
Usability of Anonymous Web Browsing:
An Examination of Tor Interfaces and Deployability

Jeremy Clark
School of Information and

Technology (SITE)
University of Ottawa

jclar037@site.uottawa.ca

P.C. van Oorschot
School of Computer Science

Carleton University
paulv@scs.carleton.ca

Carlisle Adams
School of Information and

Technology (SITE)
University of Ottawa

cadams@site.uottawa.ca

ABSTRACT
Tor is a popular privacy tool designed to help achieve online
anonymity by anonymising web traffic. Employing cogni-
tive walkthrough as the primary method, this paper evalu-
ates four competing methods of deploying Tor clients, and a
number of software tools designed to be used in conjunction
with Tor: Vidalia, Privoxy, Torbutton, and FoxyProxy. It
also considers the standalone anonymous browser TorPark.
Our results show that none of the deployment options are
fully satisfactory from a usability perspective, but we offer
suggestions on how to incorporate the best aspects of each
tool. As a framework for our usability evaluation, we also
provide a set of guidelines for Tor usability compiled and
adapted from existing work on usable security and human-
computer interaction.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—
Human factors, Software psychology ; H.5.2 [Information
Interfaces and Presentation]: User Interfaces—Evalua-
tion or methodology, Graphical user interfaces; K.4.1 [Com-
puters and Society]: Public Policy Issues—Privacy

General Terms
Human Factors, Security

Keywords
Anonymity, browsing, onion routing, privacy, Privoxy, Tor,
usable security

1. INTRODUCTION
Tor is an important privacy tool that provides anonymous

web-browsing capabilities by sending users’ traffic through a
network of specialized proxy servers designed to unlink the
sender’s identity from her traffic [4, 14]. Like any applica-
tion, Tor must be usable in order for it to be widely adopted.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium On Usable Privacy and Security (SOUPS) 2007, July 18-20,
2007, Pittsburgh, PA, USA.

To this end, a number of tools have been developed to as-
sist a user in deploying and using Tor. By examining the
usability of these tools and offering suggestions for their im-
provement, the motivation of this paper is to help increase
Tor’s affability among novice users with hopes of expanding
its user base. In this paper, we examine the usability of Tor
and evaluate how easy it is for novice users to install, con-
figure, and use Tor to anonymise the Firefox web-browser.

In a Tor network, anonymity is achieved by mixing the
sender’s internet traffic with traffic from other users such
that the true sender of a particular message is indistinguish-
able from the set of all users. In other words, the sender is
only anonymous within a crowd [13]. As such, the sender’s
anonymity is contingent on other users being untraceable. If
the other users commit errors that allow them to be traced,
the number of users covering for the sender decreases, hav-
ing a direct effect on her own anonymity. It is thus in the
sender’s individualistic interest that not only she, but the
other Tor users, can properly deploy and use the software—
a factor that differentiates Tor from many other security
applications and underscores the importance of examining
the usability of Tor.

As critical as usability is to the successful and wide adop-
tion of Tor, it appears that no extensive usability study has
been presented in the literature. Our first contribution is
to compile a set of Tor-relevant usability evaluation guide-
lines from a variety of sources, eliminate the redundancies,
and offer justifications—in some cases, based on research
in cognitive psychology not yet applied to usable security
and privacy. Our guidelines build on the earlier guidelines
proposed to date, including Whitten and Tygar [26] and oth-
ers, however our guidelines are appropriately shifted in focus
from usable security to usable privacy. Using our guidelines,
we perform a cognitive walkthrough of the core tasks of in-
stalling, configuring, and running Tor. We examine manu-
ally configuring Firefox for use with Tor, Privoxy (a filtering
proxy) [3], and Vidalia (a GUI for Tor) [7]. We also exam-
ine two Firefox extensions, Torbutton [5] and FoxyProxy [2],
designed to assist the user in performing the key tasks. And
finally we inspect Torpark [6]—a standalone Firefox variant
with built-in Tor support. We uncover numerous usability
issues with each deployment option but find that the ex-
tensions and Torpark offer some improvement in important
areas.

The remainder of this paper is organized as follows. In
Section 2, we review the preliminaries of anonymous commu-
nication and onion routing, and examine the relevant threat
models. Section 3 will provide an overview of the cogni-

tive walkthrough methodology, and present our guidelines
for usable privacy. In Section 4, we commence the cognitive
walkthrough with the installation of Tor. Section 5, 6, 7,
and 8 will evaluate the manual configuration of Tor, Privoxy,
and Vidalia, and then Torbutton, FoxyProxy, and Torpark
respectively. We provide a comparison and summary of con-
figurations in Section 9, related work is reviewed in Section
10, and concluding remarks are made in Section 11.

2. ANONYMOUS BROWSING
Anonymity means different things in different contexts.

As has been pointed out by others [17], the traditional defi-
nition of anonymity is the ‘state of namelessness.’ Nameless-
ness implies moving through society without an identifier—
nothing to tie your actions to your identity. In the online
world, identity is typically defined by one or more digital
pseudonyms [13]. A self-volunteered identifier is a digital
pseudonym used to access a webservice (i.e., a screen-name,
user-name, or email address). A server-assigned identifier
is a unique identifier used by a webservice to monitor their
users (i.e., a cookie). The anonymity afforded by Tor does
not extend to either of these two categories of identifiers.

In the context of Tor, anonymity means preventing the
dissemination of a user’s internet protocol address. There
are reasons to be concerned about the privacy of an IP ad-
dress. An internet service provider (ISP) can link its ad-
dresses to the owner of the account paying for it—informa-
tion that is obtainable for a jurisdictional variety of rea-
sons. Furthermore when an IP address is augmented with
elements from the other categories of pseudonymous identi-
fiers or additional information, a user’s true identity may be
uncovered—for example using geo-location [23, 20].

The general approach to controlling the dissemination of
IP addresses online is through proxy servers. Conceptually,
a proxy is someone who acts on another entity’s behalf. In-
ternet traffic may be forwarded to a ‘person-in-the-middle’
who then forwards source and destination traffic between the
user and the webservice. A proxy server segments the con-
nection between the user and the server into the user-proxy
link and the proxy-server link. An eavesdropper could re-
alistically exist on either of these links. On the server-side,
many websites keep logs of the IP addresses of the visitors
to their site and the use of a proxy will result in the proxy’s
address being stored instead. On the client-side, an ISP can
monitor and/or log the activities of their customers, some-
thing a simple proxy cannot prevent.

