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Abstract. Anonymous communication with onions requires that a user appli-
cation determines the whole routing path of an onion. This scenario has certain
disadvantages, it might be dangerous in some situations, and it does not fit well
to the current layered architecture of dynamic communication networks.
We show that applying encoding based on universal re-encryption can solve many
of these problems by providing much flexibility – the onions can be created on-
the-fly or in advance by different parties.
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1 Introduction

Anonymous communication Providing anonymity of communication in public net-
works is one of the most serious problems in computer security. Many interesting ideas
have been presented so far, but still we are far away from solving the problem com-
pletely. Perhaps the most prominent proposals are Chaum’s DC-networks and MIX
networks [3, 2]. Later Rackoff and Simon [14] proposed a protocol in which each user
chooses a random route for his message and encrypts the route and the message within
a structure that resembles an onion. Due to a cryptographic encoding, the messages that
meet in the same node are indistinguishable when leaving this node. This effect is called
“mixing” [2] or a “conflict” [1]. So, the idea of anonymity with onions is that many mes-
sages travel around the network, meet each other and are recoded so that an adversary
gradually looses control over origin points of the messages. The idea of onions became
the basic component of Babel [12] and of Onion Routing [7]. (In fact, the name onion
was introduced in [7].) Recently, it has been used in the TOR protocol [4].

It may happen that some ingredients of the network might be controlled or moni-
tored by an adversary that tries to break anonymity. Many adversary models have been
considered - some of the models allow an adversary to perform only passive traffic
analysis based on information obtained from nodes and links under his control [1, 11].
Other models [12, 13] allow active attacks based on adding or delaying messages by an
adversary.
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Connection based protocols such as Onion Routing face a fundamental problem
that breaking one connection at a time effects traffic along exactly one path and there-
fore once a path disappears it may betray the path used. No fully satisfactory solution
addressing this problem has been found yet. In this paper we are concerned with pro-
tocol aimed for sending short messages for which security proofs with respect to traffic
analysis do exist.

As it was pointed in [1], anonymity level in an onion based protocol is strongly
correlated with the number of messages processed by the network and the probability of
a conflict/mixing of two or more messages in one node. It turns out that if an adversary
may control only a fraction of links, possibilities of traffic analysis are quite limited
[1, 11]. On the other hand, if an adversary controls the whole traffic, then the onions
provide a low level of anonymity in the case light traffic. Simply, the onions do not
meet frequently in this case, so the paths can be easily recovered by the adversary.

The regular onion encoding, as proposed in [14] and used in the later papers, has
another disadvantage: a user has to know the whole network in order to be able to choose
a truly random path. This assumption is unrealistic in dynamic networks. Moreover,
anonymity is in a serious danger if different parties participating in the protocol use
different sets of servers for intermediate nodes on the onion paths. We are aware of
certain attacks possible in this situation.

Papers [5, 10] introduce new encoding techniques to onions based on universal re-
encryption schemes [9]. The idea is that the components processed by the servers can be
re-encrypted without any knowledge of the contents and the recipient. However, even
then a protocol should be checked carefully - the scheme from [5] has been broken very
fast.

New results In our paper we explore new possibilities for design of anonymous com-
munication protocols based on onions encoded with universal re-encryption schemes
[10]. First we propose an off-line protocol that allows to prepare a route of a message
in advance – the onion routes (or their parts) are created by third parties as a kind of
general service. Then, if an application process has to send a message, and it does not
know the topology of the network, it can ask for the service mentioned. This solution is
aimed for the layered communication architectures. It is also useful in a LAN if there are
specialized servers responsible for anonymization messages sent to external locations.

In the second proposal (online merge onions), we show how to move responsibility
of determining onion paths to specialized servers that make decisions dynamically (for
instance based on the traffic load). It enables to adjust quickly to network conditions.
Another important feature of this construction is that it decreases overhead of a message
volume due to onion encapsulation.

2 Onions

2.1 Classical Onions

In this section we briefly recall construction of onions. We assume that a network con-
sists of n servers (called nodes); each of them has its own widely accessible public key
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and the corresponding secret key. Moreover, we assume that each server can communi-
cate directly with any other server.

