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Abstract

We describe a system that we have designed and im-
plemented for publishing content on the web. Our pub-
lishing scheme has the property that it is very difficult
for any adversary to censor or modify the content. In
addition, the identity of the publisher is protected once
the content is posted. Our system differs from others
in that we provide tools for updating or deleting the
published content, and users can browse the content in
the normal point and click manner using a standard
web browser and a client-side proxy that we provide.
All of our code is freely available.

1 Introduction

The publication of written words has long been a
tool for spreading new (and sometimes controver-
sial) ideas, often with the goal of bringing about so-
cial change. Thus the printing press, and more re-
cently, the World Wide Web, are powerful revolution-
ary tools. But those who seek to suppress revolutions
possess powerful tools of their own. These tools give
them the ability to stop publication, destroy published
materials, or prevent the distribution of publications.
And even if they cannot successfully censor the pub-
lication, they may intimidate and physically or finan-
cially harm the author or publisher in order to send
a message to other would-be-revolutionaries that they
would be well advised to consider an alternative oc-
cupation. Even without a threat of personal harm,
authors may wish to publish their works anonymously
or pseudonymously because they believe they will be
more readily accepted if not associated with a per-
son of their gender, race, ethnic background, or other
characteristics.

Quotations about the Internet’s ability to re-
sist censorship and promote anonymity have become
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nearly cliche. John Gillmore’s quote “The Net treats
censorship as damage and routes around it” has been
interpreted as a statement that the Internet cannot
be censored. And Peter Steiner’s famous New Yorker
cartoon captioned “On the Internet, nobody knows
you’re a dog” has been used to hype the Internet as
a haven of anonymity. But increasingly people have
come to learn that unless they take extraordinary pre-
cautions, their online writings can be censored and the
true identity behind their online psuedonyms can be
revealed.

Examples of the Internet’s limited ability to resist
censorship can be found in the Church of Scientol-
ogy’s attempts to stop the online publication of doc-
uments critical of the Church. Since 1994 the Church
has combed the Internet for documents that contain
what they describe as Church secrets. Individual au-
thors, Internet service providers, and major newspa-
pers such as The Washington Post, have had to defend
their publication of excerpts from Church documents
(some of them fewer than 50 words) in court. The
Church has used copyright and trademark law, intim-
idation, and illegal searches and seizures in an attempt
to suppress the publication of Church documents [13].
In 1995 the Church convinced the Finnish police to
force Julf Helsingius, the operator of anonymous re-
mailer anon.penet.fi, to reveal the true name of a user
who had made anonymous postings about the Church.
When the Church tried to obtain the names of two
more users the following year, Helsingius decided to
shut the remailer down [16].

The U.S. Digital Millennium Copyright Act, estab-
lished to help copyright owners better protect their
intellectual property in an online environment, is also
proving to be yet another useful tool for censors. The
Act requires online service providers to take down con-
tent upon notification from a copyright owner that
the content infringes their copyright. While there is a
process in place for the content owner to refute the in-
fringement claim, the DMCA requires the online ser-



vice provider to take down the content immediately
and only restore it later if the infringement claim is
not proven to be valid.

We developed Publius in an attempt to provide a
Web publishing system that would be highly resistant
to censorship and provide publishers with a high de-
gree of anonymity. Publius was the pen name used
by the authors of the Federalist Papers, Alexander
Hamilton, John Jay, and James Madison. This collec-
tion of 85 articles, published pseudonymously in New
York State newspapers from October 1787 through
May 1788, was influential in convincing New York
voters to ratify the proposed United States constitu-
tion [17].

1.1 Design Goals

Nine design goals were important in shaping the de-
sign of Publius.

Censorship resistant Our system should make it
extremely difficult for a third party to make
changes to or force the deletion of published ma-
terials.

Tamper evident Our system should be able to de-
tect unauthorized changes made to published
materials.

Source anonymous There should be no way to tell
who published the material once it is published
on the web. (This requires an anonymous trans-
port mechanism between publishers and web
servers.)

Updateble Our system should allow publishers to
make changes to their own materials or delete
their own materials should they so choose.

Deniable Since our system relies on parties in ad-
dition to the publisher (as do most publishing
systems, online and offline), those third parties
should be able to deny knowledge of the content
of what is published.

Fault tolerant Our system should still work even if
some of the third parties involved are malicious
or faulty.

Persistent Publishers should be able to publish ma-
terials indefinitely without setting an upfront
expiration date.

Extensible Our system should be able to support
the addition of new features as well as new par-
ticipants.

Freely available All software required for our sys-
tem should be freely available.

2 Related work

For the purposes of this paper, current Web anonymiz-
ing tools are placed into one of two categories. The
first category consists of tools that attempt to pro-
vide connection based anonymity – that is the tool
attempts to hide the identity of the individual re-
questing a particular Web page. The second category
consists of tools that attempt to hide the location
or author of a particular Web document. Although
Publius falls into the latter category we briefly sur-
vey connection based anonymity tools as they can be
used in conjunction with Publius to further protect
an author’s anonymity.

2.1 Connection Based Anonymity

Tools

The
Anonymizer (http://www.anonymizer.com) provides
connection based anonymity by acting as a proxy for
HTTP requests. An individual wishing to retrieve
a Web page anonymously simply sends a request for
that page to the Anonymizer. The Anonymizer then
retrieves the page and sends it back to the individual
that requested it.

LPWA [9], now known as Proxymate, is an
anonymizing proxy that also offers a feature that can
automatically generate unique pseudonymous user
names (with corresponding passwords) and email ad-
dresses that users can send to Web sites. Every
time a user returns to a particular Web site, the
same pseudonyms are generated. The functionality
of the anonymizing proxy is very similar to that of
the Anonymizer.

Several anonymity tools have been developed
around the concept of mix networks [5]. A mix net-
work is a collection of routers, called mixes, that use
a layered encryption technique to encode the path
communications should take through the network. In
addition, mix networks use other techniques such as
buffering and message reordering to further obscure
the correlation between messages entering and exit-
ing the network.

