudTransport, GoAgent has access to all of the user’s traffic in
plaintext and must be fully trusted.

The main challenge for proxies is how to securely distribute their locations
to genuine users while keeping them secret from insider attackers, i.e., censors
pretending to be genuine users [33,50]. As soon as the censor learns the proxy’s
location, he can blacklist it, identify past users from network traces, or even
leave the proxy accessible in order to identify and punish its future users [34].

Tor bridges. Tor is a popular anonymity network [7]. Cloud-based Onion
Routing (COR) [27] is a proposal to host Tor relays in the cloud. Whether
hosted in the cloud or not, the addresses of Tor relays are public, thus censors
can and do block them. A Tor bridge is a hidden proxy that clients can use as a
gateway to the Tor network [6]. The Tor Cloud project [46], currently deployed
by Tor, allows donors to run Tor bridges inside Amazon EC2. This idea was
previously proposed by Mortier et al. [36] in a position paper.

CloudTransport does not involve running relays or bridges in the cloud; it
uses the cloud solely as a passive rendezvous point for data exchange. This gives
CloudTransport several advantage over Tor bridges, Tor Cloud, COR, etc.

First, Tor traffic is easily recognizable at the network level because Tor clients
and bridges run their own unique protocol. Iranian censors were able to block
Tor by exploiting the difference between the Diffie-Hellman moduli in “genuine”
SSL and Tor’s SSL [47, Slide 27], as well as the expiration dates of Tor’s SSL
certificates [47, Slide 38]. By contrast, CloudTransport uses exactly the same
protocol, cloud-client library, and network servers as any other application based
on a given cloud storage service.

Second, blacklisting the IP address of a Tor bridge completely disables this
bridge with zero impact on other network services. By contrast, blacklisting the
IP addresses of CloudTransport bridges has no effect on CloudTransport, while
blacklisting the IP addresses of cloud servers used by CloudTransport disrupts
other cloud-based applications using the same servers.

Third, a censor who discover the IP address of a Tor bridge (e.g., via a
probe [52, 53] or insider attack [33, 34, 50]) can easily enumerate the network
locations of clients who connect to this bridge. By contrast, even a censor in
complete control of a CloudTransport bridge does not learn the locations of its
clients without computationally intensive flow correlation analysis.

17

Fourth, when a Tor bridge changes its IP address (e.g., when it is attacked
or blacklisted), all of its clients must be securely notified about the new address.
By contrast, when a CloudTransport bridge changes its IP address, this change
is completely transparent to its clients.

Fifth, bootstrapping Tor bridges is challenging because their addresses must
be distributed only to genuine users but not to censors pretending to be users.
By contrast, bootstrapping in CloudTransport is initiated by clients. Even if a
censor pretends to be a user, he cannot discover who the other users are.

CloudTransport’s reliance on rendezvous accounts hosted by cloud storage
providers has some disadvantages, too. Unlike Tor clients, which only require
Internet access, CloudTransport clients require every user to set up a cloud
storage account outside her region. This may negatively impact usability, impose
financial costs, generate a pseudonymous profile, and disclose the user’s identity
and the fact that she is using CloudTransport to the cloud storage provider, as
well as the financial institutions processing her payments.

Imitation systems. To remove characteristic patterns from Tor traffic, Tor
deployed pluggable transports [39]. For example, Obfsproxy [37] re-encrypts Tor
packets to remove content identifiers. Systems such as SkypeMorph [35], Stego-
Torus [51], and CensorSpoofer [49] proposed pluggable transports that aim to
imitate popular network protocols like Skype and HTTP. A recent study showed
multiple flaws in the entire approach of unobservability-by-imitation [21].

Hide-within systems. A promising alternative to imitation is to actually run
a popular protocol and hide circumvention traffic within its network channels,
thus entangling circumvention and non-circumvention traffic. This ensures that
the circumvention system is “bug-compatible” with a particular implementation
of the chosen protocol and therefore immune to tests that find discrepancies
between actual protocol implementations and partial imitations [21].

We call such systems hide-within. CloudTransport is a hide-within system
that tunnels circumvention traffic through cloud storage protocols. Other hide-
within designs include FreeWave [24], which encodes circumvention traffic into
acoustic signals sent over VoIP connections, and SWEET [25], which tunnels
circumvention traffic inside email messages.

