
Rook: Using Video Games as a Low-Bandwidth
Censorship Resistant Communication Platform

Paul Vines
University of Washington

plvines@cs.washington.edu

Tadayoshi Kohno
University of Washington

yoshi@cs.washington.edu

ABSTRACT
Censorship and surveillance is increasing in scale, sophisti-
cation, and prevalence across the globe. While most censor-
ship circumvention systems still focus on escaping a given
censored region to access Internet content outside of its con-
trol, we address a different but equally pressing problem:
secure and secret chat within a censored region.

We present Rook as a censorship and surveillance resistant
platform for communication using online games as its cover
application. The use of online games represents a novel form
of cover application that provides several features that make
them uniquely well-suited for this purpose. Rook transmits
data secretly by embedding it in the network traffic of an on-
line game. To mitigate current attacks based on deep-packet
inspection and traffic shape analysis Rook uses the normal
traffic used by the game, it does not generate additional
packets, does not change the length of existing packets, and
ensures altered packets are still valid game packets.

For evaluation, we implement Rook using the online first-
person shooter Team Fortress 2. Rook is evaluated against
both active and passive attacks demonstrated in recent years
including anti-mimicry probes, deep-packet inspection, traf-
fic shape analysis, statistical analyses of packet payloads,
and game-specific n-gram analyses.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Censorship circumvention, covert channel, steganography

Keywords
Censorship, covert channel, steganography, game, online,
first-person shooter, privacy, anonymity, surveillence
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
WPES’15, October 12 2015 Denver, CO USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3820-2/15/10$15.00
DOI: http://dx.doi.org/10.1145/2808138.2808141 .

1. INTRODUCTION
There are increasing concerns about the privacy of online

communications throughout the world: both surveillance
and censorship of the Internet has continued to increase in
scale, sophistication, and prevalence [6, 13, 34]. There have
been many systems developed for attempting to hide com-
munications on the Internet from censors, we will simply
refer to these as circumvention systems. Most of these are
designed to route a user’s traffic outside of a censored re-
gion to access censored content. These systems have many
different approaches and goals with respect to circumvent-
ing censorship and surveillance, and what kinds of attacks
they can withstand. This has led to an arms race situa-
tion in which new circumvention systems are invented and
improved followed closely by attacks against them similarly
being invented and improved.

In this paper we present Rook as a low bandwidth low
latency (approx. 30 bits/second) censorship resistant com-
munication platform. While Rook can be used to secretly
communicate any kind of data, the structure of its network
and limitations of its bandwidth make it best suited for chat
applications. Whereas most circumvention systems focus on
enabling censored users to access banned external content,
Rook focuses on enabling uncensored and unserveilled com-
munication between parties within a censored area. We in-
tend Rook to be used to facilitate secret IRC-like services
among users. These services can run the Off-The-Record
(OTR) protocol [2] between clients to ensure end-to-end se-
curity even from the Rook server.

Rook was partially inspired by recent works on pushing
circumvention systems further into the application layer [11,
18], but also represents a new direction for circumvention
systems in several ways: first, it utilizes low-latency online
games as its cover traffic. Only one other system, Castle [7],
published concurrently, has also explored this area of appli-
cations. Two other previous systems have explored using
computerized boardgames as covert channels [8, 23] as well,
we further discuss these three systems in relation to Rook
see Section 5. Second, Rook alters the host game traffic in
full compliance with the application’s protocol and does not
artificially add or lengthen any game traffic; this means an
adversary must first commit the resources to develop a pro-
gram to correctly parse the application protocol, and then
must also commit computational resources to each suspected
Rook connection because a simple deep-packet inspection
cannot detect use of Rook. As is the case with all of these
circumvention systems, as the censor’s resources increase its
ability to potentially detect or disrupt Rook also increase;

we outline possible new research directions for attacks be-
low (see Section 5 and 6). However, Rook does represent
a significant increase in the protection afforded users given
the increase in cost to attackers.

Many different types of applications have been used as
cover or host applications for previous circumvention sys-
tems. Skype in particular has proven popular because its
calls operate on a peer-to-peer connection and are assumed
to be a reasonably legitimate activity for a user to be en-
gaged in [11, 21]. A key challenge with using Skype for cir-
cumvention is that prolonged usage of Skype may not match
many users’ normal behavior patterns. Online games pro-
vide a similar opportunity but with greater deniability on
the part of users. Traditionally, many online games have al-
lowed individuals to host their own private servers to reduce
the resource burden on the companies making the games.
This is particularly the case for the genre of game Rook is
primarily focused on: the First Person Shooter (FPS). The
existence of privately-hosted servers creates opportunities
for communities to arise and causes many regular players of
these games to play almost exclusively on one or a handful
of servers. This provides a completely legitimate cover for
a Rook user to repeatedly connect to the same game server
over and over to communicate with the other Rook users
also connecting to these game servers. Furthermore, legiti-
mate players will often play for hours at a time, day after
day. This could be significantly more suspicious in the case
of another application, such as Skype, repeatedly being used
to contact the same IP for hours at a time every day. Finally,
like VoIP services, games are a widespread and popular form
of network use [27]; we believe a censor would face similar
dissent to a decision to block all Internet-gaming as they
would to blocking all VoIP. The design of Rook is not spe-
cific to a game, and so if a censor attempted to block Rook
by blocking a single game, Rook could simply be adapted to
another.

