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Abstract—In this paper, we introduce a novel lightweight
anonymization technique called Shalon. It is based on onion
routing, aims to reduce complexity, and delivers high bandwidth.
We have, compared to the widely known approach Tor, slightly
reduced the level of security in favor for greatly increased
performance.

The most significant advantage compared to other approaches
is that Shalon is fully based on standardized protocols, which
makes our approach highly efficient and easy to deploy. It
also makes Shalon easier to understand for normal users, eases
protocol reviews, and increases the chance of having several
implementations of Shalon available. In this work, we provide
a description of the design and implementation of Shalon, a
performance and anonymity analysis, and a discussion on the
scalability properties.
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I. I NTRODUCTION

Many approaches have been proposed to provide anonymity
on the network layer. Still, only some of them have reached
wide scale deployment, e.g., [1], [2]. Currently, the most
popular and widespread system is Tor [2]. Tor, as well as other
approaches for anonymization, relies on non-standardizedand
complex protocols. On the one hand it makes sense to develop
a dedicated protocol for the purpose of anonymization due to
its special requirements. On the other hand this approach has
also disadvantages. First, the development effort for practical
implementations is high. This often leads to the existence
of at most one single implementation, which in turn runs
the risk of creating so-calledsoftware monocultures. In this
case, failures in the single implementation can paralyze the
whole network, possibly compromising the overall security.
Second, if the underlying protocol specifications are changed
or updated often, additional implementations are even more
difficult to maintain. Additionally, it is naturally more difficult
to analyze the properties of a complex system.

Due to the increase of multimedia content transmitted over
the Internet, bandwidth requirements have been drastically

increased. This also holds for anonymization networks, where
quality of service is becoming an increasingly more prob-
lematic aspect. While the backbones and access networks of
the Internet could be adjusted to the increased needs, current
anonymizers have not been able to meet these demands, thus
leading to a decrease in network performance. Reasons include
the necessity to handle multiple layers of encryption, a geo-
graphicaly spread routing, and limited over-all bandwidth. The
implications of a poor performance have been shown in [3]: the
user base of a network drops linear with increasing latency.
Several papers have dealt with the performance analysis of
anonymization systems [4], [5] and have shown the need and
possibilities for better quality of service [6], [7].

In this paper, we address the aforementioned problems
by introducing Shalon: a novel lightweight and efficient
anonymization technique purely based on standardized proto-
cols. We provide a performance evaluation and an anonymity
analysis of Shalon. In Section III, we show that the level
of anonymity offered in Shalon can be compared to the
level of anonymity in Tor. Further, Section IV shows that
our implementation of Shalon is superior to Tor in terms
of performance and scalability (at least in the laboratory
settings in which the tests were conducted). Section V and VI
provide a discussion on some of our design choices and outline
possible future modifications of Shalon, respectively. Finally,
Section VII concludes the paper.

II. RELATED WORK

This section gives a brief overview of techniques used for
network layer anonymization.

The typical method for anonymizing network traffic is to
send messages on a detour through severalmiddle nodesrather
than directly to the recipient. This can be done in a way such
that the relaying nodes cannot determine for certain whether
the relayed data streams originate from the predecessor or are
forwarded on behalf of other users. In this paper, we focus on
low-latency anonymization networks. These are designed for



real-time communication, like web-browsing or instant mes-
saging. The oldest representative in this category is thesingle
hop proxyapproach which is very lightweight. One widely
known implementation in this category isanonymizer.com.
However, single hop proxies provide an unavoidable single
point of failure and trust. Therefore, they pose no solution
for users with a higher demand for protection. We divide the
remaining approaches into the following three categories:

1) Layered Encryption Approaches:A typical represen-
tative of this approach is Tor. It is an overlay network
consisting of servers that are calledonion routers(ORs). To
anonymize Internet communications, end-users run anonion
proxy (OP) on their computer that is listening locally for
incoming connections and redirects TCP-streams through the
Tor network. When sending out the redirected TCP-streams,
the OP constructscircuits of encrypted connections through
a path of randomly chosen ORs. A Tor circuit, as default,
consists of three ORs, where each OR only knows(i) which
peer has sent him data (the predecessor) and(ii) to which
peer he is relaying data (the successor). A circuit length of
three constitutes a reasonable trade-off between securityand
performance, where the role of the middle OR is to hinder the
last OR in the circuit (theexit node) to learn the identity of
the first OR (theentry node). If the latter two cooperate, users
can be deanonymized.