The mix proxy, proposed by Chaum [10], uses encryp-
tion on the client-side link to prevent an eavesdropper from
reading the messages before they enter the proxy. Then,
in order to prevent simple timing attacks—where encrypted
packets entering the proxy are correlated to the decrypted
packets which are immediately outputted by the proxy—a
mix proxy does not process and release traffic in its received
order. Rather, these proxies take a fix-sized set of incom-
ing packets from a group of different users and randomly
reorders the packets before they are sent out. In the case
of services that are not time sensitive, such as email, the
servers may introduce random delays or use more compli-
cated releasing rules.

Often clients route traffic through a constantly changing
path of several mix proxies. This is known as a mix network.
While many different mix network architectures have been
proposed in literature, only a few have actually been imple-

mented and widely deployed. A popular solution for web
traffic is The Onion Router (Tor), proposed by Dingledine
et al. [14]. Tor routes traffic through three mix proxies by
default. The sender encrypts her message three times—a
layer of encryption for each mix proxy in the path. Since
the encryption is layered, the packaged message is metaphor-
ically referred to as an onion. Each proxy removes the outer
layer of the onion as it moves through the network, and the
centre of the onion is the plaintext packet for the receiver.
This method is known as onion routing, and Tor is an imple-
mentation of this method. Tor operates on a fixed number
of messages at a time, called a batch, and it processes the
message set once the batch is full.

The most näıve analysis of Tor would conclude that a
given packet could have been originated by anyone who
contributed packets to any of the batches across the entire
network at the same time that the packet in question was
contributed. This group of potential originators is referred
to as an anonymity set. In the best-case scenario, all the
clients in an anonymity set are indistinguishable. However
in reality, this is not necessarily the case [21]. As we will
see in the following sections, a number of dangerous errors
exist that would allow originators to be identified. If Bob
is in Alice’s anonymity set but commits a dangerous error,
then Alice’s anonymity set is smaller and she is closer to
being uniquely identifiable. Thus Alice’s ability to avoid
dangerous errors is a necessary but not sufficient condition
for remaining non-identifiable—Alice’s non-identifiability is
also contingent on having the other clients in her anonymity
set be non-identifiable. In terms of usability, a user is reliant
not only on her own ability to correctly use Tor but on the
ability of other users as well. This point is discussed by Din-
geldine and Mathewson [13], who conclude that usability is
paramount to the anonymity provided by Tor.

The Tor application only makes the onions. The ap-
plication generating the traffic—in this paper, we consider
Firefox—needs to be configured to direct its traffic into Tor,
which is listening on a local port. Furthermore, this traffic
is often first filtered through a different application called
Privoxy [3] to ensure DNS lookups get captured and ano-
nymised, as well as scrubbing various types of identifying
data contributed to the packets from the higher layer pro-
tocols in the network stack (in particular, the application
layer). Tor is a SOCKS proxy [19] and so a typical configu-
ration will direct http, https, and DNS traffic from Firefox
to Privoxy, and SOCKS traffic directly from Firefox to Tor.
Privoxy then filters its received traffic and passes it into Tor
through a SOCKS connection. Tor currently comes bundled
with a graphical user interface called Vidalia [7].

3. GUIDELINES AND METHODOLOGY

3.1 Evaluation Methodology
A common usability evaluation method is heuristic eval-

uation [22]. In heuristic evaluation, a double expert (some-
one who knows both the application domain and human-
computer interaction principles) evaluates the user interface
of the application against a set of heuristics. We will employ
a related method: cognitive walkthrough [25], as has been
used previously by others [26].

The premise behind a cognitive walkthrough is that users
learn by exploring the software interface. They often do not
sit down and learn the software interface a priori through

a user manual or by systematically visiting every nook and
cranny of the user interface. Rather they attempt to perform
a task and rely on the interface to intuitively guide them
through that task. The user is presumed to be pragmatic
and she does the minimal amount of work to satisfy herself
that the task is completed.

In a cognitive walkthrough, a set of core tasks is desig-
nated. The evaluator will perform these tasks and evaluate
the usability of the application against a set of evaluation
guidelines as these tasks are being performed. Thus it is
similar in methodology to heuristic evaluation, but differs in
the approach—instead of systematically exploring the user
interface, the evaluator performs core tasks.

Cognitive walkthroughs are an important first step in eval-
uating the usability of a software tool. Conducting studies
with users, either in a laboratory or in the field, is a com-
mon follow-up. However due to time constraints and limited
budgets, user studies are typically constrained to a narrow
set of tasks. By contrast, the power of the cognitive walk-
through is the breadth that it makes possible. In this paper,
we examine four different deployments of Tor, from installa-
tion to configuration to actual use, and perform comparative
analysis. Such a wide comparison would be extremely chal-
lenging, if not impossible, in a typical user study. A user
study is most appropriate when one or two predominate so-
lutions emerge from a large solution set which, as we will
see, is not the situation we currently have with Tor.

3.2 The Core Tasks
The core tasks to be performed in our cognitive walk-

through are as follows.

CT-1 Successfully install Tor and the components in ques-
tion.

CT-2 Successfully configure the browser to work with Tor
and the components.

CT-3 Confirm that the web-traffic is being anonymised.

CT-4 Successfully disable Tor and return to a direct con-
nection.

The core tasks will be performed on the following four
configurations:

1. Firefox with Tor [4], Vidalia [7], and Privoxy [3];

2. Firefox with Tor, Vidalia, Privoxy, and Torbutton [5]
(a Firefox extension);

3. Firefox with Tor, Vidalia, and FoxyProxy [2] (a Firefox
extension); and

4. Torpark [6] (a self-contained, anonymous browser).

There is considerable overlap between the first three con-
figurations. Both Torbutton and FoxyProxy allow the user
to shortcut a few of the steps in configuration 1, but most
of the steps are common between them. Thus, the walk-
through of the first configuration will be significantly longer
and more involved than that for the second and third.

3.3 Usability Guidelines
The set of guidelines that we use to evaluate each of the

core tasks are as follows.

G1 Users should be aware of the steps they have to perform
to complete a core task.

G2 Users should be able to determine how to perform these
steps.

G3 Users should know when they have successfully com-
pleted a core task.

G4 Users should be able to recognize, diagnose, and recover
from non-critical errors.

G5 Users should not make dangerous errors from which
they cannot recover.

G6 Users should be comfortable with the terminology used
in any interface dialogues or documentation.

G7 Users should be sufficiently comfortable with the inter-
face to continue using it.

G8 Users should be aware of the application’s status at all
times.

These guidelines are drawn from a variety of sources [25,
26, 16, 12, 11] and are intended for evaluating Tor specif-
ically. However they are suitably broad and may find ap-
plication in other usable privacy walkthroughs. We now
individually justify the inclusion of each.

