
The Strong Eternity Service

Tonda Beneš

Faculty of Mathematics and Physics, Charles University Prague

Abstract. Strong Eternity Service is a safe and very reliable storage for
data of high importance. We show how to establish persistent pseudonyms
in a totally anonymous environment and how to create a unique fully
distributed name-space allowing both computer-efficient and human-
acceptable access. We also present a way how to retrieve information
from such data storage. We adapt the notion of the mix-network so that
it can provide symmetric anonymity to both the client and the server.
Finally we propose a system of after-the-act payments that can support
operation of the Service without compromising anonymity.

1 Introduction

We completely re-think the structure of the system called ‘Eternity Service’
[1] introduced in 1996 by Ross Anderson. We introduce cryptography and other
techniques to strengthen the resistance of the system. To distinguish our proposal
from the original one and from other clones [2, 3] we name it ‘Strong Eternity
Service’1. We summarise our most interesting ideas about construction of the
Service here.

2 Threat Model

We allow a would-be attacker to employ any means and methods of attack even
if they violate ethics (bribery, extortion), human rights (physical violence) or
require large resources (human resources, money, technology, skills, time). The
attacker can abuse various institutions to create political, legal, social or religious
pressure against the owner of the data or system maintainers. We assume that a
determined and skilled attacker can gain access to data of his interest virtually
to the same extent as the authorised user.

We classify possible threats into four categories:
Blunt influences do not understand the content of managed data nor they

can interpret internal states of the system. Their behaviour is stochastic. They
can occasionally influence large parts of the system at once. Vandals, thieves,
technical faults, natural disasters, wars, epidemics etc. belong to this category.

Amateur opponent understands the structure and the current state of the
assaulted system. He can interpret stored information. His actions are primarily

1 In further text we will use the abbreviation ‘Service’ to refer to our system.

targeted against stored data or the system itself or its components. Especially
dangerous can be long-term simultaneous influence of many such attackers on
different parts of the system. Various types of hackers, crackers, disloyal employ-
ees of system maintainers, small interest groups etc. belong in this category.

Professional opponents have roughly the same characteristic as the amateur
ones. Their most dangerous feature is the ability to concentrate large resources
to a single task. Large companies, intelligence services, armies and similar or-
ganisations are the most usual threats belonging here.

The goals of authorities are roughly the same as in the case of both amateur
and professional opponents. Unlike them, authorities must not act latently. Using
generally obligatory orders they can influence large parts of the system without
even knowing who operates which server or where the server is physically located.
This category consists of courts, governments, political or religious leaders etc.

3 Goals and Means

The goal of our work was to propose a system with the following features:

1. It is very important to ensure highest possible availability.
2. The system should offer a high degree of reliability
3. It has to provide high information survivability, especially in the event of

huge damage.
4. The system should protect stored information at least from all the threats

listed in Sect. 2.
5. The degree of achieved protection should depend on client requirements.

In the rest of this section we discuss various features of the proposed system
that ensure the above goals and means how these qualities are achieved.

Unlimited Availability The requested high data availability means that the sys-
tem itself has to be sufficiently available. However we can not prevent any op-
ponent from attempting to prevent clients from accessing their data. All we can
do here is to make these attempts ineffective and pricy.

Our system should have as many mutually equivalent entry points as possi-
ble. Communication between nodes should prevent selective attacks. Another
protection arises from the use of a widely employed communication platform
(that can not be blocked completely) and from the fact that system uses no
‘magic numbers’ such as well-known ports, addresses etc.

High survivability The stored data should remain available despite the extent of
the damage that the system suffers in the long run. System should be resistant
both to long-term influence by active opponents and to temporary or permanent
loss of its large parts.

Extendibility The system size is one of the best defensive mechanisms available.
Provisions allowing fast and simple spread of the Service are very important.
At the same time, all parts of the system should be mutually independent. In
particular we have to avoid any registration or certification process.