During circuit creation in Tor, Diffie-Hellman key ex-
changes are used to establish shared symmetric session keys
with each OR in the circuit. The user’s OP encrypts all traffic
before it is sent over the circuit, using these keys in reverse
order, starting with the key of the last OR. Upon receiving
traffic, each OR on the circuit removes (or adds, depending
on the direction) one layer of encryption while relaying the
data to the next OR, so only the last OR (the exit node) knows
the actual destination of a TCP stream.

AN.ON [1] (also known as JAP or Jondonym) is also based
onion routing. One of the main differences to Tor is that users
cannot choose the circuit freely between the relays. In AN.ON
normally three relays are forming a predefined path, denoteda
cascade. The user only has the possibility to choose one of the
predefined cascades. Problems with AN.ON include missing
perfect forward security1 and unknown scalability behaviour.

Tarzan [8] and MorphMix [9] are two peer-to-peer (P2P)
based anonymization techniques for implementing onion rout-
ing. Unlike the earlier approaches, a MorphMix node does not
have to have knowledge about all other MorphMix nodes in
the network. For the circuit setup, so-calledwitness nodesare
used to facilitate the selection of nodes for circuit extension.
In Tarzan every node has a set of peer nodes for exchanging
cover traffic which are calledmimics nodes. Nodes select their
mimics in a pseudo-random universally verifiable way. Neither
Tarzan nor Morphmix are in active use today.

Lastly, the Invisible Internet Project (I2P) system2 is an

1Forward secrecy ensures that a session key created from a setof long-
term asymmetric keys will not be compromised if the long-term private key
is compromised in the future.

2See http://www.i2p2.de/ for more information.

approach that makes use of so-calledgarlic encryption, that
is, a variant of onion encryption where multiple messages
wrapped into a single “garlic message”, encrypted with a
particular public key. Problems with I2P include missing
transparency for their network layer protocol and a complete
lack of academic coverage.

2) Simple Randomized Routing Protocols:Crowds [10] is
an alternative to the techniques described above. When, for
example, a user requests a web page, the request is sent to
another (randomly chosen) crowd member (called ajondo).
By making a biased coin toss, this jondo decides whether
to forward the message to the final destination or to another
randomly chosen jondo. Communications between jondos are
link encrypted, meaning that each jondo can see the content
of passing messages, including the address of the final desti-
nation (they cannot easily determine the initiator though). The
GNUNet system [11] also makes use of a simple randomized
routing protocol, where the forwarding of messages on behalf
of the other nodes (here denoted the“indirection” ) depends,
among other things, on the load in the network. Crowds
never left the stage of a research implementation, and further
Crowds and GNUNet offer fairly weak protection against
strong attackers [12], [13].

3) Multicast/Broadcast Based Methods:A classic proposal
in this category are DC-networks [14]. DC-networks can pro-
vide “perfect anonymity” (in an information theoretic sense),
however under some rather demanding assumptions, as it is
required that all DC-net nodes must communicate with all
other nodes for every message transfer. Thus, secure, reliable
and fast broadcast channels are prerequisites for a practi-
cal realization of a DC-network. Furthermore, the protocol
is prone to channel jamming, inefficient in large networks,
etc. [15]. P5 [16] is another approach in this category that
aims to remedy the scalability problems of DC-networks by
dividing the network group into a tree hierarchy containing
smaller broadcast groups. Also Herbivore [17] try to improve
scalability by combining an approach based on DC-networks
with a hierarchical topology in which the users are grouped
into smaller subsets (so-calledcliques). However, all of these
networks are either not used anymore or do not have a
widespread user base.