G1: Users should be aware of the steps they have to
perform to complete a core task.
This is a restatement of the first guideline of Whitten and
Tygar [26]. Every user of a new application knows certain
things before using the system and learns certain things dur-
ing the use of the system. In the cognitive walkthroughs we
carry out here, the presupposition is that the user knows
enough to start the process for each core task—in the case of
installation, the user can download the installation file and
open it; in the case of configuration, the user can explore
the user interface or follow cues. We are evaluating how the
application cues the user to perform the intermediary steps
between these broadly defined tasks.

G2: Users should be able to determine how to perform
these steps.
Once the user is aware of what intermediary steps are nec-
essary, she must be able to figure out how to perform these
steps. This is the second guideline in [26]. It is assumed
the user has a mental model of how the system works. It is
thus important that the system model be harmonized with
the user’s mental model if the user is to be successful in per-
forming the necessary steps required to complete each core
task [25]. What is less obvious is why we cannot fully rely
on the user to simply modify her mental model when given
conflicting information.

A predominate reason is that humans have a stronger pref-
erence for confirming evidence than disconfirming evidence
when evaluating their own hypotheses. This cognitive bias
is well illustrated by Wason [24], who conducted a study
where a set of subjects were given the following sequence of

numbers: 2,4,6. The subjects were told that the numbers
followed a rule, and their task was to determine the rule
by proposing their own sequence of numbers, which would
be declared as matching the rule or not. The rule was any
ascending sequence of numbers. However most subjects de-
rived a more complicated rule, such as every ascending se-
quence of numbers differing by two. The point of this test
was that the subjects, on average, had a preconceived idea of
what the rule was and only proposed sequences to confirm
that rule, instead of also proposing sequences that would
falsify their perceived rule.

Confirmation bias is important in usability because it pro-
poses that users are biased toward only seeking and accept-
ing information that confirms their mental model, and thus
may avoid or even ignore information that contradicts it.
It cannot reasonably be expected that users will easily and
quickly adapt their mental model to new information.

A second concern with how users perform these steps is
that security is a secondary goal [26, 16]. If the user is given
two paths to completing a core task—one that is fast but
not secure, and one that is slower but more secure–it can-
not be assumed that the user will take the latter approach.
In fact, studies in behavioral economics demonstrate that
humans often prefer smaller immediate payoffs to larger fu-
ture payoffs, such as $50 today instead of $100 a year from
today [18]. Using software securely has a greater (usually
non-monetary) payoff for the user, but this utility has to be
substantially higher than the alternative to justify the delay
in achieving it.

G3: Users should know when they have successfully
completed a core task.
In other words, users should be provided with ample feed-
back during the task to ensure they are aware of its suc-
cessful completion. This principle has been proposed in the
context of heuristic evaluation [25] and for a cognitive walk-
through [11]. It was also mentioned by Cranor [12]. With
Tor it is critical that users be provided with a tool to de-
termine that their traffic is actually going through the Tor
network, as there is no easy way for them to determine this
for themselves (short of running a packet sniffer).

G4: Users should be able to recognize, diagnose, and
recover from non-critical errors.
Users will likely make errors in performing the core tasks
and it is important for them to be able to recover from these
errors [25]. It is important for users to be given concise error
messages.

G5: Users should not make dangerous errors from which
they cannot recover.
This guideline is from Whitten and Tygar [26]. Tor has a
few dangerous errors associated with it. The first is a false
sense of completion, where the user thinks that her traffic
has been anonymised when it has not.

Second, in converting domain names into IP addresses, a
web browser will often consult a domain name server (DNS)
provided by the ISP. These DNS lookups do not happen
over the typical port used for web-traffic and so configuring
a browser to use Tor as its SOCKS proxy does not result in
DNS lookups funneling through Tor. If the DNS look-ups
are not anonymised, then the ISP can know when you visit
each new site whose IP address is not cached locally in your

hosts file if it monitors traffic to and from its DNS.
Finally, it has been shown (e.g. [20]) that allowing client-

side execution of mobile code, such as downloading and exe-
cuting a Java applet, could compromise the user’s anonym-
ity when browsing a website. An applet can be created
to simply request the user’s local IP address using a sys-
tem call to the kernel, and to pass that information back
to the website over regular http (or https if Privoxy is con-
figured to filter out packets containing the user’s local IP
address). To avoid this dangerous error, users must disable
Java. A similar exploit may be possible with ActiveX, Flash,
or JavaScript as well (although Firefox does not come with
ActiveX support).

G6: Users should be comfortable with the language
used in any interface dialogues or documentation.
Wharton et al. emphasize that applications should use sim-
ple, natural, and familiar language [25]. This is also a cen-
tral design goal for Privacy Bird [12], which takes natural
language privacy policies and translates them from legalese
into concise, human readable summaries. In the case of Tor,
Privoxy, Torpark, etc., we are looking at the understandabil-
ity of dialogues and the documentation, and their reliance
on technical language which users may have trouble under-
standing.

G7: Users should be comfortable with the interface.
This is the fourth principle of usable security of Whitten
and Tygar [26], and is an essential part of the principal of
psychological acceptability quoted by Bishop [9]. While Tor
and Privoxy do not have an extensive user interface, we will
be evaluating it in terms of how intuitive it is to use. We
will also be analysing the interface of the Firefox extensions.

G8: Users should be aware of the system status at all
times.
This principle was proposed in the context of heuristic evalu-
ation [25] and cognitive walkthrough [11]. Cranor advocates
the use of ‘persistent indicators’ that allow the user to see
privacy information at a glance [12]. In terms of Tor, we are
looking for indicators that show Tor is enabled as well as
perhaps, for example, the current external IP address of the
exit node, the number of users using the system, or other
relevant privacy information.

4. TOR INSTALLATION
The Tor installation file may be downloaded from the Tor

website [4]. The Tor download page may be confusing to a
novice user unfamiliar with the open source software move-
ment. Alongside the versions of Tor for other operating sys-
tems, there are three versions offered for Windows: a version
marked only with its version number, a version marked by
its version number and “alpha,” and a link to “Windows
packages for experts.” Each installation file also has a digi-
tal signature file. At the top of the page, it is stated which
version number is the “stable” release and which is a “devel-
opment” release. This is a slight breech of G6 for using un-
familiar language. The intention is certainly for non-expert
users to install the stable version. A statement at the top
of the page designated for non-expert, Windows users and
linking directly to the stable version installation file with-
out mentioning version numbers would alleviate potential
confusion over which version to download.