Fully distributed design Any centralised part represents a very attractive target
for a focused attack. Our system should avoid any centralised parts at almost
any price. If the system uses services from external providers it is necessary that
sufficiently many alternative providers are available.

Forward secrecy Strict control of processing residues is crucial. If no history is
available, an attacker has to analyse the system on-the-fly. Any component that
falls under the opponent’s control does not bring any useful information to him.

Good habits It is important that Service operation does not cause any inconve-
nience to the surrounding environment. Individual parts of our system should
co-exist smoothly with elements of network infrastructure.

Other features Other features relate to techniques used to implement the Service
components rather that to the behaviour of the final system.

4 Service Structure and Features

The Service is a fully distributed system consisting of a (preferably) great number
of servers of several types. These servers are spread around the world and their
physical location is kept secret. The Service does not define any identity. The
system is fully anonymous, there is no notion such as ‘owner’ or ‘authorised user’.
Anybody is authorised to perform all available operations, nobody’s identity is
queried. This is why we use the term ‘client’ rather than ‘user’.

The client stores his information in several redundant copies. The number
of copies determines the achieved level of security. The client should select the
servers actually holding the copies at random. He should not keep any record of
which servers he contacted.

The system is vertically divided into two layers. The bottom layer is a
mission independent anonymous routing mechanism. The upper layer is made up
of servers that perform services for the clients and carry the whole functionality
of the Service. This design allows us to share the lower layer with other systems.

The key features of the Service are achieved through a careful design of
individual servers. The description of individual servers is far beyond the scope
of this text. We outline global behaviour of the system here.

4.1 Server Types

We use these types of servers:

– Mix Server (MX)—realises all functions connected with message transport,
i.e. receives messages to be transported, divides them into transferred data-
grams, transports these datagrams and re-collects the original messages at
the recipient’s side. Mix servers provide support for addressing.

– Eternity Server (ES)—carries out the functions of the Service provided to
clients. ES receives and stores a client’s data, and searches and retrieves the
data in accordance with the client’s requirements.

– Bank Server (BS)—supports operations connected with the system of pay-
ments from clients to servers for the provided services. These servers provide
an important interface to banking institutions supporting the Service.

– Certificate Server (CS)—lower-level transport mechanism makes use of sev-
eral types of certificates used to properly address the counterparts of a trans-
action and to construct their addresses. CS concentrates such certificates and
makes them publicly available.

– Client Module (CM)—is not a regular server. Rather than that, it serves to
the client as an interface allowing him to properly contact the Service, issue
requests and receive responses.

– Eternity Proxy Server (EPX)—is an optional part of the Service that further
makes it easier to contact the Service. It can provide an easy-to-use web based
interface, and it can allow to clients with restricted access to the Internet
(dial-up, e-mail-only etc.) to use the Service.

Note that all servers of one type are functionally fully equivalent, i.e. it is
insignificant which particular server the client contacts. There is no hierarchy
between servers of one type, the system does not use any notion of ‘neighbour-
hood’ or ‘distance’. Any server can communicate with any server of his choice,
all co-operating parties should be selected at random.

If anybody wishes to join the Service, he simply sets-up a new server, issues
the appropriate certificates to allow others to contact him and starts operating
without any notification. Similarly, revocation of certificates makes the server
unreachable and it can disappear quietly.

4.2 Provided Functions

A proper selection of performed operations is one of the most important pro-
tective measures the Service uses. In the view of our considerations in Sect. 2 we
excluded all operations allowing modification or deletion of the data:

Store Request Client contacts an ES selected at random and requests it to
store data for specified period. If server complies, client supplies the data and a
keyword-list associated with the data, which characterises it, and pre-pays stor-
age fees. Server stores the data, upon request passes it to anybody requesting
it and after the agreed period removes the data automatically. The storage fees
are transferred to the server after this period.