Another advantage of games is that they do not imply ac-
tual communication between users unless the in-game chat
channel is used, which is unencrypted. A VoIP connection
inherently implies the two parties are sharing information,
while a game client connecting to a server does not imply
any user-to-user communication. This creates a plausible
deniability that Rook users are connected in any way so
long as they are not communicating using the in-game chat.
Whereas a VoIP connection implies two IPs are exchanging
information, a game connection only implies two IPs hap-
pen to be playing the same game, and probably are not even
aware of who the other IP is. Rook also allows covert com-
munication without disrupting the normal use of the game; a
Rook user plays the game normally while additionally send-
ing covert messages.

Rook was developed with the FPS as the primary type of
game to be used: this is because of the prevalence of pri-
vate servers. FPS games generally feature between 8 and
128 players on a server at a time. Each player controls one
avatar inside a 3-dimensional game world in which they at-
tempt to maneuver and kill the other avatars. As an example
implementation, Rook uses the FPS Team Fortress 2 [28],
based on the Source Engine from Valve Software. The Rook
design can also be used for other types of games, although
the game must allow private servers or have a peer-to-peer
architecture.

Figure 1: Example formation of a Rook network:
one Rook server with multiple Rook clients and nor-
mal game clients connected to it.

2. SYSTEM DESIGN
Rook is a system to facilitate secretly passing data be-

tween two Rook clients and a Rook server, operating on
machines running game clients and a game server, respec-
tively. In this case, secret is defined as the act of sending the
data being unobservable from to an outside observer, as well
as the contents of the data itself being encrypted. The data
channel between a Rook client and Rook server is composed
of two one-way channels to create an overall bidirectional
data channel. The creation of the channel requires a shared
secret key between the Rook client and Rook server.

2.1 Intended Use Model
The high-level overview of Rook is:

• Rook clients run the game client

• Rook servers run the game server

• Clients connect to the server by joining the game server

• The Rook connections provide low-bandwidth real-time
communication free from surveillance or censorship

• Clients chat with other clients using the server and
Off-The-Record messaging

2.2 Threat Model
For the rest of the paper we assume the following threat

model for our monitor adversary, similar to the standard
warden and prisoners threat model used in steganography [1].
The monitor is attempting to detect and/or block the ex-
change of any information besides legitimate game infor-
mation. The monitor is considered to have the following
capabilities:

• All network traffic between all clients and the server
are observed

• The normal application traffic is unencrypted

• The monitor can store all data observed over a gaming
session and run statistical analyses on it

• The monitor has no internal access to the devices run-
ning the game clients and server

• Users can conduct a 1-time secure rendezvous to ex-
change a shared secret key

• The monitor does not wish to disrupt legitimate game-
play of innocent users

• The monitor can conduct some active probing of game
client and servers, but is not willing to disrupt legiti-
mate traffic for extended periods of time

• The monitor seeks evidence that information, aside
from normal game data, is being exchanged

2.3 Criteria for Success
Rook is a successful censorship resistant platform if the

monitor cannot either:

• Positively identify use of Rook more often than falsely
identifying legitimate game traffic as use of Rook

• Successfully disrupt Rook communication without im-
pacting legitimate gameplay.

We assume that even if Rook becomes popular, it will still
represent a minority of game traffic. Therefore, the first cri-
terion is subject to this difference, so that even a small false
positive rate in a detection scheme can yield larger absolute
numbers of false positives than true positives. Additionally,
the efficiency and practicality of deploying a given detec-
tion scheme should be taken into account. General-purpose
Deep-Packet Inspection (DPI) techniques, for example, are
easier for an adversary to use on a wide-scale than special-
ized detectors that require storing and analyzing entire traf-
fic captures.

2.4 System Overview
The essence of Rook’s scheme for secretly sending data is

to identify portions of game packets that can contain many
different values and then infrequently select a packet and
replace some of that mutable data with other legitimate
game values representing the secret data to be communi-
cated. The other side knows which packets have been se-
lected and reads the secret data from them. There are se-
curity risks to this approach, the following lays out how our
design addresses these.

2.5 Mutable Fields
Rook relies on finding mutable fields within game packets.

In theory, we could replace any arbitrary bits in the payload
of the packet with the secret data, because the packet will
never be sent to the actual game process on the other end.
However, many bit values are immutable with respect to the
protocol of the particular game being used. If these were
changed, then the packet would no longer be a valid game
packet and an attacker could trivially detect Rook use by
intercepting and attempting to parse these altered packets.

Therefore, the implementation of Rook must correctly im-
plement at least part of the game network protocol in order
to be able to parse packets and correctly identify which bits
are part of mutable fields. These are the only bits which are
modified when Rook sends data.

2.6 Symbol Tables
Unfortunately even if the mutable fields of a game packet

can be correctly determined, not all combinations of these
bits are necessarily valid or reasonable to exist in normal
game traffic.

For example, imagine a mutable field sent from the server
to the client representing the velocity vector of another avatar
in the game. That value might be encoded as a 16-bit float.
However, it might be that the velocity of an avatar is never
actually greater than 100.0. If Rook replaced all 16-bits

with arbitrary data it could easily be spotted by an adver-
sary parsing packets and looking for velocity vectors with
values greater than 100.0.

To prevent this type of attack, Rook does not insert the
raw bits of the data it is sending. Instead, Rook keeps a
symbol table for each mutable field. This symbol table is
constructed by observing normal gameplay at the start of a
game connection. For each mutable field encountered in the
observed data a count of what values it had is kept, and then
converted into a frequency. The symbol table for that mu-
table field is generated by pruning values whose frequencies
are more than two orders of magnitude less than median fre-
quency and then removing less frequent values until the list
is a power of two in length; that list is the symbol table for
that mutable field. To our knowledge, using existing data
from cover traffic to dynamically generate a symbol table
is a unique technique for a circumvention system. We be-
lieve similar approaches have potential for improving other
circumvention systems based on steganographic approaches.