III. I NTRODUCING SHALON

In this section, we introduce our proposed anonymization
technique called “Shalon”. We begin by identifying our as-
sumptions and the targeted attacker model. The second part
provides a protocol description.

A. Assumptions and attacker model

We start by listing our basic assumptions.

• Our first assumption is that adversaries cannot break
cryptographic primitives. This is a standard assumption
in the area of anonymous communication;

• Our second assumption is that we do not aim to protect
against a (passive or active) global adversary. This is
because such protection reduces the provided level of
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Fig. 1. Onion encryption for a tunnel of length three

performance and usability drastically. Also, it has been
shown that most users prefer performance rather than very
strong anonymity [3]. This is underlined by experiments
indicating that the majority of users are only willing to
wait up to four seconds when requesting a web page [4];

• Finally, we also assume that a Shalon client knows the
list of nodes participating in the network.

Thus, our adversary constitutes an entity with the following
capabilities:

• Passively observe some portion of network traffic;
• Actively operate its own nodes and/or compromise some

fraction of honest nodes;
• Actively delete, modify and generate messages.

Inspired by the practical attacker classification in [18], this
means that we aim to defend against corrupt end servers, local
passive and active attackers (such as system administrators and
small Internet service providers), and corrupt Shalon nodes.

B. Protocol Description

The wide success of HTTP and SSL constitutes a great
incentive to base Shalon on these popular, standardized, and
widely deployed protocols. Therefore, Shalon implements an
onion encrypted HTTP-based tunneling method. This is done
by using the HTTP CONNECT method/command. The CON-
NECT method extends a connection in the following way: it
instructs the HTTP server or proxy to extend the connection
by making a TCP connection to some specified server and port
and relays the data transparently back and forth between this
connection point and the client connection [19].

Anonymization tunnels are created in Shalon in the follow-
ing way. After extending the connection from one Shalon node
to a new node, a TLS handshake3 is performed between the
initiator and the new node. This enables the client to encrypt
messages in an onion-routing like manner (see Figure 1) to
achieve confidentiality of the next hop and application layer
data. In Figure 1,I denotes initiator,ES denotes end-server,
andM is the message sent along the circuit passing the proxy
nodes denotedPNi. The level of greyness of the proxy node
corresponds to the key shared between the proxy node and the
I. The encryption layers are produced with the corresponding
keys. Due to the layered encryption, each node along the
tunnel knows only its direct predecessor and successor in the
tunnel. As in Tor, the default tunnel length of three hops

3Although we use “SSL” and “TLS” as synonyms in this paper, we are
aware of the differences between these protocols.
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Fig. 2. Protocol run for a scenario where the initiating userbuilds a two-hop
tunnel, fetches web site, and then closes the connection

is chosen as it constitutes a reasonable trade-off between
performance and security.

The process of circuit establishment is depicted in Figure 2.
For the sake of clarity, a circuit of length of two is used here.
After establishing the encrypted connection with thePN1,
the circuit is extended toPN2. TLS is used to implement the
layered encryption. Finally, the connection is extended tothe
ES. Here,ES is a web server and it exchanges information
using HTTP. Such tunnels, however, can be used for the
transmission of arbitrary data on top of TCP.

C. Observations

Shalon relies on widely adopted standardized protocols for
implementing onion routing. Any CONNECT-capable HTTP
proxy with TLS/SSL [20] support is sufficient to serve as a
base for an intermediary Shalon node, such as the widely
used proxy server Squid with an enabled SSL-layer. While
the idea of tunneling TCP-connections through a single web
proxy has been described as early as [21] (maybe even before),
implementing onion routing based on this principle, to the
best of our knowledge, has not been proposed before. By
using standardized protocols rather than proprietary and/or non
standardized protocols, we achieve the following advantages:

• The availability of existing libraries eases the develop-
ment process;

• The existing libraries are mature and thus well tested and
scrutinized;

• There exists a sound and widely communicated body of
knowledge regarding the functionality of these protocols;

• Since these protocols are simple and lightweight, they
(and thus Shalon) can be easily studied in respect of their
advantages and drawbacks.