Find Request Client supplies a description of the requested data. The contacted
server first of all searches its own data structures and subsequently forwards the
request to several colleagues selected at random. Depth of search is controlled as
well as the total size. The server subsequently summarises all obtained responses
and passes them to the requestor. Each record about matching data contains a
unique identification of the data—ICK (internal checksum).

Data Request Client identifies the requested data by its corresponding ICK.
Servers locate the data by a recursive search in the same manner as in the case
of Find Request processing. When the first copy of the requested data is located,
the server sends it to requestor and stops any further processing of the request.

4.3 Message Transfer

The Service message transport mechanism (ERM) is based on the idea of a Mix
network [6, 4, 9, 10, 5]. We do not introduce any metrics and thus all nodes
are equally distant. Our ERM provides mutual anonymity to both sender and
recipient. Anybody wishing to communicate using ERM has to issue a special
data structure called Access Certificate (AC). The AC describes the path of
message transfer across several nodes—Mixes—and finally to the issuer. The
sender first gains recipient’s AC, and adds to the path description contained in
the AC several additional layers.2

Messages then consist of three parts. The first one is an path description that
describes the path of the message transfer from the sender to the recipient, the
second one is a route pack that prevents some attacks against message transfer
and the last one it the data part, that contains the useful transferred data.

Access Certificate An Access Certificate of server A is of the form3:

〈〈An/2+1|An/2|[Sn/2|‖KpblMn/2+1
‖|An/2−1| . . . |A1|[S1|‖KpblM2

‖|o
oA0|[last|‖KpblM1

‖|Srv Id;CrtId]KpblM0
]KpblM1

. . .]KpblMn/2
;o

oKpblA;SrvInfo;RevInfo;SrvData〉〉KprvsA

Here Kpbli is a public key of Mix i, Ai is its address and Si is the symmetric
key which the Mix i will use to encrypt the client data part before sending the
message to the next node. KpblA is a public key of the target application-level
server A used for encryption. Srv Id is an identification of the target server and
the Crt Id is server-wide identification of the certificate because the server can
issue several certificates simultaneously. The fields SrvInfo, RevInfo and SrvData
contains basic information about target server, a revocation mechanism data and
an additional application-dependant data about the target server. ERM does not
interpret these structures, they are used by application-level servers.

2 The sender appends his own AC to the message to allow the recipient to respond.
3 Kpbl and Kprv constitute a pair of corresponding public and private keys, S is a

symmetric key. | denotes concatenation , ; simply separates two independent parts
of a message. ‖m‖ denotes application of a message digest function to the message

m. [m]kpbl denotes sealing with a public key kpbl, i.e. operation {k}kpbl|{m}k where k
is a randomly generated symmetric session key. {m}k denotes encryption of message

m with key k. We use the o sign to indicate line break. 〈〈m〉〉Kprvs denotes message m
with appended signature with key Kprvs.

The whole certificate is digitally signed and the resulting sign Sign is ap-
pended to its end. For a description of possible signature creation without com-
promising the security of the protocol see 4.7.

Operation of ERM Each Mix performs uniformly despite its position along
the path these steps:

1. The Mix strips its own address from the path description.
2. Subsequently it decrypts the path description part of the datagram. Together

with the address of the next Mix it obtains a symmetric key and a digest of
the previous Mix public key.

3. The Mix checks that the obtained digest corresponds to the public key re-
ceived within the route pack.

4. Using the public key from the route pack Mix verifies the integrity of the
first part of the route pack.

5. The server checks whether this particular datagram (identified by Chain
record in the route pack was not recently transferred.

6. If none of the tests performed in steps 3, 4, and 5 fails, Mix continues with
the following steps. Otherwise it discards the datagram immediately.

7. If the server detects the inner-most layer of path description it performs
steps necessary to complete the corresponding application-level message and
to pass the message to an appropriate application-level server. Otherwise
server continues with the following steps.