A basic onion protocol looks as follows: in order to send a message m to node R,
node S chooses at random intermediate nodes J1, . . . , Jλ, and encodes m as an onion:

EncJ1
(EncJ2

(. . . (EncJλ
(EncR(m), R), Jλ) . . .), J3), J2)

(EncX stands for encryption with the public key of X). This onion is sent by S to J1.
Node J1 decrypts the message - the plaintext obtained consists of two parts: the second
part is J2, the first one is an onion with one layer peeled off:

EncJ2
(. . . (EncJλ

(EncR(M), R), Jλ) . . .), J3) .
Then J1 sends this onion to J2. Nodes J2, . . . , Jλ work similarly, the onion is gradually
“peeled off” until it is finally received by node R.

In fact, additional countermeasures are necessary in order to avoid some simple
attacks on the onion protocol (for details see for instance [1]):

– We have to use a probabilistic encryption scheme. Otherwise an adversary could
establish a permutation between the input and the output of a node by a simple
encryption of the whole output batch.

– The size of the onions should be fixed. A kind of padding can be used.

2.2 Universal Re-encryption

We recall universal re-encryption scheme from [9] based on ElGamal encryption. Let
G be a cyclic group of order p such that the discrete logarithm problem is hard for G.
Let g be a generator of G. Then a private key is a random x < p ; the corresponding
public key is y = gx.

Encryption: In order to encrypt a message m for Alice, Bob generates uniformly at
random values k0 and k1. Then, the following quadruple is a ciphertext of m:

(α0, β0; α1, β1) :=
(

m · yk0 , gk0 ; yk1 , gk1
)

In fact, (α0, β0), and (α1, β1) are ElGamal ciphertexts of, respectively, m and 1.

Decryption: Alice computes m0 = α0

βx
0

and m1 = α1

βx
1

, and accepts a message m = m0 ,
if and only if m1 = 1.

As for the ElGamal scheme, this is a probabilistic cryptosystem – if we encrypt
the same message twice, we get two different ciphertexts. Moreover, given two cipher-
texts, it is impossible to say whether they were encrypted under the same key, provided
that the private key is unknown. This property is called key-privacy (see [9]).

ElGamal cryptosystem has another important feature. We can re-encrypt a cipher-
text (α, β) so that any relation between the old and the new ciphertext (α′, β′) is hidden
for the observer that has no access to the private key. For the scheme presented above
even a public key is not necessary – for this reason, it is called universal re-encryption,
or URE for short. The re-encryption procedure looks as follows: First, random values
k′
0 and k′

1 are chosen. Then a re-encrypted version of a ciphertext (α0, β0, α1, β1) is
obtained as:

(

α0 · α
k′

0

1 , β0 · β
k′

0

1 ; α
k′

1

1 , β
k′

1

1

)

.
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Let UREx(m) stand for a ciphertext of m obtained with universal re-encryption scheme,
where x is the private decryption key.

2.3 Onions Based on Universal Re-encryption

In [10] the following method of encoding a message m going from A to B = Jλ+1

through path J1, . . . , Jλ is presented. Let (yi, xi) be the pair of public and private key of
Ji for i ≤ λ+1. An URE-onion consists of ciphertexts UREx1

(J1), UREx1+x2
(J2), . . . ,

UREx1+...+xλ
(Jλ) and UREx1+...+xλ+1

(m). These ciphertexts are obtained with the
public keys, respectively, y1, y1 ·y2, . . . , y1 · . . . ·yλ+1. After creating, these ciphertexts
are permuted at random.

Processing an URE-onion consists of two phases: a partial decryption and a re-
encryption phase. For instance, J1 performs the following steps: each URE-ciphertext
(α0, β0, α1, β1) is replaced during partial decryption by

(α0/βx1

0 , β0, α1/βx0

1 , β1) .

It is easy to see that if (α0, β0, α1, β1) is UREx1+...+xi
(w), then after the partial de-

scription we get UREx2+...+xi
(w). One of the ciphertexts obtained is in fact of the form

(J2, β0, 1, β1) and indicates the next destination. Then all ciphertexts (including this of
J2) are re-encrypted and permuted at random before being sent to J2.