Steganography-based systems. In Infranet [15], the client pretends to browse
an unblocked website that has secretly volunteered to serve censored content.
Requests for censored content are encoded in HTTP requests, the responses are
encoded in images returned by the site. By contrast, CloudTransport uses cloud
storage obliviously, without any changes to the existing services.

Collage [4] hides censored content in user-generated photos, tweets, etc. on
public, oblivious websites. It does not support interactive communications such
as Web browsing.

In decoy routing [23, 29, 54], ISPs voluntarily help circumvention by having
their routers recognize covert, steganographically marked traffic generated by
users from the censorship region and deflect it to the blocked destinations spec-
ified by the senders. Unlike CloudTransport, decoy routing is not deployable
without cooperation from at least some ISPs in the middle of the Internet.

18

7 Conclusions

We presented the design and implementation of CloudTransport, a new system
for censorship-resistant communications. CloudTransport hides network traffic
from censors by reading and writing it into rendezvous accounts on popular
cloud-storage services. It can be used as a standalone networking medium or as
a pluggable transport for Tor, enhancing Tor’s censorship resistance properties.

Unlike Tor, SkypeMorph, and other systems utilizing network bridges to
assist in circumvention, CloudTransport can survive the compromise of one or
more of its bridges because its rendezvous protocol does not reveal the locations
and identities of CloudTransport users even to the bridge.

CloudTransport aims to increase the economic and social costs of censor-
ship. Empirical evidence shows that censors in relatively developed countries
like China are not willing to impose a blanket ban on encrypted cloud services
even when these services are used for censorship circumvention [20]. Because
CloudTransport uses exactly the same network tunnels and servers as the ex-
isting cloud-based applications, censors can no longer rely on simple line-speed
tests of protocol-level discrepancies to recognize and selectively block Cloud-
Transport connections. Instead, they must perform statistical classification of
every cloud connection. In contrast to systems like Tor, which can be recognized
and blocked with zero impact on the vast majority of users, any false positives in
the censors’ recognition algorithms for CloudTransport will disrupt popular and
business-critical cloud services. This will make censorship visible and increase
discontent among the users who are not engaging in censorship circumvention.

Acknowledgements

This research was supported by the Defense Advanced Research Projects Agency
(DARPA) and SPAWAR Systems Center Pacific, Contract No. N66001-11-C-
4018, NSF grant CNS-0746888, and a Google research award.

References

1. Amazon: Conditions of Use. http://www.amazon.com/gp/help/customer/

display.html?ie=UTF8&nodeId=508088.
2. Anonymizer. https://www.anonymizer.com/.
3. Joining China and Iran, Australia to Filter Internet. http://www.foxnews.com/

scitech/2009/12/15/like-china-iran-australia-filter-internet.
4. S. Burnett, N. Feamster, and S. Vempala. Chipping Away at Censorship Firewalls

with User-Generated Content. In USENIX Security, 2010.
5. X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touching from a Distance: Website

Fingerprinting Attacks and Defenses. In CCS, 2012.
6. R. Dingledine and N. Mathewson. Design of a Blocking-Resistant Anonymity

System. https://svn.torproject.org/svn/projects/design-paper/blocking.

html.
7. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-generation Onion

Router. In USENIX Security, 2004.

http://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId=508088
http://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId=508088
https://www.anonymizer.com/
http://www.foxnews.com/scitech/2009/12/15/like-china-iran-australia-filter-internet
http://www.foxnews.com/scitech/2009/12/15/like-china-iran-australia-filter-internet
https://svn.torproject.org/svn/projects/design-paper/blocking.html
https://svn.torproject.org/svn/projects/design-paper/blocking.html

19

8. D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford. Multi-
scale Stepping-Stone Detection: Detecting Pairs of Jittered Interactive Streams by
Exploiting Maximum Tolerable Delay. In RAID, 2002.

9. Dropbox: Acceptable Use Policy. https://www.dropbox.com/terms#acceptable_
use.

10. M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Tunnel Hunter: Detecting
Application-layer Tunnels with Statistical Fingerprinting. Computer Networks,
53(1):81–97, 2009.

11. K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton. Protocol Misidentification
Made Easy with Format-transforming Encryption. In CCS, 2013.

12. Egypt Leaves the Internet. http://www.renesys.com/blog/2011/01/

egypt-leaves-the-internet.shtml.