8. The Mix uses the symmetric key obtained in the step 7 to encrypt the client
data part of the datagram.

9. It also pads the first part of the datagram to the original length.
10. The Mix replaces the original public key in the route pack with its own and

re-signs the first part of the route pack with the corresponding private key.
11. The Mix sends the datagram to the next node.
12. The Mix destroys all the data associated with the transaction.

The recipient knows all the symmetric keys used to encrypt the message
during the second part of the path and thus can remove the encryption. Sender
has to decrypt (in reverse order) the message before sending it with all the
symmetric keys used within the first part of the path.

The Mix scrambles the order of incoming and outgoing messages. Additional
protection is provided by the creation of padding traffic (see later).

Here is a message just prepared by the sender4:

path description︷ ︸︸ ︷
An|[Sn|‖KpblMn+1

‖|An−1|[Sn−1|‖KpblMn
‖| . . . |A0|[�|‖KpblM1

‖|SrvId;CrtIdo
o]KpblM0

. . .]KpblMn−1
]KpblMn

|o
4 {m}−1

k denotes decryption of message m with key k.

o〈〈CutInfo;Chain;Time〉〉KprvMn+1
|KpblMn+1︸ ︷︷ ︸

route pack

|{{. . . {{data}KpblB
}−1

Sn/2+1
. . . }

−1

Sn−1

}
−1

Sn︸ ︷︷ ︸
client data

The same message after processing at first Mix looks as follows:

An−1|[Sn−1|‖KpblMn
‖| . . . |A0|[�|‖KpblM1

‖|SrvId;CrtId]KpblM0
. . .]KpblMn−1

|o
opadd|〈〈CutInfo;Chain;Time〉〉KprvMn

|KpblMn
|{. . . {{data}KpblB

}−1

Sn/2+1
. . . }

−1

Sn−1

Each block Ai contains following information:

– protocol number,
– used encryption algorithm and relevant parameters,
– identification of the used public key (a Mix could issue several MC-s).

Thus each address block has an internal structure that will look as follows:

Addr|Prot Num|Alg Num|Params|Key Id|Misc.

To make the ERM more robust, we use a multiple Mix at each point of the path.
There is one level of path description part of the message:5.

k∨
j=1

(Ai+1
(j))|[Si+1| . . .](KpblMi+1

(1)
,...KpblMi+1

(k)
)

All necessary information about Mixes comes from their Mix Certificates. The
Mix Certificates contain any information about Mixes used to construct the path
description. The necessary certificates are obtained from Certificate Server.

Padding Traffic When only a few real messages are available so that real
ones can not be mixed with others the server creates an appropriate number of
padding messages to cover real traffic among them.

All outbound messages are placed to a structure called the Send Pool. A
special loop called Sender sends the prepared messages.

An instance of the padding algorithm described bellow has to be performed
with each inbound message. The variable srv.Stratum has to be created with
each instance of the algorithm. Also, each padding message contains the field
msg.Stratum. The Max Stratum and Padd Num are server-wide parameters.

Let an Empty Send Pool position be a position within the Send pool currently
containing no message. A Free Send Pool position is either the Empty Send Pool
position or a position containing a padding message prepared to be sent.

5
∨k

i=1
(mi) means k consecutive repetitions of message mi where each message has

the same internal structure, i.e. m1;m1; . . . ;mk.

1. If the incoming message Msg is a real one, set srv.Stratum = Max Stratum;
otherwise set srv.Stratum = min(msg.Stratum − 1, Max Stratum).

2. If the Msg is a real message to be forwarded to another node, then place it
into a Free Send Pool position selected at random.

3. Create Pad Num of new padding messages so that msg.Stratum = srv.Stratum
for each message. The messages are placed at randomly selected Empty Send
Pool positions. Extra messages are discarded.

4. If the Msg is a padding message or a real message that will not be forwarded
elsewhere, create yet another padding message and place it at a random
Empty Send Pool position if available.