It is easy to see that the encoding described above guarantees that only processing
along the path chosen by A guarantees delivery of the URE-onion. Any malicious pro-
cessing (re-direction, detours, changing the contents) can be detected with high proba-
bility and the malicious server can be identified.

3 Features and Protocols Based on URE-onions

In this section we present several important features of URE-onions that can be used in
design of anonymity protocols.

3.1 Basic Features

Plaintext insertion after encryption Universal re-encryption inherits the remarkable
property of ElGamal encryption scheme: the plaintext may be determined after essen-
tial part of encryption computation. Indeed, first we prepare a ciphertext of 1. It has
the form

(

1 · yk0 , gk0 ; yk1 , gk1

)

. Then we can convert it to a ciphertext of m simply by
multiplying the first component by m.

Navigators An onion encoding a special void message −, with a starting point A and
destination B can be used to encode only a “path”. If a node obtains after decoding an
onion a message “−”, it knows that the onion has reached the end of its path. Such an
onion will be called a navigator from A to B and denoted Nav[A, B].

Navigators are particularly handy for URE-onions: a so-called URE-navigator con-
sists of two parts: the first one is a navigator, say Nav[A, B], the second part is an
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URE-ciphertext obtained with some public key (not necessarily the key of the destina-
tion node B) encoding some additional information. Immediately after creation of an
URE-navigator the ciphertext encodes 1. Afterwards, when the URE-navigator is used
and re-coded, we can replace 1 with an arbitrary message m, as described above. We
use notation Nav[A, B] UREx(m) for such a URE-navigator, where x is the decryption
key of the ciphertext of m.

Let us remark that for traditional onions we can add external layers to a naviga-
tor Nav[A, B]: afterwards the path of the onion would lead from a chosen C to A,
and then follow the route defined by Nav[A, B]. For standard onion constructions such
a modification is possible even, if we get Nav[A, B] from a third party and we cannot
disassemble it. For URE-onions such a manipulation is impossible.

3.2 Plain Off-line Scheme

In order to send anonymously a message m from S to R we can simply send an URE-
navigator Nav[S, R] URExR

(m). Subsequent servers from the path “peel off” the nav-
igator and re-encrypt message m. Node R can decrypt the ciphertext and retrieve m.

Such a URE-navigator can be called an off-line onion, since an empty navigator can
be created in advance and as soon as a message m to be sent is ready at application level,
an URE-navigator encoding m is created by inserting m into the URE-ciphertext, as
described above, and by re-encrypting all ciphertexts of the URE-navigator immediately
afterwards (in order to hide m and the navigator used from the party that constructed
the navigator).

Replacement Attack Assume that an active adversary controls (actively) the beginning
and the end of a path encoded in the navigator. At the beginning of the path, he replaces
the URE-ciphertext of the off-line onion by an URE-ciphertext of a random string r
encrypted with his own key. Of course, he can trace such a modified onion while it
moves through the network. Simply, he decrypts all URE-ciphertexts of the onions with
his decryption key – re-encryption does not prevent retrieving r. Once the message
arrives at the end of the path, the adversary replaces the URE-ciphertext of r back by
the original one and re-encrypts it. The destination node obtains a proper ciphertext and
has no idea that the connection was under attack.

One can prevent this attack: instead of URExR
(m) the sender transmits cipher-

text UREx1+...+xλ
(m), where x1, . . . , xλ are private keys of the subsequent nodes on

the path from S to R. Now, each intermediate node has to decrypt partially (and re-
encrypt) the URE-ciphertext obtained. It is easy to see that after this modification the at-
tack described above fails - the URE-ciphertext must be processed by all intermediate
servers indicated in the navigator. So the destination node would retrieve a different
message. Also due to the partial decryption, the adversary would not detect its own
message inserted at the beginning of the path. Indeed, it is difficult to detect any con-
nection between the ciphertexts of the form (m · (yz)k, gk) and (m · zk′

, gk′

) knowing
the public keys y, z only.