13. Ethiopia Bans Skype, Other VoIP Services. http://www.sudantribune.com/spip.
php?article42946.

14. Ethiopia: Govt Denies Banning Skype and Other Internet Communication Services.
http://allafrica.com/stories/201206250202.html.

15. N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. Infranet:
Circumventing Web Censorship and Surveillance. In USENIX Security, 2002.

16. Google App Engine. https://developers.google.com/appengine/.

17. China’s GitHub Censorship Dilemma. http://mobile.informationweek.com/

80269/show/72e30386728f45f56b343ddfd0fdb119/.

18. GoAgent proxy. https://code.google.com/p/goagent/.

19. Google Transparency Report. http://www.google.com/transparencyreport/

traffic/.

20. Activists Say They Have Found Way Round Chinese Internet
Censorship. http://www.theguardian.com/world/2013/nov/18/

activists-chinese-internet-censorship-mirror-sites.

21. A. Houmansadr, C. Brubaker, and V. Shmatikov. The Parrot Is Dead: Observing
Unobservable Network Communications. In S&P, 2013.

22. A. Houmansadr, N. Kiyavash, and N. Borisov. RAINBOW: A Robust And Invisible
Non-Blind Watermark for Network Flows. In NDSS, 2009.

23. A. Houmansadr, G. Nguyen, M. Caesar, and N. Borisov. Cirripede: Circumvention
Infrastructure Using Router Redirection with Plausible Deniability. In CCS, 2011.

24. A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I Want My Voice to Be Heard:
IP over Voice-over-IP for Unobservable Censorship Circumvention. In NDSS, 2013.

25. A. Houmansadr, W. Zhou, M. Caesar, and N. Borisov. SWEET: Serving the Web
by Exploiting Email Tunnels. In PETS, 2013.

26. Iran Reportedly Blocking Encrypted Internet Traf-
fic. http://arstechnica.com/tech-policy/2012/02/

iran-reportedly-blocking-encrypted-internet-traffic.

27. N. Jones, M. Arye, J. Cesareo, and M. Freedman. Hiding Amongst the Clouds: A
Proposal for Cloud-based Onion Routing. In FOCI, 2011.

28. G. Kadianakis. Packet Size Pluggable Transport and Traffic Morphing. Tor Tech
Report 2012-03-004, 2012.

29. J. Karlin, D. Ellard, A. Jackson, C. Jones, G. Lauer, D. Mankins, and W. Strayer.
Decoy Routing: Toward Unblockable Internet Communication. In FOCI, 2011.

30. C. Leberknight, M. Chiang, H. Poor, and F. Wong. A Taxonomy of In-
ternet Censorship and Anti-censorship. http://www.princeton.edu/~chiangm/

anticensorship.pdf, 2010.

https://www.dropbox.com/terms#acceptable_use
https://www.dropbox.com/terms#acceptable_use
http://www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml
http://www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml
http://www.sudantribune.com/spip.php?article42946
http://www.sudantribune.com/spip.php?article42946
http://allafrica.com/stories/201206250202.html
https://developers.google.com/appengine/
http://mobile.informationweek.com/80269/show/72e30386728f45f56b343ddfd0fdb119/
http://mobile.informationweek.com/80269/show/72e30386728f45f56b343ddfd0fdb119/
https://code.google.com/p/goagent/
http://www.google.com/transparencyreport/traffic/
http://www.google.com/transparencyreport/traffic/
http://www.theguardian.com/world/2013/nov/18/ activists-chinese-internet-censorship-mirror-sites
http://www.theguardian.com/world/2013/nov/18/ activists-chinese-internet-censorship-mirror-sites
http://arstechnica.com/tech-policy/2012/02/ iran-reportedly-blocking-encrypted-internet-traffic
http://arstechnica.com/tech-policy/2012/02/ iran-reportedly-blocking-encrypted-internet-traffic
http://www.princeton.edu/~chiangm/anticensorship.pdf
http://www.princeton.edu/~chiangm/anticensorship.pdf

20

31. Z. Li, T. Yi, Y. Cao, V. Rastogi, Y. Chen, B. Liu, and C. Sbisa. WebShield:
Enabling Various Web Defense Techniques without Client Side Modifications. In
NDSS, 2011.

32. X. Luo, P. Zhou, E. Chan, W. Lee, R. Chang, and R. Perdisci. HTTPOS: Sealing
Information Leaks with Browser-side Obfuscation of Encrypted Flows. In NDSS,
2011.