Further, the low complexity of Shalon contributes to the
following:

• Shalon can be easily understood by “the average users”,
not only by a small group of expert developers;

• Shalon is easier to implement than other approaches;
• Shalon and its properties are easier to evaluate;



• It is more likely that there will be a variety of different
clients/servers;

• The risk of ending up with a software monoculture (where
failure in a single implementation can, e.g., paralyze the
whole network) is greatly reduced.

Our proposal, still, is not a silver bullet. Below, we list some
observations regarding the design choices in Shalon:

• In Shalon, contrary to, e.g., Tor, packets are of variable
size which may decrease the protection against traffic
analysis;

• Shalon uses only one level of encryption between Shalon
nodes, whereas in Tor packets are “double encrypted”
both on cell level and on TLS level between each node;

• Each tunnel in Shalon only handles one connection per
tunnel, in contrast to Tor circuits, which can handle
multiple TCP streams in parallel;

• It is possible to quickly recreate recently used tunnels by
employing SSL-key reuse.

In Section V, we further discuss our design choices and
their implications.

D. Tunnel Establishment

In this section, we address the issue of tunnel establishments
in Shalon. The user’s client always maintains a few general
purpose tunnels in a preemptive way, i.e. before they are
required by any application. This saves tunnel build-up time,
which constitutes the most significant delay when the anony-
mous communication channels are requested by the applica-
tions [5]. Also, by applying SSL reuse to reestablish recently
used tunnels, we remedy the lack of stream multiplexing and
a tunnel truncation after the connection to the end server is
closed. SSL reuse, however, should only be used for a limited
period of time and a limited data volume per tunnel. Tunnel
rotation helps to strengthen the protection against long-time
profiling issues and to achieve forward secrecy.

IV. A NALYZING SHALON

In this section we provide an analysis of the most important
issues with Shalon.

A. Anonymity and Security

This section gives an overview of most important security
properties of Shalon. We have analyzed the perspectives of
sender anonymity and relationship anonymity (on the network
level) between the sender and the recipient.

It can be trivially shown that an entity which is unrelated to
the network, i.e. does not operate a server node or participate
as a client, and in addition has no physical relation to either
communicating parties will neither learn the identity of the
sender, nor the communication relationship.

The recipient of the messagehas only very limited chances
to identify the true sender of the message he receives. How-
ever, it might be possible to use application level attacks,
like profiling application layer data, injecting active content
into HTML-pages in order to trick the sender’s browser to
bypass the proxy settings, or just set long-term cookies and

hope that the sender will come back to the site without
using an anonymization technology [22]. However, all of these
techniques are independent of the anonymization technology
being used, and thus Shalon is neither more nor less resistant
to them compared to other anonymization networks.

A local administratorand thefirst nodeon the path have
both several possibilities to learn the relationship between
sender and receiver. First, there are denial-of-service attacks
which block access to the anonymizing technology and thus
force the sender to stop communicating or reveal his peer
by communicating in plain. However, all major anonymizing
techniques are susceptible to these kinds of attacks. Second,
this type of attacker can use a database of traffic fingerprints to
identify the website that the Shalon user visits (if the website’s
fingerprint is contained in the database) [23], [24], [25]. This
attack might be more successful against Shalon compared to
other anonymization techniques with fixed cell sizes because
of variable packet sizes and visibility of new stream creations.
However, this is a subject of current research and we expect
Shalon to have similar susceptibility as e.g. Tor.

Colluding nodescan to a certain extend mount all previously
listed attacks. They have the potential to be either a first and/or
the last node in the tunnel (with respect to a certain user).
However, the most serious case is when an attacker happens
to occupy multiple nodes in a single tunnel; most notably – the
first and the last position. In this case an attacker can mount
traffic confirmation attacks by comparing input streams to
output streams [26], by trying to identify the tunnel of a stream
through the network [27], [28], or even other techniques [29].
To the extent of our analysis, Shalon is not more vulnerable
against these attacks than any other practical approach.