5. If the Msg is a padding message then discard it.

The Sender loop goes round through the Send Pool in a round-robin manner,
sends the message if any, and marks the corresponding position as empty.

4.4 Data Deposition and Payments for Provided Services

The client’s data is stored so that nobody, including the operators of the servers
and clients, can locate it. Missing support of deletion and modification further
strengthens protection against direct attacks against any specific piece of data.

The location of each Eternity Server is protected by ERM. The client selects
the server where he deposits his data at random. The required level of protection
determines how many redundant copies the client stores.

The actual deposition is done in four steps:

1. The client selects a server and issues a request where he specifies the size of
data, the requested deposition time and a set of Authorisations (see later).

2. The server decides whether it wishes to accept and store the data. If so, it
allocates the necessary space and responds to the client. It also indicates the
price of storage and the bank that will handle the payment.

3. If client complies with the price he transfers money to the bank’s Pursue
Account. Within some limited time the client has to submit the data to the
server along with a proof that he has actually paid the requested amount.

4. The server verifies the proof and if everything is O.K., it stores the data.

From this moment the data is available to anybody requesting it. After the
agreed period of data storage has expired the server deletes it automatically.

The server receives fees for provided storage from Pursue Account after it
proves that it still holds the data. To prevent the server from “borrowing” the
data elsewhere or from constructing the proof using some reduced form of the
data and possibly other copies, each redundant copy UQC is of the form:

UQC = kpbl|{nonce|data}kprv

The proof prf that the server still holds the data is constructed as follows:

prf = ‖C Auth|UQC‖;S Auth

Here the C Auth is a random string constructed by the data creator. It prevents
the server from pre-computing the proof. The next part of the proof, the S Auth,
is constructed by the server and prevents the data creator from stealing the fees.
Successful recipient of fees has to construct both parts of the proof.

The bank which processes the money transfer checks the correctness of the
resulting prf.

Bank credits money received from a payer to the common Pursue Account
and stores only a collection of strings which indicates when and under which
proof it should transfer the same sum to a requester. First successful proof
constructor takes the whole fee. There is no indication who it should be nor any
connection to any piece of data. There is no way to match incoming a payment
with the corresponding outgoing one.

Let C be a client, E be an Eternity Server and let B be a bank. For sake of
simplicity we assume only one payment that will be carried out after the storage
period has expired. The whole protocol looks as follows6:

1. C−→E : Time;Size;T id;
n∨

i=1

(

C Authi︷ ︸︸ ︷
{T id|Probe|seedi|dgsti}ksi

)

2. E−→C :

{
Refuse

T id;S id;index;(Bank;Value;Bound;Exp);{S id|S Auth}KpblB

3. C−→B : [Value|Bound|Exp]KpblB
;

n∨
i=1

([C Authi]KpblB
);[S Auth]KpblB

;o

o
n∨

i=1

([dgsti]KpblB
;[seedi]KpblB

);S id;T id

4. B−→C : 〈Value|Bound|Exp|T id|S id|B id〉KprvsB
;o

n∨
i=1

(〈c authi|T id|S id|B id〉KprvsB
);〈SA|T id|S id|B id〉KprvsB

5. C−→E : 〈Value|Bound|Exp|T id|S id|B id〉KprvsB
;

∨
i 6=index

(ksi);UQC;o

o
n∨

i=1

(〈c authi|T id|S id|B id〉KprvsB
);〈SA|T id|S id|B id〉KprvsB

6. E−→B : B id;S id2

7. B−→E : B id;S id2;
{∨n

i=1(seedi)
Err indication

8. E−→B : B id;S id2;
n∨

i=1

(dgsti)

6 〈m〉kprvs denotes digital signature of message m with private signing key kprvs—note
that it is the signature itself, it does not include the signed data.