The installation process is a fairly straightforward wizard-
style installation. The first dialogue screen informs the user
that the installation bundle actually installs three distinct
applications: Tor, Privoxy, and Vidalia. It is not clear from
the installation dialogue what each application does or why
the three are needed. The next dialogue alerts users with
previously installed versions of any of these applications to
exit them before proceeding. We confirmed this is not en-
forced and it is possible to proceed without exiting.

The next dialogue allows users to choose which compo-
nents to install. It offers a tree-style list of components that
can be expanded or collapsed, and each component has a
checkmark that can be selected or deselected. The three
top nodes are Tor, Vidalia, and Privoxy. It states that users
may “position [their] mouse over a component to see its de-
scription.” Given that the user has not been cued as to what
exactly Vidalia and Privoxy are, this would be an excellent
place to indicate their purpose. However, the description
for Vidalia is simply “Install Vidalia 0.0.7,” and likewise
for Tor and Privoxy with their respective version numbers.
The default setting is a full installation, which installs all
three components. However given that the user cannot be
expected to understand what all three components are, she
has the potential to make an error at this step. But she may
recover from the error from simply rerunning the installer if
she realizes she has not installed a required component. For
this reason, it does not violate G4, although it does violate
G1.

After specifying a directory for installation (a default is
given: the Program Files directory in the root drive), the
components will install. The final dialogue announces that
installation is successful and informs the user, “Please see
http://tor.eff.org/docs/tor-doc-win32.html to learn how to
configure your applications to use Tor.”

5. TOR, VIDALIA, AND PRIVOXY
The task of configuring Firefox to use Tor and Privoxy

is simply impossible without using the aforementioned doc-
umentation page. While ideally, from an HCI perspective,
it would be possible for users to execute core tasks from
simply exploring the application and its interface, configu-
ration is not confined to a single application. It requires
steps to be performed within Firefox itself, as well as within
Tor and Privoxy, and thus will require inter-application doc-
umentation. It cannot be accomplished merely with intra-
application cues.

The configuration document is concise and broken into
steps, and so it is reasonable that the user will use the doc-
umentation. The first step is downloading and installing the
application, which is already completed. It does however in-
form the user of how Vidalia and Privoxy are different from
Tor: Vidalia is a graphical user interface for Tor and Privoxy
is a filtering web proxy. This information is essential for the
user to have a successful installation. The fact that this in-
formation is divulged after the installation process violates
G1. It should be included during the installation process,
as mentioned previously.

Step two is concerned with configuring Tor. Given that
Tor can be used to anonymise any web application, not just
a browser like Firefox, the configuration page links to a sep-
arate page (“How to Torify”) devoted to a list of applica-
tions and step-by-step instructions for each. However the
configuration page does offer some high-level advice. First

Figure 1: Connection settings in Firefox.

it states, “using Privoxy is necessary because browsers leak
your DNS requests when they use a SOCKS proxy directly,
which is bad for your anonymity.” This statement unfortu-
nately uses unfamiliar language (G6), however its intention
is to prevent the dangerous error of DNS leaks (G5). The
novice user does not need to understand what DNS is or
what ports and sockets are to prevent this dangerous error—
so long as they understand that the steps they need to take
are preventing a dangerous error (G2).

The configuration page also offers this advice: “to Torify
... applications that support HTTP proxies, just point them
at Privoxy (that is, localhost port 8118).” For the expert
user, this information is concise and succinct and may suffice
for them to configure their application without referencing
the ‘How to Torify’ page. Privoxy exists on local port 8118
and Tor exists on local port 9050. However Tor only accepts
SOCKS connections and thus http (port 80), https (port
443), and DNS (port 53) traffic has to be filtered through
Privoxy and into Tor.

With this information in hand, it is reasonable that the
user will move to the ‘How to Torify’ page to learn how
to configure Firefox. While the configuration page is con-
cise and fairly non-technical, the ‘How to Torify’ page is
dense, full of technical jargon, and includes information ex-
traneous to the task of configuring the application for Tor.
The Firefox entry includes two configuration methods: one
that involves changing the connection options in Firefox,
and a second that involves editing the actual configuration
of Firefox (a daunting task) but this second method then
alleviates the need for Privoxy. This information is techni-
cal, confusing, and the second method directly contradicts
the configuration page that states Privoxy is necessary (with
“necessary” in bold). Furthermore, the advanced method is
presented first. The documentation violates G2 because its
unclear how the user should proceed, and it violates G6 for
all the technical jargon. This is the first point in CT-2 where
we heavily suspect users will give up or start to make errors.

The intention appears to be that novice users will use the
second method to configure Firefox. Assuming they can de-
termine this is the step they need to take to complete the

task, the instructions are rather straightforward. It gives
the series of menus the users need to visit: “Tools → Op-
tions → General → Connection Settings → Manual proxy
configuration” and instructs the user to “set HTTP Proxy
127.0.0.1 (or localhost), port 8118 and tick the box [X] Use
for all protocols. Or you may explicitly set the Proxy in-
formation for SSL, FTP, and Gopher to localhost/8118 and
then set the SOCKS Host information to localhost/9050,
making sure to specify SOCKS v5.” This appears compli-
cated but referring to the configuration window in Figure 1,
it is simply a matter of filling in the boxes. The problem
with these instructions is that they give two options (“use
the same proxy” box or individually configure) with no in-
dication as to which the user should use. This violates G2.
The options are not equivalent—the former uses Privoxy
as the SOCKS host, the latter uses Tor—but will result in
the same behaviour. However the user has no indication of
which is better or which one they should use. They may
choose the first option simply because it is given first, or
they may choose the second because there is a graphic on
the page illustrating what the correct settings look like—
essentially the same as Figure 1.

For this configuration page to meet G2 and G6, it should
pick one configuration method, place it at the top of the
section, and simply give instructions on how to perform it
without the technical language or extraneous information.
The rest of the configuration information can be left as-is,
but could be placed under an advanced configuration sub-
heading within the section. Alternatively, the proxy settings
could be encoded into a proxy auto-configuration (PAC) file.
This would still require the user to find the Connection Set-
tings in Figure 1, but the user would only have to fill in one
box (‘Automatic proxy configuration URL’) which would re-
sult in a simpler set of instructions.