Onion Routing [18] is a system for anonymous and
private Internet connections based on mix networks.
An Onion Routing user creates a layered data struc-
ture called an onion that specifies the encryption al-
gorithms and keys to be used as data is transported
to the intended recipient. As the data passes through



each onion router along the way, one layer of encryp-
tion is removed according to the recipe contained in
the onion. The request arrives at the recipient in plain
text, with only the IP address of the last onion-router
on the path. An HTTP proxy has been developed
that allows an individual to use the Onion Router to
make anonymous HTTP requests.

Crowds [19] is an anonymity system based on the
idea that people can be anonymous when they blend
into a crowd. As with mix networks, Crowds users
need not trust a single third party in order to maintain
their anonymity. Crowds users submit their requests
through a crowd, a group of Web surfers running the
Crowds software. Crowds users forward HTTP re-
quests to a randomly-selected member of their Crowd.
Neither the end server nor any of the crowd members
can determine where the request originated. The main
difference between a mix network and Crowds is in the
way paths are determined and packets are encrypted.
In mix networks, packets are encrypted according to
a pre-determined path before they are submitted to
the network; in Crowds, a path is configured as a re-
quest traverses the network and each crowd member
encrypts the request for the next member on the path.
Crowds also utilizes efficient symmetric ciphers and
was designed to perform much better than mix-based
solutions.

The Freedom anonymity system
(http://www.freedom.net) provides an anonymous
Internet connection that is similar to Onion Rout-
ing; however, it is implemented at the IP layer rather
than the application level. Freedom supports several
protocols including HTTP, SMTP, POP3, USENET
and IRC. In addition Freedom allows the creation of
pseudonyms that can be used when interacting with
Web sites or other network users.

2.2 Author Based Anonymity Tools

Janus, currently known as Rewebber
(http://www.rewebber.de), is a combination author
and connection based anonymizing tool. With respect
to connection based anonymity, Janus functions al-
most exactly like the Anonymizer; it retrieves Web
pages on an individual’s behalf. Publisher anonymity
is provided by a URL rewriting service. An individual
submits a URL U to Janus and receives a Janus URL
in return. A Janus URL has the following form

http://www.rewebber.com/surf-encrypted/Ek(U )

Where Ek(U) represents URL U encrypted with
Janus’s public key. This new URL hides U’s true value

and therefore may be used as an anonymous address
for URL U. Upon receiving a request for a Janus URL,
Janus simply decrypts the encrypted part of the URL
with its private key. This reveals the Web page’s true
location to Janus. Janus now retrieves the page and
sends it back to the requesting client. Just before
Janus sends the page back to the client each URL,
contained in the page, is converted into a Janus URL.

Goldberg and Wagner [12] describe their implemen-
tation of an anonymous Web publishing system based
on a network of Rewebbers. The Rewebber network
consists of a collection of networked computers, each
of which runs an HTTP proxy server and possesses
a public/private key pair. Each HTTP proxy server
is addressable via a unique URL. An individual wish-
ing to hide the true location of WWW accessible file
f, first decides on a set of Rewebber servers through
which a request for file f is to be routed. Using an
encryption technique similar to the one used in onion
routing, the URLs of these Rewebber servers are en-
crypted to form a URL U. Upon receiving an HTTP
GET request for URL U, the Rewebber proxy uses
its private key to peel away the outermost encryption
layer of U. This decryption reveals only the identity of
the next Rewebber server that the request should be
passed to. Therefore only the last Rewebber server in
the chain knows the true location of f. The problem
with this scheme is that if any of the Rewebber servers
along the route crashes, then file f cannot be found.
Only the crashed file server possesses the private key
that exposes the next server in the chain of Rewebber
servers that eventually leads to file f. The use of mul-
tiple Rewebber servers and encryption leads to long
URLs that cannot be easily memorized. In order to
associate a meaningful name with these long URLs
the TAZ server was invented. TAZ servers provide
a mapping of names (ending in .taz) to URLs in the
same way that a DNS server maps domain names to
IP addresses. This anonymous publishing system is
not currently operating as it was built as a “proof of
concept” for a class project.

Most of the previous work in anonymous Web pub-
lishing has been done in the context of building a sys-
tem to realize Anderson’s Eternity Service [2]. The
Eternity Service is a server based storage medium that
is resistant to denial of service attacks and destruction
of most participating file servers. An individual wish-
ing to anonymously publish a document simply sub-
mits it to the Eternity Service along with an appro-
priate fee. The Eternity Service then copies the doc-
ument onto a random subset of servers participating
in the Eternity Service. Once submitted, a document
cannot be removed from the Eternity Service. There-



fore an author cannot be forced, even under threat, to
delete a document published on the Eternity Service.
Below we review several projects whose goals closely
mirror or were inspired by the Eternity Service.

Usenet Eternity [3] is a Usenet news based im-
plementation of a scaled down version of Ander-
son’s Eternity Service. The system uses Usenet
to store anonymously published documents. Doc-
uments to be published anonymously must be for-
matted according to a specific set of rules that
call for the addition of headers and processing by
PGP and SHA1. The correctly formatted mes-
sage is then sent to alt.anonymous.messages. A
piece of software called the eternity server is used
to read the anonymously posted articles from the
alt.anonymous.messages newsgroup. The eternity
server is capable of caching some newsgroup articles.
This helps prevent the loss of a document when it is
deleted from Usenet. The problem with using Usenet
news to store the anonymously published file is that an
article usually exists on a news server for only a short
period of time before it is deleted. In addition a post-
ing can be censored by a particular news administra-
tor or by someone posting cancel or supercede requests
(http://www.faqs.org/faqs/usenet/cancel-faq/)
to Usenet.
A much more ambitious implementation is currently
being designed (http://www.cypherspace.org/
eternity-design.html).