Today, it is generally considered that an attacker with
powers equal to those ofgovernments(or stated in other words,
a passive global observer) is able to break all currently avail-
able (and practical) low latency anonymization techniques.
However, please note that it is not a design goal of Shalon
to protect users against this kind of adversaries.

To sum up, as a preliminary conclusion we have showed
that Shalon provides a similar level of protection as other
comparable low-latency anonymization techniques.

B. Scalability

We estimate the scalability properties regarding the process
of traffic anonymization to be in the same scale as in Tor.
However, there are several advantages with Shalon that are
explained below.

As previously mentioned, Tor encrypts everything twice:
there is a TLS layer between the nodes as well as cryptography
on the circuit layer between the client and corresponding ORs.
Thus, each intermediary Tor node has to decrypt the incoming
TLS message, then the corresponding onion layer, and finally
encrypt the message on the TLS layer for the next node in
the circuit. This is done by all Tor nodes on the path except
the last one which does not do the final encryption step.
Therewith, there are(3l−1) encryption/decryption operations
per circuit that have to be performed by the servers in Tor



circuit (wherel is the circuit/tunnel length). In Shalon there
are less cryptographic operations, as they are only betweenthe
client and the corresponding Shalon nodes. Hence Shalon only
requiresl operations on the servers’ side instead of(3l − 1).
This significantly reduces the amount of encryption/decryption
operations performed by the intermediary nodes. Therefore,
we expect Shalon to be able to serve more clients with the
same amount of CPU power. Alternatively, given the same
number of users, more CPU power per user should be available
in Shalon (the CPU saturation is suspected to be the limiting
factor for most Tor nodes [5]).

C. Performance Evaluation

In this section we present the results from the performance
analysis of Shalon. The main focus of the analysis is data
throughput, round trip time (RTT), and tunnel buildup time.
Furthermore, we compare our results with the Tor network.

1) Experimental design:To provide a fair comparison, we
performed our experiments in a laboratory under controlled
and optimal conditions. In our laboratory environment, we
have set up a private Tor and Shalon network (using the same
machines) with the following experimental setup:

• Intel Pentium III Dual Core machines with 1 GHz CPUs
and 2 GB RAM acting as nodes;

• Intel Core 2 Duo with 2.4 GHz and 2 GB RAM acting
as client;

• Local network backbone bandwidth of 1 Gbps;
• The vanilla Tor implementation in the version0.2.0.12-

alpha written in C (both as OP and ORs);
• Our Java and C versions of Shalon client.

The Shalon server (compare with OR in Tor) is built using
the proxy software Squid (with enabled SSL). The end-server
for both, Shalon and Tor is realized by a short and efficient
Perl script running on the last node of the path.

Note that as both the clients and servers of Shalon and
Tor were run in a private network, the result from our tests
cannot be compared to performance evaluations of the real Tor
network [4], [5], as the transmission and propagation delayin
the later case are much larger due to bandwidth limitations and
the geographical distances between nodes. Our tests, on the
other hand, evaluates the best case for performance, that is, the
upper limits. In the future, it would be possible to set up new
tests where we emulate a limited bandwidth and geographical
distance between the nodes in the laboratory network, for
instance by usingdummynet4 or performing the measurements
in the PlanetLab [30]. To calculate the mean values with a 95%
confidence interval, each experiment was repeated20 times.

2) Results: Figure 3(a) shows theround trip time of the
circuits/tunnels of length2 and3, i.e. with 2 or 3 intermediary
hops. We used these numbers because layered encryption
approaches based on onion routing normally use this number
of hops as a standard path length. Shalon outperforms Tor by
a factor of2 to 3 in terms of latency.

4See http://info.iet.unipi.it/˜luigi/ipdummynet/

(a) Circuit/Tunnel RTT (b) Circuit/Tunnel Throughput

(c) Without SSL-Reuse (d) With SSL Reuse

Fig. 3. Tor vs. Shalon

Figure 3(b) shows the data throughput of Tor and Shalon
depending on path length. Both approaches use AES in
CBC mode as a symmetric encryption algorithm. In terms
of throughput, Shalon outperforms Tor by the factor6. In
Shalon (Java) a limiting factor was the client CPU for the
case with tunnel length3. The limiting factor for Tor was the
ORs’ CPUs which always had a100% CPU load independent
of circuit length. In the other cases we did not observe any
obvious bottlenecks.

