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Abstract. While web-based applications are becoming increasingly ubiquitous,
they also present new security and privacy challenges. In particular, recent re-
search revealed that many high profile Web applications might cause private
user information to leak from encrypted traffic due to side-channel attacks ex-
ploiting packet sizes and timing. Moreover, existing solutions, such as random
padding and packet-size rounding, are shown to incur prohibitive cost while still
not ensuring sufficient privacy protection. In this paper, we propose a novel k-
indistinguishable traffic padding technique to achieve the optimal tradeoff be-
tween privacy protection and communication and computational cost. Specifi-
cally, we first present a formal model of the privacy-preserving traffic padding
(PPTP). We then formulate PPTP problems under different application scenarios,
analyze their complexity, and design efficient heuristic algorithms. Finally, we
confirm the effectiveness and efficiency of our algorithms by comparing them to
existing solutions through experiments using real-world Web applications.

1 Introduction

Web-based applications are gaining popularity. By providing software services through
Web browsers, such applications demand less client-side resources and are easier to
deliver and maintain than their desktop counterparts. However, they also present new
security and privacy challenges partly because the untrusted Internet now becomes an
integral part of the application for carrying the continuous interaction between users
and service providers. Recent study showed that the encrypted traffic of many popular
Web applications may actually disclose highly sensitive data, and consequently lead to
serious breaches of user privacy [9]. By analyzing packets’ sizes and timing, an eaves-
dropper can potentially identify an application’s internal state transitions as well as
users’ inputs. Moreover, such side-channel attacks are shown to be pervasive and fun-
damental to Web applications due to their intrinsic characteristics , such as low entropy
inputs, rich and diverse resource objects, and stateful communications.

For example, Table 1 shows the size and direction of packets observed between
users and a popular real-world search engine. Observe that due to the auto-suggestion
feature, with each keystroke, the browser sends a b-byte packet to the server; the server
then replies with two packets of 54 bytes and s bytes, respectively; finally, the browser
sends a 60-byte packet to the server. In addition, in the same input string, each subse-
quent keystroke increases the b value by one byte, and the s value depends not only on
the current keystroke but also on all the previous ones. Clearly, an eavesdropper can pin-
point packets corresponding to an input string from observed traffic by the packets with



fixed pattern in size(first, second, and last), even though the traffic has been encrypted.
In this paper, we assume such a worst case scenario in which an eavesdropper can iden-
tify traffic related to a Web application (such as using de-anonymizing techniques [27])
and locate packets for user inputs using the above technique.

User Input Observed Directional Packet Sizes
a b1 →, ← 54, ← 509, 60→
00 b2 →, ← 54, ← 505, 60→,

b2 + 1→, ← 54, ← 507, 60→
(b bytes) (s bytes)

Table 1. User Inputs and Corresponding Packet Sizes

Moreover, the size of the third packet(s) will provide a good indicator of the input it-
self. Specifically, the left tabular of Table 2 shows the s value for each character entered
as the first keystroke of an input string. We can see that six characters can be uniquely
identified with this s value. The right tabular shows the s value for a character entered
as the second keystroke. In this case, the s value for each character in the right tabular
is different from that in the left, since the packet size now depends on both the current
keystroke and the preceding one. Clearly, every input string can be uniquely identified
by combining observations about the two consecutive keystrokes shown in both tables
(for simplicity, we are only considering four characters here, whereas in reality it may
take more than two keystrokes to uniquely identify an input string).

a b c d e f g h i
509 504 502 516 499 504 502 509 492

j k l m n o p q r
517 499 501 503 488 509 525 494 498

s t u v w x y z
488 494 503 522 516 491 502 501

Second keystroke
First keystroke a b c d

a 487 493 501 497
b 516 488 482 481
c 501 488 473 477
d 543 478 509 499

Table 2. s Value for Each Char Entered as the First or Second Keystroke (Left or Right Tabular)

A natural solution for preventing such a side channel attack is to pad packets such
that each packet size will no longer map to a unique input. However, such a solution
does not come free, since padding packets will result in additional overhead. In fact, it
has been shown that a straightforward solution, such as random padding and rounding,
may incur a prohibitive overhead (e.g. 21074% for a well-known online tax system [9]).
Moreover, such an application-agnostic approach typically aim to maximize, but cannot
guarantee, the amount of privacy protection.