FreeNet [7] is an adaptive network approach to the
censorship problem. FreeNet is composed of a net-
work of computers (nodes) each of which is capable
of storing files locally. In addition, each node in the
network maintains a database that characterizes the
files stored on some of the other nodes in the network.
When a node receives a request for a non-local file it
uses the information found in its database to decide
which node to forward the request to. This forwarding
is continued until either the document is found or the
message is considered timed-out. If the document is
found it is passed back through the chain of forward-
ing nodes. Each node in this chain can cache the file
locally. It is this caching that plays the main role in
dealing with the censorship issue. The multiple copies
make it difficult for someone to censor the material. A
file can be published anonymously by simply upload-
ing it to one of the nodes in the adaptive network.
The FreeNet implementation is still in its infancy and
many features still need to be implemented.

Intermemory [11] is a system for achieving an im-
mense self-replicating distributed persistent RAM us-
ing a set of networked computers. An individual wish-
ing to join the Intermemory donates some disk space,

for an extended period of time, in exchange for the
right to store a much smaller amount of data in the
Intermemory. Each donation of disk space is incorpo-
rated into the Intermemory. Data stored on the In-
termemory is automatically replicated and dispersed.
It is this replication and dispersion that gives the In-
termemory properties similar to Anderson’s Eternity
Service. The main focus of the Intermemory project is
not anonymous publishing but rather the preservation
of electronic media. A small Intermemory prototype
is described in [6]. The security and cryptographic
components were not fully specified in either paper so
we cannot comment on its anonymity properties.

Benes [4] describes in detail how one might imple-
ment a full-fledged Eternity service. Benes and several
students at Charles University are attempting to cre-
ate a software implementation of the Eternity Service
based on this thesis.

3 Publius

In this section we describe how our system achieves
the stated goals. We call the content that is pub-
lished with the desired robustness properties Publius
content.

3.1 Overview

Our system consists of publishers who post Publius
content to the web, servers who host random-looking
content, and retrievers who browse Publius content on
the web. At present the system supports any static
content such as HTML pages, images, and other files
such as postscript, pdf, etc. Javascript also works.
However, there is no support for interactive scripting
such as CGI. Also, Java applets on Publius pages are
limited in what they can do.

We assume that there is a static, system-wide list
of available servers. Publius content is encrypted by
the publisher and spread over some of the web servers.
In our current system, the set of servers is static. The
publisher takes the key, K that is used to encrypt the
file to be published and splits it into n shares, such
that any k of them can reproduce the original K, but
k − 1 give no hints as to the key [22].

Each server receives the encrypted Publius content
and one of the shares. At this point, the server has no
idea what it is hosting – it simply stores some random
looking data.

To browse content, a retriever must get the en-
crypted Publius content from some server and k of
the shares. As described below, a mechanism is in
place to detect if the content has been tampered with.



The publishing process produces a special URL that
is used to recover the data and the shares. The pub-
lished content is cryptographically tied to the URL.
Any modification to the stored Publius content or the
URL results in a failed tamper check. If all tamper
checks fail the Publius content cannot be read.

In addition to the publishing mechanism, we pro-
vide a way for publishers (and nobody else) to update
or delete their Publius content. In the next several
sections, we describe the Publius functions in some
detail. We use a simple example of a publisher with
one HTML file. Publishing more complicated con-
tent, such as web pages that have links to each other,
is covered in Section 4.

3.2 Publish

The following text describes the publish pseudocode
of Figure 1. This pseudocode is executed by the Pub-
lius client proxy in response to a publish request. To
publish Publius content, M , the publisher, Alice, first
generates a random symmetric key, K. She then en-
crypts M to produce {M}K, M encrypted under K,
using a strong symmetric cipher. Next, Alice splits K
into n shares using Shamir secret sharing, such that
any k of them can reproduce the secret.

For each of the n shares, Alice computes

namei = wrap(H(M · sharei))

That is, each share has a corresponding name. The
name is calculated by concatenating the share with
the message, taking a cryptographic hash, H, of the
two, and xoring the first half of the hash output with
the second half. We call the xor of the two halves
wrap. In our system, we use MD5 [20] as the hash
function, so each namei is 8 bytes long. Note that
the namei’s are dependent on every bit of the web
page contents and the share contents. The namei val-
ues are used in the Publius server addressing scheme
described below.

Recall that each publisher possesses a static list of
size m of the available servers in the system. For each
of the n shares, we compute

locationi = (namei MOD m) + 1

to obtain n values each between 1 and m. If at least
d unique values are not obtained, we start over and
pick another K. The value d represents the minimum
number of unique servers that will hold the Publius
content. Clearly this value needs to be greater than
or equal to k since at least k shares are needed to re-
construct the key K. d should be somewhat smaller
than m. It is clearly desirable to reduce the number

of times we need to generate a new key K. There-
fore we need to create a sufficient number of shares so
that, with high probability, d unique servers are found.
This problem is equivalent to the well known Coupon
Collectors Problem [15]. In the Coupon Collectors
Problem there are y different coupons that a collector
wishes to collect. The collector obtains coupons one
at a time, randomly with repetitions. The expected
number of coupons the collector needs to collect be-
fore obtaining all y different coupons is y ∗ ln(y). By
analogy, a unique slot in the available server list is
equivalent to a coupon. Therefore for each key K we
create n = dd ∗ ln(d)e shares. Any unused shares are
thrown away.

Now, Alice uses each locationi as an index into
the list of servers. Alice publishes {M}k, sharei, and
some other information in a directory called namei

on the server at location locationi in the static list.
Thus, given M , K, and m, the locations of all of the
shares are uniquely determined. The URL that is pro-
duced contains at least d namei values concatenated
together. A detailed description of the URL structure
is given in Section 4.

Figure 2 illustrates the publication process.

3.3 Retrieve

The following text describes the retrieve pseudocode
of Figure 3. This pseudocode is executed by the Pub-
lius client proxy in response to a retrieve request. The
retriever, Bob, wishes to view the Publius content ad-
dressed by Publius URL U . Bob parses out the namei

values from U and for each one computes

locationi = (namei MOD m) + 1

Thus, he discovers the index into the table of servers
for each of the shares. Next, Bob chooses k of these
arbitrarily. From this list of k servers, he chooses one
and issues an HTTP GET command to retrieve the
encrypted file and the share. Bob knows that the
encrypted file, {M}K is stored in a file called file on
each server, in the namei directory. The key share is
stored in a file called share in that same directory.