Advantages of the scheme The main point is that the scheme separates encoding the mes-
sage from encoding the route. It may be useful in many ways:
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1. The onions can be prepared in advance.
2. If a sender does not know topology of the network or its knowledge is not up to

date, it is better to use navigators offered by trusted servers. In this way we can del-
egate the chores of creating the routes to a special well protected and administered
server. This is quite advantageous since if some users choose intermediate servers
in a different way than the rest of the world, then traffic analysis might become
easy. Note that all results on traffic analysis [14, 1, 11] require that the intermediate
nodes are chosen by all users with the same probability distribution.

3. An empty off-line onion (i. e. one encoding the message 1) can be delivered as a reg-
ular message to any node. Then this node can use it as anonymous return-address
and send it back without knowing the address of the request source. Of course, such
an anonymous reply scheme is possible also with the traditional onions [1], how-
ever the present solution does not require the intermediate servers to memorize any
values.

The main disadvantage of the scheme is that the server preparing a navigator has
to know all pairs (source, destination) used (of course, the user can fetch much more
navigators that it uses and in this way hide a particular connection). Hence the solution
might be suited for a company, but it is not aimed for a general use.

3.3 Merging Navigators

Using plain off-line onions becomes dangerous, when navigators were created by a server
cooperating with an adversary. Even if a direct identification of a navigator in the traf-
fic transmitted is impossible, traffic analysis might provide valuable information. This
would be facilitated by the fact that the adversary might know all random paths encoded
in the navigators generated by a certain server.

In order to avoid such a situation we propose merge onions (MO for short); our
protocol shows how to combine navigators from different sources into an onion with
a longer path. If the navigators come from different and non-cooperating sources, the
resulting onion cannot be traced by an adversary collaborating with only some of these
sources.

Creating MO For the sake of simplicity we describe how to compose a MO from two
parts (Fig. 1 presents the case in which 4 navigators are used). A sender S wishing to
transmit a message m to destination R executes the following steps:

– it chooses two navigators at hand, say Nav[J1, Jδ], Nav[L1, Lδ] .
– it composes a merge-onion containing the following components:

Nav[J1, Jδ ], UREx(L1), UREx(Nav[L1, Lδ]), UREx+y(R), UREx+y+xR
(m)

where, respectively, x and y are the sums of the description keys related to the nav-
igators Nav[J1, Jδ ], Nav[L1, Lδ], and xR is the decryption key of R.

The way of processing such an onion is clear: first it is sent to J1. Then it is pro-
cessed according to the navigator Nav[J1, Jδ ]; at each step all remaining components
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Fig. 1. Composing a merge-onion path from navigators N1, N2, N3, N4

are partially decrypted and re-encrypted. This lasts until we reach the end of the first
navigator. Then the second component reveals L1 and the last three components are
sent to L1. Then the message follows the route encoded by the navigator Nav[L1, Lδ]
until it reaches Lδ. Then R is retrieved and the last component (which is a ciphertext of
m with the decryption key xR) is sent to R.

For the protocol described, the adversary can see what is the number of remaining
navigators to be used until the end of the path. In order to hide this information we may
introduce a simple modification of the protocol. The server, which retrieves the next
navigator to be used, does not remove its ciphertext, but re-encrypts it and moves behind
the last ciphertext of a navigator.

Advantages of Merge Onions The size of MO grows moderately with the number of
navigators used. Each navigator (except one) is represented by a single URE-ciphertext
of the navigator and a URE-ciphertext of the starting node of the next navigator.

3.4 Online Merge Onions

Online Merge Onion scheme (OMO), in contrast to Merge Onion scheme, demands
from the sender knowledge of a few stable servers in the network that remain working
all the time. Navigators are chosen online by the servers selected by the sender. We
can think about OMO as a scheme in which sender “asks” some servers to provide
anonymity of his message by sending it along routes with many conflicts.

Creating OMO A sender S wishing to transmit a message m to R executes the follow-
ing steps:

– it chooses k servers A1, A2, ..., Ak at random (from a common public list), and
creates a navigator N = Nav[A1, ..., Ak] encoding the path A1, ..., Ak ;

– it inserts a message “to R” into N ,
– it creates URExR

(m), where xR is the decryption key of R,
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– it chooses an URE-navigator U from a set of available navigators and inserts a
message: “to A1” into it,

– finally, it sends a message:

U(to A1), URExA1
(Nav[A1, ..., Ak](to R)), URExR

(m)

to the starting node of the navigator U .