Presuming the user can configure Firefox, she can proceed
to step three on the configuration page which is “making
sure it’s working.” The first instruction is to ensure Privoxy
and Vidalia are running. The correct configuration has these
two applications running, however recall that the Tor appli-
cation was also installed and it has an executable. It is not
intuitive that Privoxy and Vidalia need to be run, but not
Tor (Vidalia calls the Tor application). There are three ways
to get these two applications running. By default, they both
run after the installation process. Also by default, they both
run when the computer boots up. If either of these defaults
is changed, they can be run from the executables in their
respective directories or in the start menu. By having the
defaults set this way, less demand is placed on the user and
so this is a commendable approach. However by default, Tor
is not enabled while Privoxy is. The fact that the user needs
to enable the one application to start and not the other is
inconsistent. There is an option to start Tor when Vidalia
starts, and this option should be made the default.

At this point, the user has Tor running but not enabled
(Figure 2), Privoxy running and enabled (Figure 3), and the
Firefox connection settings configured. To complete CT-2,
the user simply needs select “Start” from the Vidalia menu
(Figure 2) and begin browsing. If the user does not start
Vidalia, or forgets to, the browser will display the error mes-
sage in Figure 4 when the user attempts to visit a website.
Given that Privoxy is a standalone application that can be
used independently of Tor, it will not give Tor related er-
ror messages. It is not clear from this error message how

Figure 2: Vidalia menu.

Figure 3: Privoxy menu.

the user can recover; furthermore, the links to the docu-
mentation and support are all links to webpages, and given
that the error is being generated because the internet is not
assessable, clicking on them will simply generate the same
error. This is not a dangerous error (G5), but it is one
that does not provide sufficient information for the user to
recover from and thus violates G4.

By selecting Start from the Vidalia menu, the Tor taskbar
icon changes from a red onion with an X through it, to
a yellow onion signifying that Tor is starting, to a green
onion signifying that Tor is running properly. This two-
factor visual cue provides feedback (G3) that would allow
most users to determine the system status at all times with
a quick glance at the task bar (G8). The colours used are
consistent with traffic light colours, and for users with colour
vision deficiencies, the placement of the X over the icon is
suitably noticeable. Overall, it is a comfortable interface
to use for this core task (G7). When webpages are being
accessed, the Privoxy icon spins like a radar screen. This
provides feedback to the user that Privoxy is filtering traffic,
and meets G3.

The third core task is to verify that traffic is being an-
onymised successfully. The configuration page offers a link
to a “Tor detector” webpage, which checks the IP address
of the packet it receives against a list of Tor servers. If it
matches, it announces the configuration was successful and
gives you the IP address and server name of the last mix
proxy (called the exit node) in the network. This meets the
feedback standard of G3 and does so without using unfamil-
iar language, meeting G6 as well. If Tor is not being used,
the website tells the user they are not using Tor and refers
them to the configuration website. This is a concise error
message that provides enough information for the user to
recover from the error, and thus meets G4.

While not a core task, a secondary but important task is
determining the size of the anonymity set for the Tor servers
the user is connected to, for reasons outlined in Section 2.
This task is not possible. Vidalia does offer a View Network

Figure 4: Privoxy error message.

Figure 5: Firefox error message.

option (see Figure 2) that presents a dialogue screen which
lists the servers, displays the server locations on a world
map, and gives information about the server: server name,
location, IP address, platform, contact information, band-
width, and uptime. To allow users to successfully complete
this secondary task, information about the number of users
connected to the servers should be displayed as well.

The final core task is disabling Tor. Unfortunately, the
configuration page and the ‘How to Torify’ page are both
silent on this issue. The correct method is to change the
connection settings in Firefox (Figure 1) back to “Direct
connection to the Internet.” However this information is
not accessible in the Tor documentation, breaking G2. In-
tuitively, the user may try a few alternatives to accomplish
this task. The first would be to disable Tor by using the Stop
option in the Vidalia menu (Figure 2). This of course, will
generate the same error discussed above and shown in Fig-
ure 4. The second alternative would be to disable Privoxy
by unchecking enable in the Privoxy menu (Figure 3). This
generates the error shown in Figure 5 in the browser window,
which is a generic Firefox error when Firefox cannot reach a

Figure 6: Torbutton icon in Firefox status bar.

proxy server. Neither provides enough information to allow
the user to recover and thus violates G4. The browser is also
completely useless in this stage, which will surely frustrate
the user. The documentation should make the disabling pro-
cess explicit, as users cannot be expected to know how to
disable Tor once it is enabled.

6. TOR, VIDALIA, PRIVOXY, AND
TORBUTTON

On the Tor configuration page,1 under “Step two: Config-
ure your applications to use Tor,” the authors of the docu-
mentation offer an alternative to manually configuring Fire-
fox for Tor (the configuration examined in the previous sec-
tion). The page links to Torbutton [5], a Firefox extension,
and instructs the user to visit the extension’s page, install
the extension, and restart Firefox. Extensions are small add-
ons for Firefox that add functionality to the browser.

To perform the first core task, the user installs the Tor,
Privoxy, and Vidalia bundle as in the previous section. How-
ever instead of configuring Firefox as described above, the
user will click the link to Torbutton on the configuration
page and be taken to the extension’s listing in Mozilla’s
Firefox add-on directory. There is a predominant “Install

1http://tor.eff.org/docs/tor-doc-win32.html

Figure 7: FoxyProxy icon in Firefox status bar.

now” button on the page and clicking it brings up a Firefox
dialogue window warning the user to only install software
from trusted sources. Clicking “install now” in this window
brings up Firefox’s list of installed extensions and informs
the user to restart Firefox to use this extension. This process
is straightforward, and conforms to G1, G2, and G6.

When Firefox is restarted, a cue is added to the status
bar that states “Tor Disabled” in red letters, as shown in
Figure 6. Many extensions install cues in this location, and
so assuming the user is comfortable with Firefox, the user
will likely notice the cue. Users unfamiliar with Firefox will
need to read the documentation linked to from the config-
uration page. From a usability perspective, this has to do
with Firefox’s interface and is outside of the evaluation of
Torbutton itself.

At this point, the first core task is complete. This allows
the user to avoid the confusing configuration step criticized
in the previous section. To complete CT-2, the user must be
running Vidalia and Privoxy and have them both enabled.
The analysis of this step in the previous section applies here.
However instead of changing the configuration settings in
Firefox, the user simply locates the Torbutton cue in the
status bar and clicks it once. The cue will change to “Tor
Enabled” in green lettering. The status can be seen at a
glance, which is consistent with G8. CT-3 will proceed as
in the previous section. To disable Tor and return to direct
browsing, the user simply clicks the Torbutton cue a second
time and it returns to “Tor Disabled.” It is unclear whether
users can be expected to know to do this (G2), however the
change in icon is sufficient for meeting G3.