9. B−→E : S id2;
{

Success
Fault

Here Time denotes the requested period of data deposition, Size stands for
the size of the stored data. Value is the price of storage. Bound characterises
the time when server can request fees and Exp is the time when the client can
request fee refund. S id, T id, B id are identifications assigned to the transaction
by the server, the client and the bank respectively. KpblB is the public key of
the bank involved while KprvsB is the signing key of the bank.

When we allow payment reimbursement we have to preclude client from
constructing the pair seed;proof so that the server will be unable to obtain fees.
This is why we use n pairs simultaneously. The server can check n − 1 pairs
before it starts to provide service. The missing pair makes the server to keep the
whole data. Note that the server in step 1 obtains all pairs enciphered and in the
following step it selects at random the blind key, i.e. the number (here denoted
by index) of the key, which the client does not provide to the server in step 5.

4.5 Distributed Name-space and Data Retrieval

When a client stores some information in the Service, he associates a list of
keywords with it. These keywords should characterise the information and enable
people to easily retrieve the information later. The server upon receiving the data
computes a value called internal checksum (ICK):

ICK = ‖data‖

Because ICK is the result of a hash function simply applied to the original data
(not the UQC!), internal checksums of all redundant data copies representing
the same information are exactly the same. The server associates the ICK with
data as another keyword.

This way we achieve a unique (with high probability) name-space without
any need of a central policy agent. Furthermore, this model is quite resistant to
attackers who try to substitute different information.

Client who wishes to retrieve some information has to perform these steps:

1. By issuing (several) Find requests, he obtains the ICK of the requested
information.

2. Having the ICK, the client can issue a Data Request to obtain the requested
piece of information.

To manage the first step, the client has to put together a characteristic of
the required information. He sends the characteristic to an arbitrary Eternity
Server. The characteristic could be a regular expression or a similar tool allowing
searching the name-space (i.e. keyword-lists). Each server that obtains such a
request follows this algorithm:

1. The server checks own data structures and puts together a list of keyword-
lists best matching the obtained characteristic.

2. It updates the depth of the search according to depth = min(depth −
1,max depth)

3. If depth > 0, it selects at random several other servers and submits the
request to them.

4. It collects the responses, removes the redundant ones and sends the result
back to the immediate requester.

Each record in the resulting list contains ICK. The client checks the result if
there is the desired information listed. If so, he has its ICK and can issue a Data
Request, otherwise he has to re-arrange his request and repeat the query.

After reception of a Data Request, Eternity Servers perform similarly shaped
search as in the case of Find Request. When a server locates requested data either
within its own data structures or in a response from another server, it passes
the data to the requester and stops processing the request. This way, the Service
delivers at most one copy of the requested data to client.

4.6 Protection of Stored Data

The stored data is uniquely identified to clients by an ICK. Both Find Request
and Data Request commands work with it. The data is protected against an
external attacker by unknown location and selection of available functions. To
strengthen data protection, we use secondary identification FileId. The server
associates this server-wide identification with each piece of stored data.

The Eternity Server has three principal persistent data structures:

– stored data files—the actual data stored by clients; the data is encrypted
and visibly identified (i.e. accessible by the administrator) by FileId.

– list of installments—here the server keeps the information about the times
when it should request fees and any necessary information connected with
payments; the corresponding data file is identified by FileId.

– Index—data structure that contains keyword lists associated with each data
file, it also provides connection between these lists and both FileId and ICK
identifications; the whole Index is kept encrypted and available only to the
server’s internal processes.

This way all administrative tasks are based on the FileId identification while
all operations connected with data content make use of the ICK identification.
Administrators can not easily manage data in accordance with its content.

We proposed a method how to store data so that each stored piece of data is
connected with several other ones so that it is impossible to remove particular
data without damaging the others. There is also a possibility of implementing all
critical parts of server functionality in hardware TCB. Description of a possible
interface is beyond the scope of this article.