Next, Bob retrieves the other k − 1 shares in a
similar fashion (If all goes well, he does not need to
retrieve any other files or shares). Once Bob has all
of the shares, he combines them to form the key, K.
Then, he decrypts the file. Next, Bob verifies that
all of the namei values corresponding to the selected
shares are correct by recomputing

namei = wrap(H(M · sharei))

using M that was just decrypted. If the k namei’s are
all correct (i.e. if they match the ones in the URL),



Procedure Publish (document M)
Generate symmetric key K

Encrypt M under key K producing {M}K

Split key K into n shares such that k shares are required to reconstruct K
Store the n shares in array share[1..n]
locations used = {}
for i = 1 to n:

name=MD5(M · share[i])
name=XOR(top 64 bits(name),bottom 64 bits(name))
location=(name MOD serverListSize)+1
if (location is not a member of locations used):

locations used = locations used ∪ {location}
serverIP Address = serverList[location]
Insert (serverIP Address, share[i]) into Publish Queue
publiusURL = publiusURL · name

endif
endfor
if (sizeof(locations used)< d) then

Empty (Publish Queue)
return Publish(M)

else
for each (serverIP Address, share) in Publish Queue:

HTTP PUT({M}K and share on Publius Server with IP address serverIP Address)
return publiusURL

endif
End Publish

Figure 1: Publish Algorithm

Bob can be satisfied that either the document is in-
tact, or that someone has found a collision in the hash
function.

If something goes wrong, Bob can try a different set
of k shares and an encrypted file stored on one of the
other n servers. In the worst case, Bob may have to
try all of the possible

(

n

k

)

combinations to get the web
page before giving up. An alternate retrieval strategy
would be to try all n∗

(

n

k

)

combinations of shares and
documents. Each encrypted document can be tested
against each of the

(

n

k

)

share combinations.

If we are willing to initially download all the shares
from all the servers then yet another method for deter-
mining the key becomes available. In [10], Gemmell
and Sudan present the Berlekamp and Welch method
for finding the polynomial, and hence the key K, cor-
responding to n shares of which at most j are corrupt.
The value j must be less than (n − d)/2 where d is
one less than the number of shares needed to form
the key. However if the number of corrupt shares is
greater than (n − d)/2 we are not quite out of luck.
We can easily discover whether K is incorrect by per-
forming the verification step described above. Once
we suspect that key K is incorrect we can just per-
form a brute force search by trying all n∗

(

n

k

)

combi-
nations of shares and documents. The following ex-
ample illustrates this point. If we have n = 10 shares

and require 3 shares to form K then the Berlekamp
and Welch method will generate the correct polyno-
mial only if less than ((10 − 2)/2) = 4 shares are
corrupted. Suppose 6 shares are corrupt. Of course
we don’t know this ahead of time so we perform the
Berlekamp and Welch method which leads us to key
K. Key K is tested against a subset of, or perhaps
all, the encrypted documents. All of the tamper check
failures lead us to suspect that K is incorrect. There-
fore we perform a brute force search for the correct key
by trying all n∗

(

n

k

)

combinations of shares and doc-
uments. Assuming we have a least one untampered
encrypted document this method will clearly succeed
as we have 4 uncorrupted shares, only three of which
are needed to form the correct key.

Once the web page is retrieved Bob can view it in
his browser. In our implementation, all of the work
is handled by the proxy. Publius URLs are tagged as
special, and they are parsed and handled in the proxy.
The proxy retrieves the page, does all of the verifica-
tion, and returns the web content to the browser. So,
all of this is transparent to the user. The user just
points and clicks as usual. Section 4 describes Pub-
lius URL’s and the proxy software in detail.
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Server Table
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Figure 2: The Publius publication process The publisher computes the namei values by hashing the web
page and the symmetric key shares together. Then, those values are used to compute the locations. The publisher
then uses the location value as an index into the static location table and publishes the encrypted file, along with
the share in a directory named namei on the appropriate server.

3.4 Delete

It is desirable for Alice to be able to delete her Pub-
lius content from all servers, while nobody else should
be able to delete this content. To achieve this, just
before Alice publishes a file she generates a pass-
word PW . Alice then sends the encrypted docu-
ment, share and H(server domain name · PW ) to
the servers that will be hosting Alice’s published doc-
ument. H(server domain name · PW ) is the hash
of the domain name of the server concatenated with
a password PW . The server stores this hash value
in the same directory as the encrypted file and the
share, in a file called password. The reason this value
is stored as opposed to just the PW or H(PW), is
that it prevents a malicious server from learning the
password and deleting the associated Publius content
from all other servers that are hosting it.

We implemented delete as a CGI script running on
each server. To delete Publius content, Alice sends
H(server domain name·PW ) to each hosting server,
along with the namei that corresponds to the that
server. The server compares the password received
to the one stored, and if they match, removes the
directory matching the namei, and all of the files in
it.

3.5 Update

Our system provides a mechanism for Alice to update
something that she previously published. We use the
same password mechanism that is used to delete con-
tent. Thus, Alice can change any web page that she

published, but nobody else can. The idea is to enable
Alice to change content without changing the URL,
because others may have linked to the original site.
After the update, anyone retrieving the original URL
receives the new content.

In addition to file, share, and password, there is a
file called update on the servers in the namei direc-
tory. Initially, if Alice has not updated the content,
the file does not exist. When Bob retrieves the URL,
if the update file is missing, everything proceeds as
described in Section 3.3.

To update the content, Alice specifies a file name
containing the new content, the original URL, the
original password PW and a new password. The up-
date program first publishes the new content by sim-
ply calling publish with the file name and the new
password. Once the new content is published, the
original URL is used to find the n servers that host
the Publius content. Each of these servers receives a
message from Alice (a call to a CGI script) contain-
ing the original password stored on that server (recall
that this is H(server ·PW )), the old namei, and the
new URL. Each server then places the new URL in
the update file and deletes the contents in the old file.