CT-2 is greatly simplified using Torbutton. The user
does not have to change any settings within Firefox or wade
through the confusing documentation. CT-4 is also simpli-
fied, however Torbutton still does not necessarily eliminate
the non-critical errors discussed in the previous section—
disabling Vidalia or Privoxy in trying to turn off anonymous
browsing, instead of clicking the Torbutton cue within Fire-
fox. However, while it is unclear in the previous section
whether users will know enough to go back into the con-
nection settings in Firefox and determine which setting to
change to in order to disable Tor, we think it is reasonable
to expect the user to at least stumble upon the correct so-
lution with Torbutton even if its not the most intuitive step
to completing CT-4.

7. TOR, VIDALIA, AND FOXYPROXY
FoxyProxy [2] is a Firefox extension similar to Torbutton

but it provides more advanced functionality. It allows users
to quickly enable and disable the use of any proxy server,
not just Tor, and it allows the creation of custom access con-
trol lists to specify that certain domains always be accessed
through Tor, with a different proxy, or directly. As we are

testing the core tasks only, we will be testing FoxyProxy
only as a method of configuring Firefox to work with Tor
and we will not be evaluating its advanced functionality.
The other feature that FoxyProxy prominently advertises is
that it does not need Privoxy to work. Torbutton can also
be configured to not use Privoxy—it is an unsung option
in its preferences. However this option was not described
on Tor’s configuration page (nor explicitly on Torbutton’s
page) and the user would not likely be aware of it in per-
forming the core tasks the walkthrough is evaluating. For
this reason, we evaluated the configuration and use of Tor-
button with Privoxy. However we will evaluate FoxyProxy
without Privoxy.

CT-1 for FoxyProxy is similar to Torbutton. The user
goes to the Firefox add-ons directory, installs the extension,
and restarts the browser. However upon restart, the user
enters a set-up dialogue to assist with the second core task.
The first window asks if the user would like to configure
FoxyProxy for use with Tor. If yes, the next window asks if
the user is using Tor with or without Privoxy. Proceeding
without Privoxy, the next window asks for Tor’s local port
number and states, “if you don’t know, use the default,”
which is port 9050. The next window asks: “Would you like
the DNS requests to go through the Tor network? If you
don’t understand this question, click yes.” The next screen
has the advanced filter settings, and the final window alerts
the user to make sure Tor is running (G1).

This dialogue solves many of the usability problems en-
countered in the past sections. The user knows explicitly
that Privoxy is not needed. The port and DNS settings
both have a default setting and the dialogue clearly tells the
user what to do if she does not understand the unfamiliar
language (G6). The DNS setting allows the user to avoid a
dangerous error (G5) even if their mental model is not suf-
ficient to understand DNS (G2). The user is also reminded
to ensure they are running Tor (G1), avoiding a non-critical
error (G4), although no indication is given as to how to run
Tor (G2)—in fact, the user likely wants to run Vidalia and
not Tor.

The filtering options are complicated, however the user
can avoid them and enable FoxyProxy to run all traffic
through Tor. Enabling Tor for all URLs is more compli-
cated than with Torbutton. The user has to click through
a few menus (see Figure 7). However the user does not
need to use Privoxy, which simplifies the second core task.
Core task 3 is no different. Disabling Tor with Privoxy in-
volves entering the menu and choosing “Completely disable
FoxyProxy.” The same pitfalls as described in the Torbut-
ton section apply to this core task.

8. TORPARK
Torpark [6] is a standalone anonymous browser based on

Firefox with built-in support for Tor. It is designed to run off
a USB token so that a user can run it on a public computer
that has an accessible USB port. Unlike the Tor bundle
which had multiple versions, the Torpark webpage has only
one version which is clearly marked (it also offers the source
code, but this is in a distinct section). The installation is a
self-extracting archive, so the user simply specifies the direc-
tory to which to extract the application folder. The instal-
lation process is far simpler: download the clearly marked
installer, extract to a folder, and the user is done. The first
core task meets all the relevant guidelines.

To run Torpark, the user opens the executable. Before
opening, a warning message is displayed which states, “Tor-
park secures the anonymity of your connection, but not the
data you send. DO NOT [sic] use identity compromising
information such as your name, login, password, etc. unless
you see a closed padlock icon at the bottom status bar of the
browser. Torpark should not be run on untrusted comput-
ers, as they may have malware or keystroke logging software
secretly installed.” This warning helps the user understand
the system model of Tor (G2), which they may have mis-
conceptions about if their mental model expects, say, that
the packets will be filtered as with Privoxy. The language is
relatively clear and non-technical (G6), and should be un-
derstandable to an intermediate-level internet user.

A second dialogue window opens informing the user that
Torpark is establishing a connection to the Tor network.
After connecting, the browser itself opens. The browser
comes with several preinstalled extensions. One is Torbut-
ton, which is enabled by default and does not use Privoxy by
default. This prevents the dangerous error of DNS leaks. A
second extension is NoScript. This extension prevents web-
sites from running Java applets and scripting by default.
This is very important because it helps prevent the other
dangerous error associated with Java applets (G5). A noti-
fication is displayed when a site attempts to run a client-side
script or an applet that is blocked, with the ability for the
user to add the site to a safe list (among other options).
However blocking applets is a necessary but not sufficient
measure if users are given the option to whitelist sites. The
user may disable NoScript or whitelist everything indiscrim-
inately if the danger is not adequately communicated. If the
warning message was amended to include a warning about
applets, Torpark may help prevent this dangerous error.
There is, however, a flip-side to having NoScript enabled
by default. It introduces a new interface that the user must
be able to interact with—the usability of which has not been
studied and is outside the scope of this paper. If we assume
the worst case where the user simply ignores the prompts,
many modern webpages will not function correctly without
client-side scripting. This creates new usability problems
and a negative incentive for using Torpark.

Another extension displays your external IP address (i.e.,
the IP of the exit node) in the status bar, which is a per-
sistent indicator of the system status (G8). However this
requires the user to know what their actual IP address is to
determine that the displayed IP is different and Tor is work-
ing correctly. Thus it is not enough to complete core task 3.
In fact, the user is not given any cues that would allow her
to confirm that Tor is operating correctly, which violates G2
and G3. She could, of course, visit the Tor detector website
mentioned above, which would provide the feedback she is
seeking. Thus, if Torpark’s default homepage was the Tor
detector or if it offered a link to it, then CT-3 could be
completed very easily.

Like in the previous sections, determining the anonymity
set cannot be completed with Torpark. And given that Tor-
park uses Torbutton by default, CT-4 is the same as in
the Torbutton evaluation with one notable difference: the
Tor application is not running and so the user will not get
confused and disable Tor in the application instead of the
browser. Thus it prevents the non-critical errors uncovered
is the previous sections.