When Rook sends data by altering a mutable field, it con-
verts n-bits of secret data into a symbol using the symbol
table for that mutable field. By using a symbol table gener-
ated from normal game traffic Rook avoids sending values
that are never or very infrequently seen and so prevents an
adversary from filtering traffic based on these.

When the altered packet is received by the other Rook
user, the process is reversed to translate from symbols in
mutable fields to secret data bits, using the same symbol
table in reverse. Because of this, it is required that both
sides construct the same symbol table at the start of the
connection by observing the same packets.

2.7 Scheduling Altered Packets
Rook only alters roughly one-in-ten packets, both to pre-

serve game appearance and help reduce statistical anomalies
that might arise in packet payloads.

Since the values inserted by Rook are only legitimate game
values, Rook cannot use a flag indicating an altered packet,
because any flag value is either too short to not occur by
chance or creates too much overhead for the low bandwidth
available. Instead, the Rook sender and Rook receiver pre-
schedule which packets will be altered.

This schedule is arranged by synchronizing on an initial
flag value. The flag value is derived from the shared se-
cret key to prevent an attacker easily enumerating all Rook
servers or passively detecting Rook connection setups. The
sender waits for a packet with enough mutable fields to store
the flag, default of 40-bits in length. The sender then sends
the flag in that packet, and initializes its sending schedule
using this packet as the start. The receiver scans for flag
values in incoming packets and then initializes its receiving
schedule starting with the packet with the flag value. Both
sender and receiver then have schedules synchronized on the
same starting packet.

In our implementation, the server performs this receiver-
side scanning for all clients for the first 5 minutes of their
connection and then assumes they are not potential Rook
clients until they reconnect again.

2.8 Shared Deterministic Cryptographic Ran-
dom Number Generator (DCRNG)

The schedule for which packets to alter cannot just be a
constant regular interval because an adversary could poten-

tially isolate a set of only altered packets and perform statis-
tical comparisons of just altered versus normal packets. To
avoid this, the sender and receiver use a shared determinis-
tic cryptographic random number generator (DCRNG) with
a seed derived from their shared secret key. This DCRNG
is used to produce a set of sequence numbers to use as the
shared schedule for which packets to alter.

2.9 Shared Keys
As the previous two sections show, the Rook client and

server need to share a secret key from which they derive the
expected initial flags and DCRNG seeds. This key exchange
must be performed out-of-band once before the first Rook
connection is made. The client and server can then use a
Diffie-Hellman key exchange to generate a shared key for the
next connection.

2.10 Message-Present Bits
Since packets are altered according to a schedule, the re-

ceiver assumes a packet is altered even if the sender had no
data to send. To avoid forcing the sender to always send
data a message-present bit is used. This bit is essentially
just prepended to the start of the secret data. If there is
data to send, it is set to 1, otherwise it is set to 0. When
the receiver extracts data from the altered packet, it checks
the message-present bit: if the bit is a 1, it continues and
extracts the rest of the secret data; otherwise it stops ex-
tracting data since the sender had nothing to send.

2.11 Packet Loss Resilience
Since Rook utilizes the game’s UDP packets as its chan-

nel, it must provide its own reliability. It leverages the exist-
ing sequence-numbering and acking (present in all the game
protocols observed) to detect if an altered game packet was
dropped. In this case, the Rook receiver will simply not
increment its sequence-number-ack value and the original
sender will retransmit, as in normal TCP.

The DCRNG is kept synchronized despite dropped pack-
ets by generating a fixed number of random numbers is gen-
erated per-packet (for use in selecting the mutable fields).
This way, if a receiver sees a packet was dropped, it can still
run the DCRNG the correct number of times as if it had
received the packet, and so still be synchronized when the
next altered packet arrives.

3. IMPLEMENTATION
The preceding section described the design of the Rook

system, which could be applied to any games with certain
network characteristics. To study and evaluate the effective-
ness of this system we implemented it for the game Team
Fortress 2. Because Team Fortress 2 is built on the Source
Engine, it shares the same network stack as other popu-
lar Source Engine games including Counter Strike: Global
Offensive, and Day of Defeat: Source. Therefore, our imple-
mentation can also function for these games. All the testing
and evaluation was done using Team Fortress 2.

The main effort to implementing Rook for a given game is
reconstructing the packet format for the game. Both sides
of the Rook connection must be able to parse the packet
enough to correctly identify bits that can be altered with-
out causing the packet to provoke errors from the real game
packet parser. In practice this means the Rook code needs to
be able to successfully parse the most common types of pack-

ets and correctly identify any others to be safely ignored. In
our case this was a manual effort, however improvements
in automated protocol analysis may reduce or remove this
burden [30]. Furthermore, increased use of licensed game
engines may also reduce the variety of protocols being used
for games as a whole, thus increasing the number of games
a new implementation provides access to.

4. EVALUATION

4.1 Bandwidth and Usability
Our implementation of Rook for Team Fortress 2 currently

operates at 34 bits/second from game client to game server,
and 26 bits/second from game server to game client. This is
relatively low but still useful for the real-time chat messag-
ing that is the target of this system. As part of our evalua-
tion, we also incorporated an open-source implementation of
the Off-The-Record [2] chat protocol to communicate with
other Rook clients connected to the same server. The main
overhead of the OTR protocol is in the initial key exchange,
which can take several minutes in the current Rook imple-
mentation. However, after the initial connection is made the
secure messages between clients are not significantly slower
than unencrypted Rook messages.