When Bob retrieves Publius content, if the update
file exists, the servers return the update URL instead
of the contents. Bob receives the update URL from k
servers and compares them, if they are all equal, he
then retrieves the new URL instead. Of course, Bob
is not aware of what the retrieve program is doing
behind the scenes. From his point of view, he makes
a request and receives the web page. If the k URLs



Procedure Retrieve (PubliusURL U)
// k is the number of shares needed to reconstruct Key K

// n is the number of name[i] values stored in the PubliusURL U

// URL U = name[1] . . . name[n]
S={set of all unique k-subsets of the elements (1..n)}
for each element s in S:

R=randomValue(k) // choose a random integer in range 1..k
for i = 1 to k:

v = ith element of set s

location=(name[v] MOD serverListSize)+1
serverIP Address=serverList[location]
share[i]=retrieve file “share” from server at serverIP Address

tamperCheckV alue[i]=name[v]
if (i==R) then

encryptedDocument=retrieve {M}k from server at serverIP Address

endif
endfor
K=reconstructKeyFromShares(share[1] . . . share[k])
M=Decrypt encryptedDocument using key K

tamperCheckPassed=TRUE
for i = 1 to k:

V =MD5(M · share[i])
V =XOR(top 64 bits(V ),bottom 64 bits(V ))
if (V 6= tamperCheckV alue[i]) then

tamperCheckPassed=FALSE
break

endif
endfor
if (tamperCheckPassed) then

return M

endif
endfor
return “Document cannot be retrieved”

End Retrieve

Figure 3: Retrieve Algorithm

do not match, Bob (his proxy) then tries the other
n− k servers until he either gets k that are the same,
or gives up. In Section 5 we discuss other ways this
could be implemented and several tradeoffs that arise.

Although the update mechanism is very convenient
it leaves Publius content vulnerable to a redirection
attack. In this attack several malicious server admin-
istrators collaborate to insert an update file in order
to redirect requests for the Publius content. A mecha-
nism exists within Publius to prevent such an attack.
During the publicaton process the publisher has the
option of declaring a Publius URL as nonupdateable.
When a Publius client attempts to retrieve Publius
content from a nonupdateable URL all update URLs
are ignored. See Section 4.1 for more information
about nonupdateable URLs.

4 Implementation issues

In this section we describe the software components of
Publius and how these components implement Pub-
lius functions.

4.1 Publius URLs

Each successfully published document is assigned a
Publius URL. A Publius URL has the following form

http : //!anon!/options encode(name1) . . . encode(namen)

where namei is defined as in Section 3.2 and the
encode function is the Base64 encoding function
(verb+http://www.ietf.org/rfc/rfc1521.txt+). The
Base64 encoding function generates an ASCII repre-
sentation of the namei value.

The options section of the Publius URL is made
up of 2 characters that define how the Publius client
software interprets the URL. This 16 bit options sec-



tion encodes three fields – the version number, the
number of shares needed to form a key, and finally
the update flag. The version number allows us to add
new features to future versions of Publius while at the
same time retaining backward compatibility. It also
allows Publius clients to warn a user if a particular
URL was meant to be interpreted by a different ver-
sion of the client software. The next field identifies
the number of shares needed to form the key K. The
last field is the update flag that determines whether
or not the update operation can be performed on the
Publius content represented by the URL. If the update
flag is a 1 then the retrieval of updated content will
be performed in the manner described in Section 3.5.
However if the update flag is 0 then the client will ig-
nore update URLs sent by Publius servers in response
to share and encrypted file requests. The update flag’s
role in preventing certain types of attacks is described
in Section 5.

Many older browsers enforce the rule that a URL
can contain a maximum of 256 characters. The initial
“http://!anon!/” string is 14 characters long, leaving
242 characters for the 20 namei values. Base64 pro-
cesses data in 24 bit blocks, producing 4 ASCII char-
acters per 24 bit block. This results in 12 ASCII char-
acters per namei value. Twenty hashes produce 240
ASCII characters. Thus, older browsers restrict us to
20 different publishing servers in our scheme. We use
the two remaining characters for the options section
described above.

Here is an example of a Publius URL:

http://!anon!/AH2LyMOBWJrDw=
GTEaS2GlNNE=NIBsZlvUQP4=sVfdKF7o/kl=
EfUTWGQU7LX=OCk7tkhWTUe=GzWiJyio75b=
QUiNhQWyUW2=fZAX/MJnq67=y4enf3cLK/0=

4.2 Server software

To participate as a Publius server, one only needs to
install a CGI script that we provide. All client soft-
ware communicates with the server by executing an
HTTP POST operation on the server’s CGI URL.
The requested operation (retrieve, update, publish or
delete), the file name, the password and any other re-
quired information is passed to the server in the body
of the POST request. We recommend limiting the
amount of disk space that can be used each time the
CGI script executes. Our CGI script is freely available
(see Section 7).

4.3 Client software

The client software consists of an HTTP proxy and
a set of publishing tools. An individual wishing only
to retrieve Publius content just requires the proxy.
The proxy transparently sends non Publius URLs to
the appropriate servers and passes the returned con-
tent back to the browser. Upon receiving a request
for a Publius URL the proxy first retrieves the en-
crypted document and shares as described in Section
3.3 and then takes one of three actions. If the de-
crypted document successfully verifies, it is sent back
to the browser. If the proxy is unable to find a doc-
ument that successfully verifies an HTML based er-
ror message is returned to the browser. If the re-
quested document is found to have been updated then
an HTTP redirect request is sent to the browser along
with the update URL.

4.4 Publishing mutually hyperlinked

documents

Suppose Alice wants to anonymously publish HTML
files A and B. Assume that file A contains a hyperlink
to file B. Alice would like the anonymously published
file A to retain its hyperlink to the anonymously pub-
lished file B. To accomplish this, Alice first publishes
file B. This action generates a Publius URL for file
B, Burl. Alice records Burl in the appropriate loca-
tion in file A. Now Alice publishes file A. Her task is
complete.