9. COMPARISON AND SUMMARY OF
RESULTS

We have performed a cognitive walkthrough for four differ-
ent configurations of a Firefox-based browser with Tor. The
first three configurations are largely interchangeable. The
fourth, using the standalone browser Torpark, may not be
as desirable to users who want to anonymise more than their
browser. Tor can be used to anonymise instant messaging,
file sharing, email clients, or nearly any application that uses
the internet. If the user is going to anonymise more than
their browser, they will need to install Tor, Privoxy, and
Vidalia anyway—and therefore they would probably find it
more convenient to simply configure Firefox to use these
applications than to use an additional browser.

The summary of the results for the four core tasks are in
Table 1. Of the first three configurations, manually config-
uring Firefox has the most usability problems. We found
problems with the documentation and a complete lack of
instructions on how to disable Tor. Furthermore, even if
the user figures out how to enable and disable Tor, the op-
tions are a menu and several windows away. There is also
no cue within the browser as to whether Tor is enabled or
disabled at any given time, however the documentation links
to a Tor detector webpage that verifies your traffic is being
routed through the Tor network.

With Torbutton and FoxyProxy, it is conceptually more
intuitive how to enable and disable Tor, it is a quicker pro-
cess with a better interface, it does not require the user to
read documentation, and there is a persistent indicator that
shows the enabled/disabled status of Tor at all times. Thus
Torbutton and FoxyProxy beat manual configuration on the
second and fourth core tasks based on G1, G2, G3, G6, G7,
and G8. Manual configuration has no advantage over Tor-
button or FoxyProxy on any of the core tasks.

Between Torbutton and FoxyProxy, we found Torbutton
to have the better interface. The user has to simply click it
once to enable or disable Tor; the user has to go through a
menu to achieve the same with FoxyProxy. Therefore Tor-
button is better on the fourth core task based on G7. Both
have persistent indicators in a visual cue on the status bar
that changes colour according to the settings, and so they tie
in terms of G8. However FoxyProxy has an advantage over
Torbutton in the configuration dialogue by walking the user
through the steps (instead of assuming the defaults) and im-
parting information to the user about the dangerous error
of DNS leaks, in that Privoxy is not needed, and remind-
ing the user to ensure Tor is running. Therefore FoxyProxy
is better than Torbutton on the second core task based on
G2, G4, and G5. Note however that Privoxy does offer fea-
tures (i.e., packet scrubbing) that FoxyProxy does not, and
so an unarticulated security/usability trade-off is at play in
requiring the user to choose between using Privoxy or not.

Torpark has many advantages over using any preceding
combination of Firefox, Tor, Privoxy, Torbutton, and Foxy-
Proxy. First it does not require any documentation to install
or configure. Assuming users do not like to read documen-
tation, this is a huge advantage over using the components
separately. The set-up dialogues are well written and make
clear the limits of Tor in a hostile environment. None of the
first three configurations do anything to thwart the danger-
ous error of allowing the execution of Java applets, while
Torpark has Java disabled by default through the NoScript

Table 1: Partial Summary of Results
Install Tor and Configure Tor Verify Tor is Disable Tor

Components for Firefox Working
Manual Configuration Difficult Very Difficult Easy Very Difficult
Torbutton Difficult Easy Easy Very Easy
FoxyProxy Difficult Very Easy Easy Easy
Torpark Very Easy Very Easy Difficult Very Easy

extension. While this is better in terms of G5, NoScript also
disables JavaScript may also present new usability problems
given that the many webpages which use client-side script-
ing will now be broken. Where Torpark fails, and the first
three configurations succeed, is that it does not offer any
way to verify that traffic is going through the Tor network
aside from displaying the external IP address, which may
be sufficient for advanced users but certainly not for novice
users.

10. RELATED WORK
For an overview of the current research on anonymous

communications, onion routing, and Tor, consult the ano-
nymity bibliography [1]. Dingledine and Mathewson [13]
discuss several usability issues with Tor and other mix net-
works. In particular, they note what our results confirm—
the difficulty of the task of configuring Tor for unsophisti-
cated users. They highlight the most important solutions
to this problem as being improved documentation, solution-
oriented warning messages, and having bundled Tor with
the additional components it relies on.

The cognitive walkthrough methodology for evaluating us-
ability was proposed by Wharton et al. [25] based on the
observation that users tend to learn software by trying to use
it and exploring its interface. They proposed a set of four
criteria to help software designers conform their interfaces
to the expectations of users learning their software through
exploration.

A cognitive walkthrough is performed by Whitten and
Tygar [26] in evaluating PGP against a set of four usabil-
ity guidelines. The authors discover a number of security
risks and usability issues and seek to confirm them through
a 12 participant user study. Goode and Krenkelberg [15]
perform a cognitive walkthrough of KaZaA based on usabil-
ity guidelines they adapted for P2P filesharing applications.
More recently, Chiasson et al. [11] expanded on Whitten
and Tygar with two additional guidelines, one based on task
completion and the other on system feedback. These guide-
lines are used in a user study of two password managers.
Cranor [12] provides advice for software developers in the
area of privacy based on lessons she learned in evaluation
the usability of P3P and Privacy Bird.

11. CONCLUDING REMARKS
The two configurations that use the Firefox extensions are

clearly more usable than manual configuration. However
both Torbutton and FoxyProxy have their advantages and
disadvantages. Our recommendation would be to add the
set-up dialogue of FoxyProxy to the user interface of Torbut-
ton. This synthesised extension would have the same one-
click interface as Torbutton but would go through a small
dialogue the first time it is run asking the user whether she
wants to use Privoxy, giving her the option of eliminating

DNS leaks (using the same style of language as FoxyProxy),
and reminding her to ensure Vidalia is running. We would
also recommend that it includes a warning similar to the one
provided in Torpark.

These recommendations expose the difficulty of helping
users prevent dangerous errors without introducing termi-
nology and concepts that are too difficult for the novice
user to understand. This consideration raises the question
of who Tor’s target user is. Our results show that novice
users will have difficulty with at least one of the core tasks
no matter which current deployment option they choose.
Furthermore, the technical jargon and unfamiliar language
of Tor’s documentation is clearly not meant for the novice
user. Is Tor simply too complicated for novice users to un-
derstand? Perhaps, but Tor might be made more accessible
to novice users with two-tier documentation and properly
structured defaults—simple instructions followed by instruc-
tions for advanced users, and configuration dialogues like
FoxyProxy’s, with statements that if a user does not under-
stand a concept, to choose a default.