33. D. McCoy, J. A. Morales, and K. Levchenko. Proximax: A Measurement Based
System for Proxies Dissemination. In FC, 2011.

34. J. McLachlan and N. Hopper. On the Risks of Serving Whenever You Surf: Vul-
nerabilities in Tor’s Blocking Resistance Design. In WPES, 2009.

35. H. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg. SkypeMorph: Protocol
Obfuscation for Tor Bridges. In CCS, 2012.

36. R. Mortier, A. Madhavapeddy, T. Hong, D. Murray, and M. Schwarzkopf. Using
Dust Clouds to Enhance Anonymous Communication. In IWSP, 2010.

37. A Simple Obfuscating Proxy. https://www.torproject.org/projects/

obfsproxy.html.en.
38. A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website Fingerprinting in

Onion Routing Based Anonymization Networks. In WPES, 2011.
39. Tor: Pluggable Transports. https://www.torproject.org/docs/

pluggable-transports.html.en.
40. Psiphon. http://psiphon.ca/.
41. C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. BrowserShield:

Vulnerability-Driven Filtering of Dynamic HTML. TWEB, 1(3):11, 2007.
42. Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message

Specification. http://www.ietf.org/rfc/rfc3851.txt, 2004.
43. The Secure Shell (SSH) Transport Layer Encryption Modes. http://www.ietf.

org/rfc/rfc4344.txt, 2006.
44. Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. Padmanabhan, and L. Qiu. Statis-

tical Identification of Encrypted Web Browsing Traffic. In S&P, 2002.
45. Syria Tightens Control over Internet. http://www.thenational.ae/news/world/

middle-east/syria-tightens-control-over-internet.
46. The Tor Cloud Project. https://cloud.torproject.org/.
47. How Governments Have Tried to Block Tor. https://svn.torproject.org/svn/

projects/presentations/slides-28c3.pdf.
48. Tor Directory Servers and Their URLs. https://silvertunnel.org/doc/

tor-directory-server-urls.html.
49. Q. Wang, X. Gong, G. Nguyen, A. Houmansadr, and N. Borisov. CensorSpoofer:

Asymmetric Communication Using IP Spoofing for Censorship-Resistant Web
Browsing. In CCS, 2012.

50. Q. Wang, Z. Lin, N. Borisov, and N. Hopper. rBridge: User Reputation Based Tor
Bridge Distribution with Privacy Preservation. In NDSS, 2013.

51. Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung, F. Wang,
and D. Boneh. StegoTorus: A Camouflage Proxy for the Tor Anonymity System.
In CCS, 2012.

52. T. Wilde. Knock Knock Knockin’ on Bridges’ Doors. https://blog.torproject.
org/blog/knock-knock-knockin-bridges-doors, 2012.

53. P. Winter and S. Lindskog. How the Great Firewall of China Is Blocking Tor. In
FOCI, 2012.

54. E. Wustrow, S. Wolchok, I. Goldberg, and J. Halderman. Telex: Anticensorship in
the Network Infrastructure. In USENIX Security, 2011.

https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en
http://psiphon.ca/
http://www.ietf.org/rfc/rfc3851.txt
http://www.ietf.org/rfc/rfc4344.txt
http://www.ietf.org/rfc/rfc4344.txt
http://www.thenational.ae/news/world/middle-east/syria-tightens-control-over-internet
http://www.thenational.ae/news/world/middle-east/syria-tightens-control-over-internet
https://cloud.torproject.org/
https://svn.torproject.org/svn/projects/presentations/slides-28c3.pdf
https://svn.torproject.org/svn/projects/presentations/slides-28c3.pdf
https://silvertunnel.org/doc/tor-directory-server-urls.html
https://silvertunnel.org/doc/tor-directory-server-urls.html
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors

	CloudTransport: Using Cloud Storage for Censorship-Resistant Networking
	Introduction
	Protocol Design
	Bootstrapping
	Selecting a cloud provider and a bridge
	Creating a bootstrapping ticket
	Delivering the ticket to the bridge

	Analysis
	Recognizing CloudTransport network traffic
	Abusing the CloudTransport bootstrapping protocol
	Attacking a CloudTransport bridge
	Performing large-scale flow correlation

	Performance
	Related Work
	Conclusions