Alice now wishes to anonymously publish HTML
files C and D. File C has a hyperlink to file D and
file D has a hyperlink to file C. Alice now faces the
dilemma of having to decide which file to publish first.
If Alice publishes file C first then she can change D’s
hyperlink to C but she cannot change C’s hyperlink
to D because C has already been published. A similar
problem occurs if Alice first publishes file D.

The problem for Alice is that the content of a file
is cryptographically tied to its Publius URL – chang-
ing the file in any way changes its Publius URL. This
coupled with the fact that file C and file D contain hy-
perlinks to each other generates a circular dependency
– each file’s Publius URL depends on the other’s Pub-
lius URL. What is needed to overcome this problem
is a way to break the dependency of the Publius URL
on the file’s content. This can be accomplished using
the Publius Update mechanism described in Section
3.5.

Using the update mechanism Alice can easily solve
the problem of mutually hyperlinked files. First Alice
publishes files C and D in any order. This generates
Publius URL Curl for file C and Publius URL Durl



for file D. Alice now edits file C and changes the ad-
dress of the D hyperlink to Durl. She does the same
for file D – she changes the address of the C hyper-
link to Curl. Now she performs the Publius Update
operation on Curl and the newly modified file C. The
same is done for Durl and the newly updated file D.
This generates Publius URL Curl2 for for file C and
Publius URL Durl2 for file D. The problem is solved.
Suppose Bob attempts to retrieve file C with Curl.
Bob’s proxy notices the file has been updated and re-
trieves the file from Curl2 . Some time later, Bob clicks
on the D hyperlink. Bob’s proxy requests the docu-
ment at Durl and is redirected to Durl2 . The update
mechanism ensures that Bob reads the latest version
of each document.

4.5 Publishing a directory

Publius contains a directory publishing tool that auto-
matically publishes all files in a directory. In addition,
if some file, f, contains a hyperlink to another file, g, in
that same directory, then f ’s hyperlink to g is rewrit-
ten to reflect g’s Publius URL. Mutually hyperlinked
HTML documents are also dealt with, as described in
the previous section.

The first step in publishing a directory, D, is to
publish all of D’s non-HTML files and record, for later
use, each file’s corresponding Publius URL. All HTML
files in D are then scanned for hyperlinks to other
files within D. If a hyperlink, h, to a previously pub-
lished non-HTML file, f, is found then hyperlink h is
changed to the Publius URL of f. Information con-
cerning hyperlinks between HTML files in directory
D is recorded in a data structure called a dependency
graph. Dependency graph, G, is a directed graph con-
taining one node for each HTML file in D. A directed
edge (x,y) is added to G if the HTML file x must be
published before file y. In other words, the edge (x,y)
is added if file y contains a hyperlink to file x. If, in
addition, file x contains a hyperlink to file y the edge
(y,x) would be added to the graph causing the cre-
ation of a cycle. Cycles in the graph indicate that
we need to utilize the Publius Update trick that Alice
uses when publishing her mutually hyperlinked files C
and D (Section 4.4).

Once all the HTML files have been scanned the de-
pendency graph G is checked for cycles. All HTML
files involved in a cycle are published and their Publius
URLs recorded for later use. Any hyperlink, h, refer-
ring to a file, f, involved in a cycle, is replaced with f ’s
Publius URL. All nodes in the cycle are removed from
G leaving G cycle-free. A topological sort is then per-
formed on G yielding R, the publishing order of the

remaining HTML files. The result of a topological
sort of a directed acyclic graph (DAG) is a linear or-
dering of the nodes of the DAG such that if there is a
directed edge from vertex i to vertex j then i appears
before j in the linear ordering [1]. The HTML files
are published according to order R. After each file, f,
is published, all hyperlinks pointing to f are modified
to reflect f ’s Publius URL. Finally a Publius Update
operation is performed on all files that were part of a
cycle in G.

4.6 Publius content type

The file name extension of a particular file usually
determines the way in which a Web browser inter-
prets the file’s content. For example, a file that has a
name ending with the extension “.htm” usually con-
tains HTML. Similarly a file that has a name ending
with the extension “.jpg” usually contains a JPEG
image. The Publius URL does not retain the file ex-
tension of the file it represents. Therefore the Publius
URL gives no hint to the browser, or anyone else for
that matter, as to the type of file it points to. Indeed,
this is the desired behavior as we do not wish to give
the hosting server the slightest hint as to the type
of content being hosted. However, in order for the
browser to correctly interpret the byte stream sent to
it by the proxy, the proxy must properly identify the
type of data it is sending. Therefore before publish-
ing a file we prepend the first three letters of the file’s
name extension to the file. We prepend the three let-
ter file extension rather than the actual MIME type
because MIME types are of variable length (An alter-
native implementation could store the actual MIME
type prepended with two characters that represented
the length of the MIME type string). The file is then
published as described in Section 3.2. When the proxy
is ready to send the requested file back to the browser
the three letter extension is removed from the file.
This three letter extension is used by the proxy to
determine an appropriate MIME type for the docu-
ment. The MIME type is sent in an HTTP “Content-
type” header. If the three letter extension is not help-
ful in determining the MIME type a default type of
“text/plain” is sent for text files. The default MIME
type for binary files is “octet/stream”.

4.7 User interface

The client side software includes command line tools
to perform the publish, delete and update operations
described in section 3. The retrieve operation is per-
formed via the Web browser in conjunction with the
proxy. In addition, a Web browser based interface to



the tools has been developed. This browser based in-
terface allows someone to select the Publius operation
(retrieve, update, publish or delete) and enter the op-
eration’s required parameters such as the URL and
password. Each Publius operation is bound to a spe-
cial !anon! URL that is recognized by the proxy. For
example the publish URL is !anon!PUBLISH. The op-
eration’s parameters are sent in the body of the HTTP
POST request to the corresponding !anon! URL. The
proxy parses the parameters and executes the corre-
sponding Publius operation. An HTML message in-
dicating the success or failure of the operation is re-
turned. If the retrieve operation is requested, and is
successful, the requested document is displayed in a
new Web browser window.