Because of the differences between circuit/stream concept
in Tor and tunnels in Shalon it is difficult to directly compare
these both approaches in terms of circuit/tunnel setup times.
Recall that Tor uses circuits to tunnel various TCP streams
over them. Shalon, in contrast, uses a single tunnel for each
TCP connection.

To enable a comparison of both networks in this regard,
we distinguish two different scenarios. In the first scenario
we assume that both systems have no a-priori connection
reservoirs. For Tor, this means that a new circuit must be built
and a stream has to be attached to that circuit. Shalon also
needs to buildup a new tunnel, but has no SSL session which
could be reused. The second scenario covers the situation when



a connection is already established over the circuit/tunnel.
Therefore, we assume that Tor already has an existing circuit
and merely needs to attach a stream to that circuit. For Shalon
this means that path exists that have recently been used for
a tunnel. Due to this, every node in the path has valid SSL
session keys which can be reused. Shalon now needs to create
a new tunnel over the same nodes using SSL reuse.

Both states are depicted in Figures 3(c) and 3(d). In the
first scenario (3(c)), Tor slightly outperforms the Java version
of Shalon in the case of a 3 hop circuit, but the C version
of Shalon is faster to the factor of1

3
. In the second scenario,

3(d), Shalon in Java is actually about thrice as slow as Tor.
The C version of Shalon, however, is still twice as fast as Tor
in the case of a path length of 2. In case of a path length 3
the C version is as fast as Tor.

An interesting observation is that even in the case when
Shalon needs to provide a new connection by reestablishing
the whole tunnel, the procedure is as time consuming (in the
C implementation) as merely attaching a stream to a circuit
in Tor. Thus, from the performance point of view, “one way”
usage tunnels in Shalon (because of the need to be compatible
with the HTTP protocol) cannot be seen as a disadvantage
compared to Tor.

All in all, this comparison shows that Shalon provides
significantly improved performance compared to the state of
the art anonymization network Tor. This performance gain is
especially significant regarding data throughput. The mainrea-
son is the reduced complexity of the protocol, less encryption
tiers and the use of a mature and performance tuned node
software (Squid). However, the most significant impact on
the performance is due to the lower number of de-/encryption
operations needed for processing data packets. Our tests show,
that the latter lowers the CPU load drastically.

Note that as both Shalon and Tor employ the cipher
TLS DHE RSA WITH AES 128 CBC SHA, the differences
in the results are not caused by the used cipher.

V. D ISCUSSION

In this section, we motivate our design choices and discuss
open issues in Shalon.

A. Single vs. Double Encryption

While Tor encrypts data on both the link layer and the circuit
layer, Shalon encrypts on the tunnel layer (equivalent to circuit
layer in Tor) alone. This leads to a significant performance
increase as showed by the measurements in the previous
section. The downside of this is that there is an additional
information leakage: a passive observer is able to recognize
the creation of a new anonymization tunnel as well as to link
the amount of transferred data to a specific connection. Even
though this is an additional information leakage compared to
Tor, we believe that this only eases existing attacks against
Shalon to still tolerable threshold and does not introduce
new attacks. Thus, we claim that this does not significantly
change Shalon’s threat model and provides anonymity in
the same situations as Tor does. However, this is subject to

further research. In case that new vulnerabilities are found,
countermeasures can be developed even without making use
of an additional encryption layer. E.g. a protocol on top of
the anonymization tunnel could be introduced which supports
multiplexing of various streams. From a property point of
view, this would make the approach similar to Tor, but would
not decrease the performance due to a twofold encryption:
Shalon would still encrypt on the tunnel layer only. Note that
this multiplexing would only protect streams starting fromthe
same node.