In Table 3, we consider a different way for padding the packets. The first and last
columns respectively show the s value and corresponding input (the second keystroke).
The middle two columns give two options for padding packets (although not shown
here, there certainly exist many other options). Specifically, each option first divides
the six characters into three (or two) padding groups, as illustrated by the (absence
of) horizontal lines. Packets within the same padding group are then padded in such a
way that their corresponding s values are all identical to the maximum value. Thus the
characters inside each padding group will no longer be distinguishable from each other
based on their s values. The objective now is to find a padding option that can provide
sufficient privacy protection and meanwhile minimize the padding cost.



s Value Padding (1st Keystroke) 2nd Keystroke
Option 1 Option 2

473 477 478 (c)c
477 477 478 (c)d
478 499 478 (d)b
499 499 509 (d)d
501 509 509 (c)a
509 509 509 (d)c

Quasi-ID Generalization Sensitive Value
Table 3. Mapping PPTP to PPDP

Interestingly, this privacy-preserving traffic padding (PPTP) problem can be natu-
rally interpreted as another well studied problem, privacy-preserving data publishing
(PPDP) [13]. To revisit Table 3, if we regard the s value as a quasi-identifier (such
as DoB), the input as a sensitive value (such as medical condition), and the padding
options as different ways for generalizing the DoB into anonymized groups (for ex-
ample, by removing the day from a DoB), then we immediately have a classic PPDP
problem, that is, publishing DoBs and medical conditions while preventing adversaries
from linking any published medical condition to a person through his/her DoB.

The similarity between the two problems implies we may borrow many existing
efforts in the PPDP domain to address the PPTP issue. On the other hand, there also
exist significant differences between them. For example, in Table 3, the second option
will typically be considered as worse (than the first) in PPDP since it results in larger
anonymized groups, whereas it is actually better in terms of padding cost (totally 24
bytes, in contrast to 33 by the first option). As another example, we will show later
that the effect of combining two keystrokes will be equivalent to releasing multiple
inter-dependent tables, which actually leads to a novel PPDP problem.

In this paper, we first briefly review the formal model of the PPTP issue based on
the mapping to PPDP which introduced in our short version [18]. We then formulate
several PPTP problems under different assumptions, and discuss the complexity. We
show that minimizing padding cost under a given privacy requirement is generally in-
tractable. Next, we design several heuristic algorithms for solving the PPTP problems
in polynomial time with acceptable padding cost. Finally, we evaluate the effective-
ness and efficiency of our algorithms by comparing them to existing solutions through
experiments with real-world Web applications.

The contribution of this paper is threefold. First, the identified similarity between
PPTP and PPDP establishes a bridge between the two research communities, which will
not only allow for reusing many existing models and methods in the well investigated
PPDP domain, but serve to attract more interest to the important PPTP issue. Second,
to the best of our knowledge, our PPTP model is among the first efforts on formally
addressing this issue (in contrast to our work, the formal model given by Chen et al. [9]
lacks a clear definition of privacy requirements and only considers two application-
agnostic padding methods). Third, the proposed padding algorithms can lead to practi-
cal solutions for real world Web applications, as evidenced by our experiments.

The rest of the paper is organized as follows. Section 2 defines our PPTP model.
Section 3 formulates PPTP problems and analyzes the complexity. Section 4 devises
heuristic algorithms for the formulated problems. Section 5 experimentally evaluates
the performance of our algorithms. Section 6 discusses the extensions and implementa-
tion of our solution. Section 7 reviews related work and Section 8 concludes the paper.



2 The Model

To be self contained, we briefly repeat here the PPTP model introduced in our short
version [18], and shall delay the discussion about extending it to encompass l-diversity
in Section 6. Table 4 lists main notations that will be used throughout the paper.

a, ~a, Ai or A Action, action-sequence, action-set
s, v, ~v, Vi or V Flow, flow-vector, vector-sequence, vector-set
~a[i], ~v[i] The ith element in ~a and ~v
VAi or VA Vector-action set
pre(a, i) i-Prefix
dom(P ) Dominant-vector
vdis(v1, v2) Vector-distance

Table 4. The Notation Table

2.1 The Basic Model

We model the PPTP issue from two perspectives, the interaction between users and
servers, and the observation made by eavesdroppers. First, Definition 1 formalizes the
interaction. Our discussions about Table 2 demonstrated how one keystroke may affect
another in terms of observations (packet sizes), and how an eavesdropper may com-
bine such multiple observations for a refined inference. Such related user actions are
modeled as an action-sequence in Definition 1. The concept of action-set models a col-
lection of actions whose corresponding observations may be padded together. Actions
inside an action-sequence are separated into different action-sets since their relationship
is known from traffic patterns and thus padding them together will not work (preventing
such inferences about the application’s state transitions comprises a future direction).