Rook use also did not significantly impact the gameplay of
the user or trigger any warnings from the built-in Valve Anti-
Cheat system. We believe a server of Rook users and non-
users could play together without any obvious differences
noticeable between the two. However, Rook is not designed
to protect against a human attacker individually targeting
a specific Rook server. All FPS games studied also allowed
password-protected servers, which could prevent an attacker
from being able to join and observe a Rook server.

4.2 Censorship Resistance
To evaluate the censorship resistance of Rook we classify

the types of attacks we consider into five types:

1. Anti-Mimicry

2. Single-Packet Deep-Packet-Inspection

3. Traffic Shape Analysis

4. Statistical Multipacket Deep-Packet-Inspection

5. Game-Specific n-gram Analysis

Anti-Mimicry.
Anti-mimicry attacks are defined as attempts to probe and

identify Rook servers or clients based on comparing their
response to probes to the response of a normal game server
or client. It has been previously shown [4, 10] that many
anti-surveillance and anti-censorship systems are vulnerable
to these types of attacks. Rook is not vulnerable to these
types of attack because it is not mimicking the game client
and server but actually running them on both ends.

Altering packets could be used to create a denial of ser-
vice attack against Rook. The attacker could replace muta-
ble field values with other values to corrupt the data Rook
receives. The attacker would need to do this to all game
packets since they do not know which packets are scheduled
to be read by Rook. Thus the attacker would still impact le-
gitimate players by randomly changing their commands and
server updates. Randomly dropping packets could also be
used as a denial of service attack. The attacker would need

to drop few enough to not degrade play experience for le-
gitimate players while also dropping enough to consistently
drop a Rook-altered packet by chance and disrupt the mes-
sages. Rook could potentially respond to this type of attack
by sending redundant messages although this would further
lower its bandwidth.

Stateless Deep-Packet-Inspection.
Stateless Deep-Packet-Inspection (DPI) is what many cen-

sors appear to currently use if they do anything more ad-
vanced than IP or port blocking [32]. Stateless DPI is not
effective against Rook because all packets altered by Rook
adhere to the packet specification for the game and only use
previously observed game values in the alterations. There-
fore, if a stateless DPI system detected a Rook altered packet
as malicious, it would necessarily have to also falsely detect
many game packets of legitimate players as malicious.

4.3 Statistics-Based Attacks
While more costly to deploy, and hence less likely, we now

consider attempting to detect Rook using multipacket sta-
tistical analyses to compare normal game traffic to game
traffic altered by the use of Rook.

Data Gathering Methodology.
To evaluate the traffic shape analysis and the statistical

DPI attacks discussed below, we created datasets as follows:
a TF2 server with 20 bots is run on one machine on the LAN.
This machine also runs the Rook server in the datasets using
Rook. A second machine on the LAN runs a TF2 client,
connects to the server, and runs the Rook client.

There are no universal standards for evaluating circum-
vention systems, owing in part to the diversity of their meth-
ods. We showed above how Rook is secure against past
methods of attack on some circumvention systems. How-
ever, there is a large space of possible statistical attacks to
try. To show the efficacy of our attacks, we also gathered
samples a high-bandwidth (HB) configuration of Rook. It
functions in the exact same manner as Rook, except it re-
places every 1-in-2 packets, while normal Rook replaces ap-
proximately every 1-in-10. This allows us to demonstrate a
particular statistical attack is capable of detecting systems
like Rook, even if it cannot detect Rook being run in its
typical configuration.

For datasets using Rook the user connects to the TF2
server, both the Rook server and Rook clients observe 600
packets (approximately 60 seconds of gameplay) in each
direction and then create their symbol tables. The Rook
client then connects to the Rook server and each side sends
pseudo-random data at the maximum data-rate. The pack-
ets sent and received after the Rook connection is made are
captured using Wireshark for analysis as described below.
Each capture is approximately 7,000 client-to-server pack-
ets, and 6,000 server-to-client packets (about 5 minutes of
gameplay/actual Rook use).

We gathered 61 datasets: 20 using Rook in HB configura-
tion; 20 in the typical configuration; 20 of normal gameplay;
and one of normal gameplay that was used as a baseline
for investigating the three datasets listed above. The base-
line is used to represent a known-normal dataset an attacker
could use to try to differentiate normal and Rook traffic by
comparing them to the baseline.

During the course of experimental setup, we observed that

Figure 2: The difference in bandwidth consumed
from the baseline traffic. HB-Rook appears to aver-
age slightly higher than normal.

Figure 3: Results of the KS test performed on the
distributions of variance across byte positions in
client packets of the same size. There are a few
outliers in all three categories, but no clearly distin-
guishing features.

many unexpected factors can affect the values sent in the
game packet payloads; these appear to include: operating
system, graphics hardware, and game window resolution.
To give our attacks the best reasonable environment, we
attempted to hold as many variables in the experiment sta-
ble as possible. In addition to using the same number of
bots in all cases, the game player was also the same and al-
ready had experience in the game, the class played was the
same, the game level played on was the same, the level was
restarted before each sample, and data was continually sent
at the maximum bandwidth. These essentially reflect the
best possible circumstances an adversary could be expected
to capture traffic under, as there should be as little vari-
ance as possible between samples and the covert channel’s
bandwidth use is maximized.

The above efforts to control the environment for more
consistent analysis contributed to the dataset size, since the
generation could not be automated or parallelized. However,
this size appears reasonable for evaluation since most of the
samples show strong similarities with only a few outliers.