B. Packet Padding

Tor’s packet padding scheme achieves a constant packet
size by extending every cell to 512 Bytes. The purpose of
padding in Tor is twofold. First, the developers originally
wanted to introduce activemixing (delaying and batching)
in a future generation of the protocol; fixed size packets
are an unconditional requirement for mixing functionalities.
However, today it is unlikely that mixing will be introduced
in low-latency anonymizing networks like Tor. Even though
AN.ON supports mixing, it is not enabled by default. The
performance of these approaches is often below the acceptance
level of average users ([3], [4]), even without mixing. Second,
padding5 hinders several attacks, as discussed below.

With respect to a global attacker, padding obscures a
packet’s path through a network, which could be traced due to
its unique size. For similar reasons it also hampers end-to-end
traffic confirmation attacks. However, even if padding is used,
there is also other information available (like timing, data vol-
ume) that enables end-to-end traffic confirmation attack [26],
[31]. Moreover, it is a widely accepted fact that Tor does not
protect against an adversary who can observe both the first and
the last node in a path [26], [32], [33]. A global adversary is
also out of the scope of Tor’s attacker model.

Padding has also been suggested as a means to circumvent
fingerprinting attacks [25]. These attacks can be mounted by
a local adversary – one of the main protection goals of Tor’s
attacker model. Increased protection against this adversary,
from our point of view, provides an incentive to apply packet
padding. To the best of our knowledge, however, the necessity
of a constant packet size with respect to fingerprinting attacks
has so far not been demonstrated in practice. Moreover, as
fingerprinting attacks require a-priori knowledge about the
content in order to be successful, they are hardly possible
when dealing with unknown traffic patterns (e.g. secret data
which only needs to be transfered once) or on the data without
specific unique characteristics6 (e.g. VoIP, audio/video/bulk
data7).

Shalon does not apply padding mainly due to the following
reasons: first, as discussed above, the effectiveness of padding

5Please note that we do not refer do link padding but rather to packets’
padding.

6Please note that we are interested in detecting thecontentof the commu-
nication and not thetype of content.

7The effect of padding is especially marginal for bulk data, where only the
last packet is padded.



with respect to the mentioned attacks is questionable. Second,
in case of transferring many small messages/objects, packet
padding produces a lot of overhead, and, thus, leads to a
performance loss. Finally, it is not a trivial task to integrate
padding in Shalon. One possibility would be to use the padding
mechanism of TLS [20], where padding up to 255 bytes is
possible. Unfortunately most TLS implementations only sup-
port the minimal block padding required by a cipher. Another
possibility would be to introduce a proprietary protocol on
top of an anonymization tunnel. Due to the fact that a part of
the motivation of Shalon is the use of standardized protocols,
we want to avoid these measures as long there is no hard
evidence that padding is an effective countermeasure against
the aforementioned or new attacks.

C. Circuits vs. Tunnels

As discussed above, using one anonymization tunnel per
TCP connection leaks more information than tunneling various
streams through a circuit (see Section V-A). On the other hand,
it also leaks less information; an exit node in Tor can link all
streams from a single circuit to the same originator – if there is
no circuit, the connections can not be trivially linked. Third,
if a TCP connection between two servers breaks or looses
packets, only a single tunneled connection is affected. In Tor
that would cause a delay or connection drop on all the streams
involved in the circuit. Finally, in most cases Shalon requires
higher number of active file descriptors used by each node, as
compared to a system like Tor. To which extend this limits the
scalability and how this problem could be mitigated is subject
to future research.

To summarize, it would be nice to have the option of
multiplexing connections, but it is also possible to provide
a reasonable anonymization service without it.

D. Use of Standardized Protocols

The use of standard protocols and open architectures in
Shalon facilitates extensibility, interoperability, andportability.
All in all, Shalon achieves onion routing in a simple yet elegant
way, using only existing standardized protocols. Our proposal,
however, is not a silver bullet. Standardized protocols cause
flexibility restrictions since the anonymization protocols have
to follow predefined flows. Side effects which can arise due
to these restrictions must be carefully considered.