Definition 1 (Interaction). Given a Web application, we define

- an action a as an atomic user input that triggers traffic, such as a keystroke or a
mouse click.

- an action-sequence ~a as a sequence of actions with known relationships, such as
consecutive keystrokes entered into real-time search engine or a series of mouse
clicks on hierarchical menu items. We use ~a[i] to denote the ith action in ~a.

- an action-set Ai as the collection of all the ith actions in a set of action-sequences.
We will simply use A if all action-sequences are of length one.

Example 1. Assume “a” and “00” in Table 1 to be the only possible inputs, there are
two action-sequences a and 00, and two action-sets A1 = {a, 0} and A2 = {0}. �

Definition 2 models concepts related to the observation made by an eavesdropper.
Note that a flow-vector is intended to only model those packets that may contribute to
identify an action (such as the s value in Table 1). Further, a vector-set is defined as a
multiset, since it may contain duplicates (that is, packets may share the same size).

Definition 2 (Observations). Given a web application, we define

- a flow-vector v as a sequence of flows where each flow s is an integer (a directional
packet size). An action corresponds to a flow-vector based on packets it triggers.



- a vector-sequence ~v as a sequence of flow-vectors corresponding to an equal-length
action-sequence ~a, with each ~v[i] corresponding to ~a[i] (1 ≤ i ≤| ~v |).

- a vector-set Vi (or simply V ) as the collection of all the ith flow-vectors in a set of
vector-sequences, which corresponds to an action-set in the straightforward way.

Example 2. Following Example 1, we have three flow-vectors, v1 = 509, v2 = 505,
and v3 = 507 (note that we only model those packets whose sizes can help to iden-
tify an action), corresponding to actions a, 0 (as first keystroke), and 0 (as second
keystroke), respectively. We have two vector-sequences, v1 and v2v3, corresponding to
action-sequences a and 00, respectively. We also have two vector-sets V1 = {509, 505}
and V2 = {507} corresponding to the two action-sets A1 and A2 in Example 1. �

Finally, Definition 3 models the joint information about interaction and observation,
which is the collection of the pairs of the action and its corresponding flow-vector.

Definition 3 (Vector-Action Set). Given an action-setAi and its corresponding vector-
set Vi, a vector-action set VAi is the set {(v, a) : v ∈ Vi ∧ a ∈ Ai}.
Example 3. Following above examples, given the action-set A1 and vector-set V1, then
the vector-action set is VA1 = {(509, a), (505, 0)}. Similarly, VA2 = {(507, 0)}. �

2.2 Privacy and Cost Model

For simplicity, we first consider a simplified case where every action-sequence and flow-
vector are of length one, namely, the Single-Vector Single-Dimension (SVSD) case. In
this case, we can map a given vector-action set VA = {(v, a) : v ∈ V ∧ a ∈ A}
to a table T (v, a) with two attributes, the flow-vector v (equivalent to a flow s here) as
quasi-identifier and the action a as sensitive attribute. Note that we will interchangeably
refer to a vector-action set and its tabular representation from now on.

Inspired by k-anonymity [24] in PPDP domain, Definition 4 quantifies the amount
of privacy protection under a given vector-action set. This model follows the widely
adopted approach of assuming a fixed privacy requirement while minimizing the cost.

Definition 4 (k-Indistinguishability). Given a vector-action set VA, we define
- a padding group as any S ⊆ VA satisfying that all the pairs in S have identical

flow-vectors and no S′ ⊃ S can satisfy this property, and
- we say VA satisfies k-indistinguishability (k is an integer) or VA is k-indistinguishable

if the cardinality of every padding group is no less than k.

Discussion One may argue that, in contrast to encryption, k-indistinguishability may
not provide strong enough protection. However, as mentioned before, we are consid-
ering cases where encryption is already broken by side-channel attacks, so the strong
confidentiality provided by encryption is already not an option. Second, in theory k
could always be set to be sufficient large to provide enough confidentiality, although
we believe a reasonably large k would usually satisfy users’ privacy requirements for
most practical applications. Finally, since most web applications are publicly accessi-
ble and consequently an eavesdropper can unavoidably learn about possible inputs, we
believe focusing on protecting sensitive user input (by hiding it among other possible
inputs) yields higher practical feasibility and significance than on perfect confidentiality
(attempting to hide everything).