The extensions eliminate the need for the user to con-
sult the ‘How to Torify’ page for configuring Firefox, but we
would still recommend that two major changes be made to
this page. The first is that one of the three different configu-
ration options is chosen and placed at the top of the section
on Firefox, and this becomes the dominant way of configur-
ing Firefox for novice users. The second recommendation is
that instructions are added to explain how to disable Tor.

None of the configurations allow the user to see the size of
her anonymity set. We would recommend that Vidalia add
information to its ‘View Network’ window about the number
of users connected to each node in the network; although we
recognize this metric may not be meaningful to the novice
user. Java Anon Proxy (JAP) [8] has the visual cue of an
anonymity meter that moves from low to medium to high,
and something similar could be added for the novice user,
as previously suggested in [13].

Finally we would suggest two modifications to Torpark.
The first is that it makes some effort to link to the Tor de-
tector website—either by making it the default homepage,
using a custom home page that contains information about
Tor and includes a link to the Tor detector, or at the very
least, putting it in the browser bookmarks. The second rec-
ommendation would be that Torpark indicates to the user
that running Java applets could jeopardize her anonymity.
This may be preferable to simply disabling all Java applets
and scripts by default, given that this disablement will intro-
duce new usability problems with many websites no longer
functioning correctly. Explicitly articulating the security
concern and explaining clearly and concisely how to disable
Java would make Torpark better at preventing dangerous er-
rors, although any solution to this problem would ideally be
user-tested. This information could be given in the warning

message or on a custom homepage like the one mentioned
above.

With the exception of the anonymity meter, our recom-
mendations are largely linguistic and would not require ma-
jor revision to the programs themselves. Determining clear,
meaningful explanations and instructions is difficult. A tech-
nique that may yield improved wording involves conducting
a user study where a novice user is presented with an expla-
nation and then asked to describe it to another novice user.
Noting the use of terminology, metaphors and the level of
detail across many subjects may yield commonalities allow-
ing an improved explanation.

In conclusion, we have noted numerous usability problems
that a novice user is likely to encounter in installing, con-
figuring, and using Tor. It is our hope that the individual
benefits of the examined software tools will be combined in
order to help Tor achieve affinity among novice users. We
also hope our guidelines will prove to be a useful compilation
for future work in usable privacy.

Acknowledgments
We thank the anonymous referees for their comments which
improved the paper. The first and third authors acknowl-
edge support from SSHRC under the On the Identity Trail
project. The second author acknowledges support from
NSERC under a Discovery Grant, and as a Canada Research
Chair in Network and Software Security.

12. REFERENCES
[1] Anonymity bibliography. In Freehaven. ONLINE:

http://freehaven.net/anonbib/.

[2] Foxyproxy 2.2.1
http://foxyproxy.mozdev.org (accessed Nov 2006).

[3] Privoxy 3.0.3
http://www.privoxy.org (accessed Nov 2006).

[4] Tor 0.1.1.25
http://tor.eff.org (accessed Nov 2006).

[5] Torbutton 1.0.4
http://freehaven.net/s̃quires/torbutton/ (accessed
Nov 2006).

[6] Torpark 1.5.0.7a
http://www.torrify.com (accessed Nov 2006).

[7] Vidalia 0.0.7
http://vidalia-project.net (accessed Nov 2006).

[8] O. Berthold, H. Federrath, and S. Köpsell. Web
MIXes: A system for anonymous and unobservable
Internet access. In H. Federrath, editor, Proceedings of
Designing Privacy Enhancing Technologies: Workshop
on Design Issues in Anonymity and Unobservability,
pages 115–129. Springer-Verlag, LNCS 2009, July
2000.

[9] M. Bishop. Psychological acceptability revisited. In
L. Cranor and S. Garfinkel, editors, Security and
Usability, pages 1–12. O’Reilly, 2005.

[10] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. In
Communications of the ACM, volume 4, February
1981.

[11] S. Chiasson, P. van Oorschot, and R. Biddle. A
usability study and critique of two password
managers. In 15th USENIX Security Symposium, 2006.

[12] L. Cranor. Privacy policies and privacy preferences. In
L. Cranor and S. Garfinkel, editors, Security and
Usability, pages 447–472. O’Reilly, 2005.

[13] R. Dingledine and N. Mathewson. Anonymity loves
company: usability and the network effect. In
L. Cranor and S. Garfinkel, editors, Security and
Usability, pages 547–560. O’Reilly, 2005.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the 13th USENIX Security Symposium, August 2004.

[15] N. Good and A. Krekelberg. Usability and privacy: A
study of KaZaA P2P file sharing. In L. Cranor and
S. Garfinkel, editors, Security and Usability, pages
651–667. O’Reilly, 2005.

[16] C. Karat, C. Brodie, and J. Karat. Usability design
and evaluation for privacy and security solutions. In
L. Cranor and S. Garfinkel, editors, Security and
Usability, pages 47–74. O’Reilly, 2005.

[17] I. Kerr. Anonymity. In progress encyclopedia article
available from www.idtrail.org.

[18] K. Kirby. Bidding on the future: Evidence against
normative discounting of delayed rewards. In
Quarterly Journal of Experimental Psychology, pages
54–70. 126, 1997.

[19] D. Koblas and M. R. Koblas. Socks. In UNIX Security
III Symposium (1992 USENIX Security Symposium),
pages 77–83, 1992.

[20] J. Muir and P. van Oorschot. Internet geolocation and
evasion. In Technical Report TR-06-05. School of
Computer Science, Carleton University, April 2006.

[21] S. J. Murdoch and G. Danezis. Low-cost traffic
analysis of Tor. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy. IEEE CS, May
2005.

[22] J. Nielson. Heuristic evaluation. In J. Nielsen and
R. L. Mack, editors, Usability Inspection Methods,
pages 25–64. Wiley & Sons, 1994.

[23] V. Padmanabhan and L. Subramanian. An
investigation of geographic mapping techniques for
internet hosts. In Proceedings of SIGCOMM 2001,
pages 173–185, 2001.

[24] P. Wason. On the failure to eliminate hypotheses in a
conceptual task. In Quarterly Journal of Experimental
Psychology, pages 129–140. 12, 1960.

[25] C. Wharton, J. Rieman, C. Lewis, and P. Polson. The
cognitive walkthrough method: A practitioner’s guide.
In J. Nielsen and R. L. Mack, editors, Usability
Inspection Methods, pages 84–89. Wiley & Sons, 1994.

[26] A. Whitten and J. D. Tygar. Why Johnny can’t
encrypt: A usability evaluation of PGP 5.0. In 8th
USENIX Security Symposium, 1999.