Traffic Shape Analysis.
Traffic shape analysis is conducting statistical analyses on

the size and timing features of the traffic between the client

Figure 4: Results of the KS test performed on
the distributions of entropy computed across each
packet for client packets of the same size. No feature
where Rook or HB-Rook are clearly distinguishable
from all normal samples.

and server. Some previous covert channels have used timing
changes to send secret information, and some have simply
injected extra bytes into application packets, e.g., [5, 17].
These approaches have the potential to be detected by com-
paring statistics between known normal traffic and suspi-
cious traffic, e.g., average size of packets or median timing
between packets [12].

Rook should not be vulnerable to these approaches be-
cause it does not alter the timing or length of game packets
to embed its information, it only alters individual data-fields
within the packet. Furthermore, using Rook does not cause
any additional packets to be sent, or packets to be changed
in size, by the game server or client, so the traffic shape
should be unaffected.

To evaluate this attack we extracted the overall bandwidth
and spacings of packets and compared normal traffic to Rook
use using the 2-sample Kolmogorov-Smirnov (KS-2S) test.
We chose this test for its simplicity and use in previous sys-
tem evaluations [9, 11, 12, 15]. The results show (see Fig. 2)
are that both typical Rook and HB-Rook use is difficult to
distinguish from normal game traffic. We are not certain of
the cause of the slightly higher average bandwidth for HB-
Rook: it may be due to Rook causing more packets with
significant updates to be sent, reducing the effectiveness of
the delta compression the game uses.

Statistical Multipacket Deep-Packet-Inspection.
Statistical multipacket DPI is the monitor taking a packet

capture of all traffic between the client and server and run-
ning statistical tests across the payloads to compare these re-
sults to those obtained from doing the same process to traffic
from a known normal game. There are many possible tests
one could do, and no standard for using this kind of approach
to evaluate a channel of Rook’s kind. As a starting point,
we adapt methods used in the related area of covert timing
channels to test Rook’s detectability. In these systems the
timing of packets is the information channel and therefore
statistical tests are run on the distributions of packet tim-
ings (similarly to the traffic shape analysis above) [9]. The
analogous channel in Rook is the packet payloads, so we run
the same tests on statistics computed over the payloads to
detect anomalies.

Figure 5: Results of the KS test performed on the
distributions of variance across byte positions in
server packets of the same size. Slightly lower aver-
age distances for the Rook traffic.

Figure 6: Results of the KS test performed on
the distributions of entropy computed across each
packet for server packets of the same size.

Since only previously observed values are used by Rook,
the only potentially detectable difference between Rook and
normal payloads is differences in the distributions of these
values. Therefore, we measure the variance and entropy
across each data-field in Rook versus normal traffic. We
measure the variance by first grouping packets by size and
then computing the variance across all these packets at the
same byte position. This process is repeated for each byte
position, and for each size of packet captured. Entropy was
measured by computing the entropy of each packet for all
packets of the same size. The minimum, median, average,
and maximum of each of these two statistics for each packet
size was extracted to form eight distributions to test. The
distributions of all of these results were compared to the
same distributions derived from the baseline game traffic,
and compared using the KS-2S test.

The resulting graphs can be seen in Figs. 3, 4, 5, and 6.
These are each the stated statistic gathered from the sample
traffic compared to the same statistic gathered from a base-
line normal traffic sample using the KS-2S test. These show
relatively little difference between the three categories. In
Fig. 5 there is a slightly lower average distance for the nor-
mal Rook traffic; this is somewhat odd since the lower KS
distance means the Rook samples are more similar to the
baseline normal sample than the other normal samples are.

Figure 7: Sample of counts of distinct unigrams for
one client field and one server field.

Figure 8: Adjusted counts of distinct trigrams from
client traffic. A few outliers for both HB-Rook and
Rook.

Game-Specific n-gram Analysis.
The final analysis we conducted was a game-specific n-

gram analysis: this is an analysis of the values observed in
the mutable fields of our implementation of Rook for Team
Fortress 2. Using the same packet parsing module, we con-
structed lists of unigrams, bigrams, and trigrams for each
mutable field for both the client and server. This analy-
sis is similar to the analysis of variable-bit-rate encoding in
VoIP used to distinguish languages spoken without decrypt-
ing the data-stream [33]. It is important to note that for
any of the following attacks, the censor must have a game-
specific implementation of data gathering and analysis tools,
not general-purpose statistics like those used above. This
would require an adversary to build a parsing engine and
potentially manually generate a list of the useful features
for detecting a specific game. Further, for the actual use the
adversary must do a full capture of the traffic and, if block-
ing is desired, parse and analyze it in relative real-time.

In the following section we show and discuss the results
of analyzing solely the unigram and trigram data. Analysis
of the bigram data showed the same results as trigram data
and is excluded for brevity. The labels A, B, C, and D. on
the graphs are references to different mutable fields Rook
uses. They represent actual game information fields, but
are relabeled for simplicity.

Count of Distinct Trigrams The first analysis we per-
formed was a comparison of the number of distinct trigrams
in each sample. An n-gram is distinct if Rook only uses
values for mutable fields that have been observed in normal

Figure 9: Adjusted counts of distinct trigrams from
server traffic. HB-Rook is clearly distinguished over
several fields from both normal and Rook samples.

game data, so the number of distinct unigrams is never in-
creased by running Rook. The count of unigrams in both
normal and Rook samples can vary, which leads to corre-
spondingly amplified variation in trigram counts (see Fig. 7).
To help correct for this, we computed an approximation of
the function of unigrams-to-trigrams and used this function
to baseline each trigram count sample before analyzing. The
results in Figs. 8, 9 show that there are a few outliers, but
most of the normal samples and typical Rook samples are
very similar. The HB-Rook samples, however, are clearly
distinguishable in the server trigram counts. We believe
this is because the server will be replacing so many mutable
fields that would normally contain new values with previ-
ously seen values stored in its symbol table that the total
number of distinct trigrams is significantly reduced. A de-
tector could potentially be developed to detect the normal
Rook traffic in the same way, but it would either have a
very high false-negative or false-positive rate. Additionally,
we provide mitigating solutions to this attack (if it proved
practical) in Section 6.