5 Limitations and threats

In this section we discuss the limitations of Publius
and how these limitations could be used by an adver-
sary to censor a published document, disrupt normal
Publius operation, or learn the identity of an author
of a particular document. Possible countermeasures
for some of these attacks are also discussed.

5.1 Share deletion or corruption

As described in section 3.2, when a document is suc-
cessfully published a copy of the encrypted document
and a share are stored on each of the n servers. Only
one copy of the encrypted document and k shares are
required to recover the original document.

Clearly, if all n copies of the encrypted file are
deleted, corrupted or otherwise unretrievable then it
is impossible to recover the original document. Simi-
larly if n-k+1 shares are deleted, corrupted or cannot
be retrieved it is impossible to recover the key. In
either case the published document is effectively cen-
sored. This naturally leads to the conclusion that the
more we increase n, or decrease k, the harder we make
it for an individual, or group of individuals, to censor
a published document.

5.2 Update file deletion or corruption

As stated in section 3.5, if a server receives a request
for Publius content that has an associated update file,
the URL contained in that file is sent back to the
requesting proxy.

We now describe three different attacks on the up-
date file that could be used by an adversary to censor
a published document. In each of these attacks the
adversary, Mallory, has read/write access to all files

on a server hosting the Publius content P, he wishes
to censor.

In the first attack we describe, P does not have
an associated update file. That is, the author of P
has not executed the Publius Update operation on P’s
URL. Mallory could delete P from one server, but this
does not censor the content because there are other
servers available. Rather than censor the Publius con-
tent, Mallory would like to cause any request for P to
result in retrieval of a different document, Q, of his
choosing. The Publius URL of Q is Qurl. Mallory now
enters Qurl into a file called “update” and places that
file in the directory associated with P. Now whenever
a request for P is received by Mallory’s server, Qurl

is sent back. Of course Mallory realizes that a single
Qurl received by the client does not fool it into retriev-
ing Qurl. Therefore Mallory enlists the help of several
other Publius servers that store P . Mallory’s friends
also place Qurl into an “update” file in P ’s directory.
Mallory’s censorship clearly succeeds if he can get an
update file placed on every server holding P. If the im-
plementation of Publius only requires that k shares be
downloaded, then Mallory does not necessarily need
to be that thorough. When the proxy makes a request
for P, if Mallory is lucky, then k matching URLs are
returned and the proxy issues a browser redirect to
that URL. If this happens Mallory has censored P and
has replaced it with Publius Content of his own cre-
ation. This motivates higher values for k. The update
flag described in section 4.1 is an attempt to combat
this attack. If the publisher turned the update flag
off when the content was published then the Publius
client interpreting the URL will refuse to accept the
update URLs for the document. Although the content
might now be considered to be censored, someone is
not duped into believing that an updated file is the
Publius content originally published.

In the second attack, P has been updated and there
exists an associated update file containing a valid Pub-
lius URL that points to Publius Content U. To censor
the content, Mallory must corrupt the update file on
n − k + 1 servers. Now there is no way for anyone to
retrieve the file correctly. In fact, if Mallory can cor-
rupt that many servers, he can censor any document.
This motivates higher values for n and lower values
for k.

One other attack is worth mentioning. If Mallory
can cause the update files on all of the servers accessed
by the client to be deleted, then he can, in effect, re-
store Publius content to its previous state before the
update occurred. This motivates requiring clients to
retrieve from all n servers before performing verifica-
tion.



The attacks described above shed light on a couple
of tradeoffs. Requiring retrievers to download all n
shares and n copies of the document is one extreme
that favors censorship resistance over performance.
Settling for only the first k shares opens the user
up to a set of corrupt, collaborating servers. Picking
higher values for k minimizes this problem. However,
lower values of k require the adversary to corrupt more
servers to censor documents. Thus, k, the number of
shares, and the number of copies of the page actually
retrieved, must be chosen with some consideration.

5.3 Denial of service attacks

Publius, like all Web services, is susceptible to denial
of service attacks. An adversary could use Publius to
publish content until the disk space on all servers is
full. This could also affect other applications running
on the same server. We take a simple measure of
limiting each publishing command to 100K. A better
approach would be to charge for space.

An interesting approach to this problem is a CPU
cycle based payment scheme known as Hash Cash
(http://www.cypherspace.org/~adam/hashcash/).
The idea behind this system is to require the publisher
to do some work before publishing. Thus, it becomes
difficult to efficiently fill the server disk. Hopefully,
the attack can be detected before the disk is full. In
Hash Cash, a client wishing to store a file on a par-
ticular server first requests a challenge string c and
a number, b, from that server. The client must find
another string, s, such that at least b bits of H(c · s)
match b bits of H(s) where H is a secure hash function
such as MD5 and “·” is the concatenation operator.
That is, the client must find partial collisions in the
hash function.

The higher the value of b, the more time the client
requires to find a matching string. The client then
sends s to the server along with the file to be stored.
The server only stores the file if H(s) passes the b bit
matching test on H(c · s). Another scheme we are
considering is to limit, based on client IP address, the
amount of data that a client can store on a particular
Publius server within a certain period of time. While
not perfect, this raises the bar a bit, and requires the
attacker to exert more effort. We have not imple-
mented either of these protection mechanisms yet.

Dwork and Naor in [8] describe several other CPU
cycle based payment schemes.

5.4 Threats to publisher anonymity

Although Publius was designed as a tool for anony-
mous publishing there are several ways in which the

identity of the publisher could be revealed.
Obviously if the publisher leaves any sort of identi-

fying information in the published file he is no longer
anonymous. Publius does not anonymize all hyper-
links in a published HTML file. Therefore if a pub-
lished HTML page contains hyperlinks back to the
publisher’s Web server then the publisher’s anonymity
could be in jeopardy.

Publius by itself does not provide any sort of con-
nection based anonymity. This means that an adver-
sary eavesdropping on the network segment between
the publisher and the Publius servers could determine
the publisher’s identity. If a server hosting Publius
Content keeps a log of all incoming network connec-
tions then an adversary can simply examine the log
to determine the publisher’s IP address. To protect
a publisher from these sort of attacks a connection
based anonymity tool such as Crowds should be used
in conjunction with Publius.