Processing OMO There are two cases. If a server D receiving the onion is not on
the list (A1, ..., Ak), then it processes it according to the navigator standing in front of
the message and re-encrypts the remaining parts. If D = Ai, then

– it decrypts URExAi
(Nav[Ai, Ai+1, ..., Ak]), so it gets Nav[Ai+1, ..., Ak]) and the mes-

sage: “to Ai+1”,
– it encrypts the navigator obtained with the public key of Ai+1, that is, it gets

URExAi+1
(Nav[Ai+1, ..., Ak]),

– it chooses an URE-navigators M and inserts the message “to Ai+1” into it.
– it re-encrypts the last part of the message, which is URExR

(m),
– it sends concatenation of these parts:

M(“to Ai+1”), UREAi+1
(Nav[Ai+1, ..., Ak]), URExB

(m)

to the starting node of the navigator M .

Protocol features

Adapting onion length to network load Servers can dynamically adopt their behavior
to message traffic independently of the senders. It is often believed that using dummy
messages to increase the traffic to the maximal amount and keeping lengths of the onion
paths fixed is a proper answer to network dynamics. However, proving resilience to
traffic analysis when a fraction of servers and lines is malicious depends on how often
the onions are processed through honest servers and links[11]. So dummies do not help
that much, as one may hope at the first look.

The protocol OMO gives the freedom to adopt the lengths of the paths on-the-fly.
So, as shown on picture below, server A can assign to packet m arriving at time t not
only a different path in a navigator, but also a different path length. For instance, on the
figure below a packet corresponding to the same message m, but arriving at time, say
t′, will reach server B in 5 steps instead of 11. Moreover, due to re-encryption, those
two packets look completely different.

Traffic reduction If a message m to be transmitted is small, then the volume of routing
information contained in an onion containing m might be high compared to the volume
of m. This disadvantage can be relaxed somewhat through online merge onions: while
the total length of the path along which a message is processed is long (preventing a
traffic analysis), all the time the message transmitted contains only two (much shorter)
navigators.
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Fig. 2. Adjusting the path length by OMO

Enforcing conflicts and constructing navigators The way of choosing the mix servers
is the following. The procedure requires a global list A of mix servers, known to every
protocol participant. When a server Ai has to choose a navigator leading to a server
Ai+1, it uses an approximation of the number of onions in the network to determine
the length of the navigator, say t. The number t can be found through observation of
the traffic passing through in the preceding moments. Assume that a mix can process at
most z onions at once. Then Ai takes s such that z = Θ(t/s + log s/ log log s). The
mix servers for the navigator constructed by Ai are chosen uniformly at random from
the prefix of list A of length s. Standard “bin and balls” arguments may be applied here
to show that a large number of conflicts at mix servers would be generated in this way.
We skip a detailed analysis here.

Conclusions

We have shown that universal re-encryption provides many new interesting features:

– possibility to prepare onions in advance,
– adaptiveness to network traffic,
– size reduction of the auxiliary parts of onion messages,
– possibility to process the onions through arbitrary chosen mixes,
– implementing onions in a layered architecture of a distributed, dynamic system.

Let us compare the parameters used by the schemes. Necessary path length λ for
each of the schemes depends on assumptions about adversary model. If an adversary
can corrupt only a constant fraction of navigator sources, essentially the same analysis
applies as in the case of [11]. So we consider the same (global) path length λ for 3
schemes considered below.
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Classical Onions Merge Onions Online Merge Onions
message size O(λ+|m|) O(λ+|m|) O(k+λ/k+|m|)

end-user encoding cost O(enc(λ|m|)) O(k·enc(λ/k)+enc(|m|)) O(enc(λ/k+|m|))

preprocessing possible no yes partially

processing cost at a server O(enc(λ+|m|)) O(enc(λ+|m|)) O(enc(λ/k+|m|))

messages tracing* easy easy hard

repetitive attack** easy easy harder

traffic change – moderate increase decrease

required knowledge of network

topology

full none limited

traffic adaptiveness no no yes

* at low traffic, by a passive adversary who controls all links

** at any traffic, by an active adversary
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