Frequency Distribution We also performed a compari-
son of the frequency distribution of trigrams. If Rook causes
unlikely values to occur more frequently then there could
be a shift to a more uniform frequency distribution versus
the normal traffic. Figs. 10 and 11 show the results of a
KS-2S test on frequency distribution across different muta-
ble fields. For most fields the KS-distances are intermixed,
showing poor distinguishability. In a few cases Rook or HB-
Rook appear distinguishable by a smaller KS-distance than
the normal captures, indicating they are more similar to the
baseline-normal traffic. We are not able to explain this dif-
ference since the normal samples and the baseline sample
were created in the exact same way. Given the small differ-
ences in KS-distance this could just be a statistical anomaly
arising from our sample sizes.

Single-Frame Anomalies In the case of client-
commands, the client could send repeats of the same com-
mand as a result of normal gameplay (for example, holding
the forward button to continue moving forward). If such a
repeating field was a mutable field in our Rook implemen-
tation then Rook could inject a different value into the field
for a single-frame in the middle of a run of repeating val-
ues. This would create what we call a single-frame anomaly,
where the first and third values of a trigram are the same
value, but the second is different. Our analysis shows no
consistent difference between normal gameplay and Rook

Figure 10: Results of the KS test performed on the
frequency distributions of client trigrams. One field
where HB-Rook is fairly distinguishable but due to
being more similar to the baseline sample than nor-
mal or Rook samples.

Figure 11: Results of the KS test performed on
the frequency distributions of server trigrams. Two
fields where Rook is distinguishable as being more
similar to the baseline than either normal or HB-
Rook samples.

use (see Fig. 12). We do not show this analysis for the
server’s packets because there are no repeating sequences.

In summary, we evaluated the security of Rook against
five different major attack vectors. It is robust against stan-
dard anti-mimicry, DPI, traffic shape analysis, and general-
ized statistical attacks. Further, it is resilient against game-
specific statistical attacks but may be vulnerable to a fo-
cused adversary devoting resources to detecting use of Rook
on a specific game leveraging full packet captures. We be-
lieve this represents an improvement in the state-of-the-art
in this field and still meets a high level of security since
the resources to mount an attack are at the upper bound of
our threat model, requiring multipacket statistical analysis
using game-specific knowledge.

5. RELATED WORK
There have been many different approaches taken to en-

abling censorship circumvention or surveillance avoidance
in the past. These have ranged from manipulating traffic
shape attributes such as packet timing and size. Recently

Figure 12: Count of Single-Frame Anomalies in
client samples. Showing a few outliers from Rook
and HB-Rook but overall not very distinguishable
from normal samples.

there have been many systems developed which try to slip
past monitors by disguising themselves as normal traffic [11,
18, 24, 31, 35].

Timing Steganography.
There have been several systems based on using packet

timings to covertly communicate [5, 9]. These systems are
potentially harder to detect than Rook because the packet
timings they are modifying are already impacted by what
other processes are running on the machine, which is outside
of the attack scope. However, an active adversary can po-
tentially block the channel by adjusting the timing of pack-
ets slightly to destroy the information, or drastically reduce
the bandwidth, without necessarily impacting the legitimate
application use. Despite these drawbacks, a timing-based
covert channel like CoCo could actually work excellently
alongside Rook. The bandwidth gain would be modest,
about 5-10 bits/second, but the two systems operate or-
thogonally to one another and so the risk of detection would
only be whichever system is the most detectable.

Header Value Steganography.
Many fields in standard network protocol headers (TCP,

UDP, RTP, etc.) have been found to be useful for stegano-
graphic purposes [16, 20, 22]. These include the least-significant-
bits of the timestamp, padding values, initial sequence num-
bers, and various flags. These covert channels have an ad-
vantage in that they are ubiquitous to all applications with
any standard type of network traffic and so can easily bypass
any application filtering an adversary could put in place.
However, attacks against the covertness of several of these
channels have been shown [25, 26].

Furthermore, these schemes are based on the application
ignoring whether these fields are set or not, so an adversary
can simply normalize them to deny the covert channel. Rook
modifies data that is used by the application, so this type
of attack degrades legitimate use. As we argue in Section 2,
adversaries are disincentivized from impacting the activities
of normal users.

Application Protocol Mimicry.
There have been several recent systems based on trans-

forming the appearance of traffic to evade censorship [21,
29, 31]. These types of approaches generally suffer from
weakness to active probing: if either end is not actually
running the application the altered traffic would be pro-

duced by, probes from adversaries will be ignored. As shown
by Houmansadr et al., it is very difficult to try to accu-
rately mimic how a real application will respond to an arbi-
trary probe, particularly those which would cause errors [10].
Since Rook actually runs the game client and server, an ac-
tive adversary’s probes will be responded to in the same
manner as a normal game client and server. Depending on
the application being mimicked, an adversary could also at-
tack these systems by parsing the packets to detect any non-
conformity to the protocol specification or usual behavior.