4.7 Long-term Pseudonyms in Anonymous Environment

To allow for repeated requests to the same server under ERM we introduce
digital pseudonym for each Eternity Server. The pseudonym is continuous, i.e.

server can keep it for a long time period within which several re-establishing of
the pseudonyme and number of public key changes can occur. It does not reveal
any useful information about the owner’s real identity and can not be easily
forged.

We use an external source: a regular Certification Authority (CA). To bind
the server’s public key with its digital pseudonym we introduce a new type
of certificate—an Identity Certificate (IC). We achieve greater reliability and
survivability by employing several authorities in the process of IC creation. Each
CA has to ensure that it will not issue a certificate bound to the same pseudonym
twice.

Our primary interest is to establish continuous identity (the pseudonyme) to
which keying material is bound as usually. The certificate owner has to obtain
certification from a specified number of previously involved CA-s to achieve a
valid IC that could be accepted as a successor. The owner has to compensate an
unavailable CA with another one.

Identity certificate contains the following information:

– Dig pnyme—digital pseudonym of the entity, selected at random. It should
be long enough to ensure uniqueness (recall that it is selected without coor-
dination with rest of the world).

– validity—a usual not before–not after pair
–

∨m
1 (duration)—how long each certification authority maintains continuity

of this pseudonym (i.e. date of issue of the first predecessor)
– Kpbl—the public key belonging to the certificate
–

∨k
1(Rev URL)—a list of URL-s where revocation can be checked

–
∨l

1(Prev Crt)—a list of digests of one or more previous certificates
–

∨m
1 (CA id)—a list of identification of certification authorities willing to sign

the certificate
–

∨n
1 (CA sig)—actual signatures created by certification authorities listed in

the previous list; each signature is of the form:

〈

id info︷ ︸︸ ︷
Dig pnyme|validity| . . . |

l∨
1

(Prev Crt)︸ ︷︷ ︸
id data

|
m∨
1

(CA id)〉KprvsCA

To establish a digital pseudonym, the owner performs the following protocol
with each involved certification authority:

1. E−→A : {id data;old ticket}KpblA

2. A−→E :
{ 〈‖id data‖〉KprvsA

Refuse

3. E−→A : [id info;old ticket;k]KpblA
4. A−→E : {〈id info〉KprvsA

;new ticket}k

4.8 Time-keeping

Proper time-keeping is essential. Moving the time forward may make servers
discard stored data prematurely. Such situation can endanger the whole system
of payments. Mixes with wrong internal time will refuse valid messages which
may subvert the whole ERM.

It seems that the best solution is to use an external source of reliable time
synchronisation. Eternity Servers should use the full NTP protocol [8] and several
different sources of precise time information. Other servers can employ regular
SNTP [7] client functionality.

The Eternity Server should not delete any data for which it is unable to
obtain seeds from the bank in step 7 of the payment protocol (see 4.4).

5 Remarks About the Service Servers

Our main interest is to keep all servers running under any circumstances. Thus if
a server encounters any error, it simply aborts the current computation, discards
all temporary data and prepares itself for processing a new request. The server
also measures the time spent in the processing of each task. If this time exceeds
a defined value, the server immediately finishes the operation and cleans-up
all associated data. The server processes any operation independently from all
others.

6 Results

6.1 General Observations

There is no way to protect information reliably. An attacker can effectively gain
any access the legitimate users have. This conclusion implies that it is particu-
larly difficult to ensure information secrecy.

Once particular information of an attacker’s interest is located, there is little
the system can do to protect it against damage or destruction. A good peri-
metric protection can resist both professional and amateur opponents attempts
to some degree but a determined attacker can overcome it. The same holds for
appropriate backup. The influence of authorities can be reduced somewhat by
suitable techniques of data storage.

Surprisingly, no custom hardware, such as various trusted computing bases,
can bring a significant contribution to overall system reliability or immunity to
some attacks. Such hardware can, to a certain limited extent, strengthen resis-
tance of individual servers but definitely can not strengthen cooperation with
other servers. Disadvantages of incorporating such hardware outweigh benefits.