Furthermore, such mapped PPDP problems actually possess a unique characteris-
tic. That is, the sensitive values (actions) are always unique. Thus, by satisfying k-
indistinguishability, the vector-action set also satisfies l-diversity (l = k) in its simplest
form [20]. We will also apply more general forms of l-diversity to address cases where
not all actions should be treated equally in padding, as sketched in Section 6. Further-
more, a probabilistic approach based on differential privacy [12] is another possible
extension to enhance our model such that the padding result will be immune to eaves-
droppers’ prior knowledge. Nonetheless, this simple model is sufficient to demonstrate
the usefulness of mapping PPTP to PPDP.

In addition to privacy requirement, we also need a quantitative measure for the cost
of padding and processing. Across the whole vector-set, Definition 5 counts the number
of additional bytes after padded, while Definition 6 counts the number of flows that
are involved in padding. We focus on these simple models in this paper while there
certainly exist other ways for modeling such costs.

Definition 5 (Distance and Padding Cost). Given a vector-set V , we define

- the vector-distance between two equal-length flow-vectors v1 and v2 as: vdis(v1, v2) =∑|v1|
i=1(|s1i − s2i|) where s1i and s2i are the ith flow in v1 and v2, respectively.

- the padding cost of V as: cost =
∑|V |

i=1(vdis(vi, v
′
i)) where vi and v′i denote a

flow-vector in V and its counterpart after padding, respectively.

Definition 6 (Processing Cost). Given a vector-set V , we define the processing cost of
V as the number of flows in V which corresponding packets should be padded.

2.3 The SVMD and MVMD Cases

In the previous section, we focused on the simplified SVSD case to facilitate a focused
discussion on the privacy and cost model. We now look at the more realistic cases.

First, we consider the Single-Vector Multi-Dimension (SVMD) case where each
flow-vector may include more than one flows whereas each action-sequence is still
composed of a single action. In this case, the vector-action set needs to be mapped to a
table T (s1, . . . , s|v|, a) with multiple quasi-identifier attributes (each flow corresponds
to an attribute). Thus, based on Definition 4, flow-vectors can form a padding group only
if they are identical with respect to every flow inside the vectors. Another subtlety is that
the model of vector-action set requires all the flow-vectors to have the same number of
flows, which is not always possible in practice. One solution is to insert dummy packets
of size zero which will then be handled as usual in the process of padding.

Next, we consider the Multi-Vector Multi-Dimension (MVMD) case in which each
action-sequence consists of more than one actions and each flow-vector includes multi-
ple flows. Definition 7 expresses the relationship between actions in an action-sequence.

Definition 7 (i-prefix, adjacent-prefix). We define

- the i-prefix of an action-sequence ~a = (a1, a2, . . . , at) (i ∈ [1, t]), denoted as
pre(~a, i), as the sequence (a1, a2, . . . , ai), and we say ai−1 is the adjacent-prefix
(or simply prefix) of ai.

- similarly, we define the i-prefix of vector-sequence ~v, and the adjacent-prefix of vi.



In the MVMD case, due to the prefix relationship, the flow-vector for an action
may provide additional information about flow-vectors that correspond to the previous
actions in the same action-sequence. Such knowledge may enable the eavesdropper to
refine his guesses about an action. Such a scenario is illustrated in Figure 1. Also, we
slightly change the definition of a vector-action set to accommodate the added prefix
action information, as shown in Definition 8. We will delay the discussion about how a
padding algorithm may satisfy k-indistinguishability in this case to the next section.

Prefix Flow-Vector v Action a 
a22 v31 a31 

 v12 a32 
 v11 … 
 v11 … 
 v11 … 
 v11 … 
 v11 … 
  … 
 v1n … 

Prefix Flow-Vector v Action a 
a11 v21 a21 

 v12 a22 
 v11 … 
 v11 … 
 v11 … 
 v11 … 
 v11 … 
  … 
 v1n 

Prefix Flow-Vector v Action a 
 v11 a11 
 v12 a12 
 … … 
 … … 
 … … 
 … … 
 … … 

Fig. 1. The Vector-Action Set in MVMD Case

Definition 8 (Vector-Action Set (MVMD Case)). Given n action-sets {Ai : 1 ≤ i ≤
n} and its corresponding vector-sets {Vi : 1 ≤ i ≤ n}, the vector-action set VA is the
collection of sets {{(v, a) : v ∈ Vi ∧ a ∈ Ai} : 1 ≤ i ≤ n}.