Application Subversion.
Since these attacks on mimicry-based systems have been

published, there have been several new systems proposed
which hide data at the application-layer, rather than in-
serting it at the transport layer [7, 8, 11, 18, 23, 24, 35].
These approaches are the most similar to Rook. Two pre-
vious systems have used steganography to communicate in
computerized boardgames [8, 23]. Castle [7] (coincidentally
named) also uses online games, but of a different type, to
hide its data. It also uses automated in-game commands to
generate specific game actions the other game client inter-
prets as secret data. This has the advantage of being higher
bandwidth than Rook, but also have detectability trade-offs
associated with it because it potentially requires the game’s
default transportation security to remain intact for Castle
to avoid detection.

Unlike Rook, all of these approaches rely on an encrypted
channel between the ends of the application to be unbroken.
Current events show that some censors will force man-in-
the-middle attacks or subverted versions of programs to be
used to allow breaking this encryption [3, 14]. Rook does
not require its applications traffic to be encrypted to remain
secure.

6. DISCUSSION AND FUTURE WORK
Rook is a new approach to an established problem of

censorship resistant communication. We argue that online
games provide an excellent form of cover for secret commu-
nication and have enough mass appeal that a censor would
be reluctant to outright block their traffic. The evaluation of
our implementation of Rook for Team Fortress 2 shows it to
be robust to all currently known forms of network interfer-
ence and censorship. Further, the evaluation shows Rook is
resistant to potential new forms of censorship, such as deep-
packet statistical analyses and application-specific analyses,
that may become common tools for censors in the future.

Rook also aims itself at somewhat under-represented facets
of censorship resistance: establishing safe communication
entirely within a censor’s region of control, and emphasizing
keeping plausible deniability for its users. The current im-
plementation of Rook is functional in exchanging message
undetected; however, we believe it could be expanded upon
in the following ways:

The first and most obvious extensions from a utilitarian
perspective is the implementation of Rook for more games.
We developed the Rook code in a modular fashion so that
new modules for interpreting different game packet protocols
can be easily added. In addition to many other First-Person
Shooter games, preliminary research shows Rook could be
applied to many other types of online games such as: Real-
Time Strategy (RTS) games like Starcraft and Starcraft 2;
Multiplayer Online Battle Arenas (MOBA) like Dota 2 and

League of Legends; and even Massively-Multiplayer Online
(MMO) games like World of Warcraft. For some of these un-
sanctioned private servers would have to be used, but these
already have significant followings among normal players as
well [19].

From a system design perspective, a secure bootstrapping
mechanism for finding and contacting Rook servers would
be a significant addition to the usability of the system, and
could potentially also be conducted over the same online
game, but perhaps with a higher-latency mechanism. How-
ever, this is a major challenge in circumvention systems in
general that has not yet been solved.

Another improvement that could be made to Rook is mak-
ing the symbol tables dynamically self-adjusting to attempt
to better preserve the traffic statistics. Essentially each side
would monitor how the packets it altered have impacted
a set of statistics and then modify their symbol tables to
try to minimize the statistical deviance created by hiding
data. This would inevitably reduce bandwidth to some ex-
tent; however, if statistical attacks are found to be a non-
negligible threat to Rook, the tradeoff would be worthwhile
to defeat such attacks. In general, we believe Rook can be
advanced to mitigate higher-order statistical attacks by im-
plementing these same statistical models to adjust the way
it alters packets and thus remain undetectable.

7. CONCLUSION
In this paper we presented Rook, a system designed to

provide low bandwidth low latency censorship resistant com-
munication using the network traffic of online games. Rook,
along with the concurrently-researched system Castle [7],
represent the first censorship circumvention systems to use
online games as a cover for secret communication. Rook and
Castle take different approaches, and seek to accomplish dif-
ferent goals, and hence represent complementary investiga-
tions into this new cover medium. Beyond its novelty, Rook
also represents a useful addition to the space of existing
circumvention techniques and systems. Unlike many other
systems, Rook focuses on providing secret communication
within a censor’s region of control, and presents greater se-
crecy and deniability than previous systems by virtue both
of how its communication is hidden and by it being hid-
den in online game traffic instead of other applications that
would show more differences between legitimate users and
censorship circumventing users.

Our implementation of Rook shows that it lives up to its
goal of providing bandwidth high enough for chat, including
over the OTR protocol, while remaining undetectable using
any mass attack methods currently known to be employed
by censorship regimes. Furthermore, Rook presents a funda-
mentally greater challenge to detect than what most current
circumvention systems present. An adversary would have to
commit resources both to develop an attack against a par-
ticular implementation of Rook, and allocate computational
resources to each game connection they find suspicious in
order to defeat Rook. Even under targeted attack, we ar-
gue novel attack techniques would need to be developed to
detect Rook communications.

We intend to release our code along with developer docu-
mentation.

8. ACKNOWLEDGEMENTS
We would like to thank Rob Johnson for a helpful ex-

change of ideas on use of games in censorship circumven-
tion. This work was supported in part by NSF Award CNS-
0846065 and by the Short-Dooley Endowed Career Develop-
ment Professorship.

9. REFERENCES
[1] R. J. Anderson and F. A. Petitcolas. On the limits of

steganography. Selected Areas in Communications,
IEEE Journal on, 16(4):474–481, 1998.

[2] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record
communication, or, why not to use pgp. In Proceedings
of the 2004 ACM workshop on Privacy in the
electronic society, pages 77–84. ACM, 2004.

[3] J. Crandall, M. Crete-Nishihata, J. Knockel,
S. McKune, A. Senft, D. Tseng, and G. Wiseman.
Chat program censorship and surveillance in china:
Tracking tom-skype and sina uc. First Monday, 18(7),
2013.