5.5 “Rubber-Hose cryptanalysis”

Unlike Anderson’s Eternity Service [2] Publius allows
a publisher to delete a previously published document.
An individual wishing to delete a document published
with Publius must possess the document’s URL and
password. An adversary who knows the publisher of a
document can apply so called “Rubber-Hose” Crypt-
analysis [21] (threats, torture, blackmail, etc) to either
force the publisher to delete the document or reveal
the document’s password.

Of course the adversary could try to force the ap-
propriate server administrators to delete the Publius
Content he wants censored. However when Publius
Content is distributed across servers located in differ-
ent countries and/or jurisdictions such an attack can
be very expensive or impractical.

6 Future Work

Most of the browsers and proxies in use today do not
impose the 256 character limit on URL size. With this
limit lifted a fixed table of servers is no longer needed
as the Publius URL itself can contain the IP addresses
of the servers on which the content is stored. With no
predefined URL size limit there is essentially no limit
to the number of hosting servers that can be stored in
the Publius URL. The Publius URL structure remains
essentially the same – just the IP addresses are added.
The option and namei components of the URL remain
as they are still needed for tamper checking and URL
interpretation. We intend to use this URL format in
future versions of Publius.



During the Publius publication process the en-
crypted file, along with other information, is stored
on the host servers. Krawczyk in [14] describes how
to use Rabin’s information dispersal algorithm to re-
duce the size of the encrypted file stored on the host
server. We are planning to use this technique to re-
duce amount of storage needed on host servers.

7 Conclusions and availability

In this paper we have described Publius, a Web based
anonymous publishing system that is resistant to cen-
sorship. Publius’s main contributions beyond previ-
ous anonymous publishing systems include an auto-
matic tamper checking mechanism, a method for up-
dating or deleting anonymously published material,
and methods for anonymously publishing mutually
hyperlinked content.

The current implementation of Publius con-
sists of approximately fifteen hundred lines of
Perl. The source code is freely available at
http://www.cs.nyu.edu/~waldman/publius.html.

Acknowledgements

We would like to thank Usenix for supporting this
work. We would also like to thank Adam Back, Ian
Goldberg, Oscar Hernandez, Graydon Hoare, Benny
Pinkus, Adam Shostack, Anton Stiglic, Alex Taler and
the anonymous reviewers for their helpful comments
and recommendations.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ull-
man. Data Structures And Algorithms. Addison-
Wesley Publishing Company, 1983.

[2] R. J. Ander-
son. The eternity service. In Pragocrypt 1996,
1996. http://www.cl.cam.ac.uk/users/rja14/
eternity/eternity.html.

[3] A. Back. The eternity service. Phrack Maga-
zine, 7(51), 1997.
http://www.cypherspace.org/ adam/
eternity/phrack.html.

[4] T. Benes. The eternity service. 1998.
http://www.kolej.mff.cuni.cz/eternity/.

[5] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communica-
tions of the ACM, 24(2):84–88, 1981.

[6] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb,
S. Sobti, and P. N. Yianilos. A prototype
implementation of archival intermemory. In
Proc. ACM Digital Libraries. ACM, August 1999.
http://www.intermemory.org/.

[7] I. Clark. A distributed decentralised infor-
mation storage and retrieval system. 1999.
http://freenet.sourceforge.net/Freenet.ps.

[8] C. Dwork and M.Naor. Pricing via process-
ing or combatting junk mail. In Advances
in Cryptology—CRYPTO ’92, pages 139–147.
Springer-Verlag, 1992.

[9] E.G. Gabber, P.B. Gibbons, D.M. Kristol,
Y. Matias, and A. Mayer. Consistent, yet anony-
mous web access with LPWA. Communications
of the ACM, 42(2):42–47, 1999.

[10] P. Gemmell and M. Sudan. Highly resilient cor-
rectors for polynomials. Information Processing
Letters, 43:169–174, 1992.

[11] A. V. Goldberg and P. N. Yianilos. Towards
and archival intermemory. In Proc. IEEE In-
ternational Forum on Research and Technology
Advances in Digital Libraries (ADL’98), pages
147–156. IEEE Computer Society, April 1998.
http://www.intermemory.org/.

[12] I. Goldberg and D. Wagner. TAZ servers and the
rewebber network: Enabling anonymous publish-
ing
on the world wide web. First Monday, 3, 1998.
http://www.firstmonday.dk/issues/issue3 4/
goldberg/index.html.

[13] Wendy M. Grossman. Wired, 3(12):172 –177 and
248–252, December 1995.
http://www.wired.com/wired/archive/3.12/
alt.scientology.war pr.html.

[14] H. Krawczyk. Secret sharing made short. In Ad-
vances in Cryptology—CRYPTO ’93, pages 136–
143. Springer-Verlag, 1993.

[15] R. Motwani and P. Raghavan. Randomized Al-
gorithms. Cambridge University Press, 1995.

[16] Ron Newman. The church of scientology vs. the
net. February 1998.
http://www2.thecia.net/users/rnewman/
scientology/home.html.

[17] U.S. Library of Congress. About the federalist
papers. http://lcweb2.loc.gov/const/
fed/abt fedpapers.html.



[18] M. G. Reed, P. F. Syverson, and D. M.
Goldschlag. Proxies for anonymous routing.
In 12th Annual Computer Security Applica-
tions Conference, 1996. http://www.onion-
router.net/Publications.html.

[19] Michael K. Reiter and Aviel D. Rubin. Crowds:
Anonymity for web transactions. ACM Transac-
tions on Information System Security, 1(1), April
1998.

[20] R. Rivest. The MD5 message digest algorithm.
RFC 1321, April 1992.

[21] B. Schneier. Applied Cryptography. John Wiley
and Sons, 1996.

[22] A. Shamir. How to share a secret. Communica-
tions of the ACM, 22:612–613, November 1979.