Cryptographic techniques provide only a reduction of the possibly large sen-
sitive data to a significantly smaller key. The cryptography itself can not ensure
information protection under our threat model. The value of cryptography lies
primarily in the fact that it can extend the attack price substantially.

6.2 Data Survivability

We assume that the proposed mechanism provides good level of protection
against information transfer tracking. An attacker who wants to track data-
grams has to assault and analyse all Mixes along the transfer path; furthermore
he must do this task “on-the-fly” because the Mixes tightly adhere to forward
secrecy principles. Eternity servers can issue Access Certificates with reasonably
short validity period which prevents the attacker from accumulating of knowl-
edge about their location. It seems very difficult to perform a selective attack
directed against the servers that store particular information.

Fig. 1. left: An estimate of information survivability. right: Probability that located
data will be successfully delivered the to requester.

6.3 Service Reliability

Recall how Eternity Servers co-operate in the searching or retrieval of some piece
of information. Because of a lack of global coordination, they can reach any data
only with certain probability. Thus the responses from the Service to exactly the
same request may differ from time to time.

6.4 Drawbacks

Unfortunately, the mix-network does not prove to be particularly suitable data
transport mechanism. Even though the long line of consequent Mixes is strength-
ened by redundancy at each node, it offers only mediocre resistance to a massive
attack. Although this does not endanger the stored information itself, it can
make access to it slow or otherwise complicated at least temporarily.

7 Ethical and Legal Consequences

Service features have strong impact to contemporary view of intellectual property
rights. Just imagine that somebody stores an MP3 file with a popular song.
Also the need to restrict the administrator’s ability to control the stored data
according to its content may not be considered ethical.

8 Conclusion

We presented a complete description of a system based on the ideas of Ander-
son’s Eternity Service. Our goal was to strengthen the resistance of the sys-
tem against attacks to achieve as good data survivability and availability as

possible. Proposed payment support preserves recipient anonymity and is rela-
tively robust. Our system of information identification (ICK in conjunction with
a keyword-list) represents a name-space that is resistant against data substi-
tutions while easily usable by humans. We developed a system of permanent
pseudonyms allowing reliable use of digital signatures within a totally anony-
mous environment. An important part of our work is a mission-independent
mutually anonymous message transfer mechanism capable of supporting other
systems requiring anonymity. The Service is almost immune to brute force. Until
the exact location of data storage becomes known, our adversary has only little
chance of destroying the corresponding information.

References

[1] Ross J. Anderson. The eternity service. In Pragocrypt 1996, 1996. http://www.

cl.cam.ac.uk/rja/eternity.html.
[2] A. Back. The eternity service. Phrack Magazine, 7(51), Sep 1997. http://www.

cypherspace.org/~adam/eternity/phrack.html.
[3] I. Brown. Eternity service design. http://www.cypherspace.org/

eternity-design.html.
[4] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–88, Feb 1981.
[5] Wei Dai. PipeNet 1.1. http://www.eskimo.com/~weidai/pipenet.txt.
[6] D. M. Goldschlag, G. R. Michael, and P. F. Syverson. Hiding routing information.

In Workshop on Information Hiding, Cambridge, UK, May 1996.
[7] D. Mills. Simple network time protocol (SNTP) version 4 for IPv4, IPv6 and OSI.

Technical Report RFC-867, University of Delaware, Network Working Group, Oct
1996.

[8] David L. Mills. Network time protocol (version 3) specification, implementation
and analysis. Technical Report RFC 1305, University of Delaware, Mar 1992.

[9] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anonymous con-
nections and onion routing. IEEE Journal on Selected Areas in Communication
Special Issue on Copyright and Privacy Protection, 1998.

[10] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous con-
nections and onion routing. In 18th Annual Symposium on Security and Privacy,
pages 44–54. IEEE CS Press, May 1997.