The advantage of standardized protocols also justifies the
following example: the Tor developers currently discuss how
to modify the Tor protocol to look more like a standard TLS-
connection in order to achieve a higher blocking resistance.
Shalon will obviously never suffer from similar concerns.

Altogether, we believe that the use of existing standard-
ized protocols in the area of anonymous communication is
an interesting idea. Its possibilities, implications, as well as
restrictions, need to be researched in a greater detail.

E. Choice of Underlying Protocol

The main reason for choosing HTTP as the basis for
Shalon is because of the following four properties of HTTP.

First, HTTP is one of the most important and well known
network protocols in the world. Therefore, a multitude of
different well tested libraries exist. These libraries canbe
used for the development of new clients. Second, HTTP can
easily be combined with TLS/SSL to protect the content of
a connection. Hence, different HTTP proxy implementations
with TLS/SSL support can be found, which could be employed
for the anonymization process in Shalon. Third, HTTP would
possibly allow to transfer directory information (status and
contact information about the nodes) in-band of the tunneling
protocol. Finally, HTTP allows proxy connections to other
servers with the help of the HTTP CONNECT method. This is
one of the most important requirements for multi hop tunnels.

A downside of HTTP is missing possibility of multiplexing
several CONNECT-requests over a single connection. How-
ever, to the best of our knowledge there is no common network
protocol which supports multiplexing and also possesses the
above mentioned properties.

Due to the described reasons we found HTTP to be best
choice to build Shalon on top of. Also, a positive side effect
with using HTTP and a corresponding proxy server is the
caching of HTTP objects. Instead of using the CONNECT
command of the HTTP protocol at the last node on path, the
user can also issue the GET request to retrieve HTTP objects.
In case that objects are already cached at the proxy server,
the requests can be served right away without fetching the
objects again. Therewith some attacks like the low cost traffic
analysis [27] could be made more difficult.

VI. FUTURE WORK

In this paper we did not discuss every aspect or solve every
problem regarding Shalon, and thus there are some issues that
we have left as future research.

First, some features like the padding of packets are nec-
essary to enable some degree of protection against global
attackers, but still, to the best of our knowledge, padding have
not been proven effective against a local attacker. Therefore
more research is required to demonstrate the implications of
padding against a local attacker.

Second, Shalon leaks more information than Tor. This raises
the question how this influences the provided anonymity of
Shalon. We claim that this does not change Shalon’s attacker
model, but this has not been fully proven yet.

Other aspects which need more research include, for ex-
ample, the provision of hidden services in Shalon (possibly
using the SOCKS protocol). Also, it is an open question how
to integrate multiplexing of connections or padding without
introducing proprietary protocols. Finally, having a variety of
clients may contribute towards easier profiling, which should
be considered in the clients’ designs.

VII. C ONCLUSIONS

In this paper we introduced Shalon – a simple, scalable, and
innovative low-latency anonymization technique purely based
on open standards. It makes use of out-of-the-box nested TLS
connections to achieve a simple and elegant version of onion



routing. We described how it achieves privacy and scalability
in open environments and evaluated its performance. The key
feature of Shalon is the buildup of anonymous communi-
cation on top of the HTTP/SSL protocol suite. Because of
the use of standardized protocols we were able to develop
two performance competitive implementations within a short
period of time. Due to the restrictions of the used standardized
protocol our approach renonces fixed packet sizes as well as
multiplexing of different streams through a single circuit.

The main objective of Shalon was to provide similar pro-
tection as Tor without the use of proprietary protocols. Dueto
its performance Shalon is well suitable for applications with
a high demand for bandwidth.

Because of its simplicity we envision the availability of
different independent implementations of Shalon.
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for anonymous and unobservable Internet access,” inProceedings of
Designing Privacy Enhancing Technologies: Workshop on Design Issues
in Anonymity and Unobservability, H. Federrath, Ed. Springer-Verlag,
LNCS 2009, July 2000, pp. 115–129.

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” inProceedings of the 13th USENIX Security
Symposium, 2004.
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