[4] J. Geddes, M. Schuchard, and N. Hopper. Cover your
acks: pitfalls of covert channel censorship
circumvention. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pages 361–372. ACM, 2013.

[5] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts.
Covert messaging through tcp timestamps. In Privacy
Enhancing Technologies, pages 194–208. Springer,
2003.

[6] G. Greenwald, J. Ball, and D. Rushe. Nsa prism
program taps in to user data of apple, google and
others. The Guardian, June 2013.

[7] B. Hahn, R. Nithyanand, P. Gill, and R. Johnson.
Games without frontiers: Investigating video games as
a covert channel. arXiv preprint arXiv:1503.05904,
2015.

[8] J. C. Hernandez-Castro, I. Blasco-Lopez, J. M.
Estevez-Tapiador, and A. Ribagorda-Garnacho.
Steganography in games: A general methodology and
its application to the game of go. computers &
security, 25(1):64–71, 2006.

[9] A. Houmansadr and N. Borisov. Coco: coding-based
covert timing channels for network flows. In
Information Hiding, pages 314–328. Springer, 2011.

[10] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
parrot is dead: Observing unobservable network
communications. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 65–79. IEEE, 2013.

[11] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I
want my voice to be heard: Ip over voice-over-ip for
unobservable censorship circumvention. In The 20th
Annual Network and Distributed System Security
Symposium (NDSS), 2013.

[12] S. Khattak, L. Simon, and S. J. Murdoch.
Systemization of pluggable transports for censorship
resistance. arXiv preprint arXiv:1412.7448, 2014.

[13] J. Killock. Sleepwalking into censorship. Open Rights
Group, July 2013.

[14] J. Knockel, J. R. Crandall, and J. Saia. Three
researchers, five conjectures: An empirical analysis of
tom-skype censorship and surveillance. In FOCI’11:
USENIX Workshop on Free and Open
Communications on the Internet, 2011.

[15] S. Li, M. Schliep, and N. Hopper. Facet: Streaming
over videoconferencing for censorship circumvention.
In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, pages 163–172. ACM, 2014.

[16] D. Llamas, C. Allison, and A. Miller. Covert channels
in internet protocols: A survey. In Proceedings of the

6th Annual Postgraduate Symposium about the
Convergence of Telecommunications, Networking and
Broadcasting, PGNET, volume 2005, 2005.

[17] N. B. Lucena, J. Pease, P. Yadollahpour, and S. J.
Chapin. Syntax and semantics-preserving
application-layer protocol steganography. In
Information Hiding, pages 164–179. Springer, 2005.

[18] J. Lv, T. Zhang, Z. Li, and X. Cheng. Pacom:
Parasitic anonymous communication in the bittorrent
network. Computer Networks, 2014.

[19] Marie. World of warcraft (wow) private servers guide.
[20] W. Mazurczyk and K. Szczypiorski. Steganography of

voip streams. In On the Move to Meaningful Internet
Systems: OTM 2008, pages 1001–1018. Springer, 2008.

[21] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg. Skypemorph: Protocol obfuscation for tor
bridges. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages
97–108. ACM, 2012.

[22] S. J. Murdoch and S. Lewis. Embedding covert
channels into tcp/ip. In Information Hiding, pages
247–261. Springer, 2005.

[23] S. J. Murdoch and P. Zieliński. Covert channels for
collusion in online computer games. In Information
Hiding, pages 355–369. Springer, 2005.

[24] B. Ragnarsson and P. Westein. Using git to circumvent
censorship of access to the tor network. 2013.

[25] T. Sohn, J. Moon, S. Lee, D. H. Lee, and J. Lim.
Covert channel detection in the icmp payload using
support vector machine. In Computer and Information
Sciences-ISCIS 2003, pages 828–835. Springer, 2003.

[26] T. Sohn, J. Seo, and J. Moon. A study on the covert
channel detection of tcp/ip header using support
vector machine. In Information and Communications
Security, pages 313–324. Springer, 2003.

[27] Valve. Steam and game stats.
[28] Valve. Team fortress 2.
[29] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr,

and N. Borisov. Censorspoofer: asymmetric
communication using ip spoofing for
censorship-resistant web browsing. In Proceedings of
the 2012 ACM conference on Computer and
communications security, pages 121–132. ACM, 2012.

[30] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu,
Z. Zhang, D. Yao, Y. Zhang, and L. Guo. A semantics
aware approach to automated reverse engineering
unknown protocols. In Network Protocols (ICNP),
2012 20th IEEE International Conference on, pages
1–10. IEEE, 2012.

[31] Z. Weinberg, J. Wang, V. Yegneswaran,
L. Briesemeister, S. Cheung, F. Wang, and D. Boneh.
Stegotorus: a camouflage proxy for the tor anonymity
system. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages
109–120. ACM, 2012.

[32] P. Winter and S. Lindskog. How china is blocking tor.
arXiv preprint arXiv:1204.0447, 2012.

[33] C. V. Wright, L. Ballard, F. Monrose, and G. M.
Masson. Language identification of encrypted voip
traffic: Alejandra y roberto or alice and bob? In
USENIX Security, volume 3, page 3, 2007.

[34] X. Xu, Z. M. Mao, and J. A. Halderman. Internet
censorship in china: Where does the filtering occur?
In Passive and Active Measurement, pages 133–142.
Springer, 2011.

[35] W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov.
Sweet: Serving the web by exploiting email tunnels.
HotPETS. Springer, 2013.