3 PPTP Problems

The formal model introduced in the previous section enables us to formulate a series of
PPTP problems and study their complexity. We first discuss the choice of our ceiling
padding approach among other possibilities in Section 3.1, and then address the SVSD
and SVMD cases in Section 3.2 and the MVMD case in Section 3.3.

3.1 Padding Method

In choosing a padding method, we need to address two aspects, privacy protection by
satisfying the k-indistinguishability property, and minimizing padding cost. As previ-
ously mentioned, an application-agnostic approach, such as packet-size rounding and
random padding, will usually incur high padding cost while not necessarily guarantee-
ing sufficient privacy protection [9]. We now revisit this argument by showing that a
larger rounding size does not necessarily lead to more privacy. With our model, more
privacy can now be clearly defined as satisfying k-indistinguishability for a larger k.
Consider rounding the flows shown in the left tabular of Table 2 to a multiple of 128
(for example, 509 to 4 × 128 = 512). It can be shown that such rounding can achieve
5-indistinguishability (detailed calculations will be omitted due to space limitations).
However, increasing the rounding size to 512 can still only satisfy 5-indistinguishability,
whereas further increasing it to 520 will actually only satisfy 2-indistinguishability.

On the other hand, as demonstrated in Section 1, we can now apply the PPDP tech-
nique of generalization to addressing the PPTP problem. A generalization technique



will partition the vector-action set into padding groups, and then break the linkage
among actions in the same group. One unique aspect in applying generalization to PPTP
is that padding can only increase each packet size but cannot decrease it, or replace it
with a range of values like in normal generalization. The above considerations lead to a
new padding method given in Definition 9. Basically, after partitioning a vector-action
set into padding groups, we pad each flow in a padding group to be identical to the
maximum size of that flow in the group.

Definition 9 (Dominance and Ceiling Padding). Given a vector-set V , we define

- the dominant-vector dom(V ) as the flow-vector in which each flow is equal to the
maximum of the corresponding flow among all the flow-vectors in V .

- a ceiling-padded group in V as a padding group in which every flow-vector is
padded to the dominant-vector. We also say V is ceiling-padded if all the groups
are ceiling-padded.

We will focus on the ceiling padding method in the rest of the paper. When no
ambiguity is possible, we will not distinguish between vector-set, vector-action set,
flow-vector, and vector-sequence.

3.2 The SVSD and SVMD Cases

In the SVSD case, there is only a single flow in each flow-vector of the vector-set.
Therefore, we only need to modify the vector-set by increasing the value of some flows
to form padding groups. The padding problem can be formally defined as follows.

Problem 1 (SVSD Problem). Given a vector-action set VA and the corresponding vector-
set V and action set A, the privacy property k ≤ |V |, find a partition PVA on VA such
that the corresponding partition on V , denoted as PV = {P1, P2, . . . , Pm}, satisfies

- ∀(i ∈ [1,m]), |Pi| ≥ k;
- The padding cost

∑m
i=1(dom(Pi)× |Pi|) is minimal. �

In the SVMD case, there are more than one flows in each flow-vector of the vector-
set. The padding problem can be defined as follows:

Problem 2 (SVMD problem). Given a vector-action set VA and the corresponding
vector-set V (in which each flow-vector includes np flows) and action setA, the privacy
property k ≤| V |, find a partition PVA on VA such that the corresponding partition on
V , denoted as PV = {P1, P2, . . . , Pm}, satisfies

- ∀(i ∈ [1,m]), |Pi| ≥ k;
- The cost

∑m
i=1(

∑np

j=1((dom(Pi))[j])× |Pi|) is minimal. �

Theorem 1 shows that the above PPTP problem is intractable. The proof is omit-
ted due to space limitations (basically, we prove the result through a reduction to the
problem of Edge Partition Into Triangles (EPIT) [14]). Theorem 1 indicates that Prob-
lem 2 is NP-hard even when there are only two different flow values (that is, the sizes
of packets in the traffic) in the vector-set.



Theorem 1. Problem 2 is NP-complete when k = 3 and the flow-vectors are from any
binary alphabet

∑
.

Note that, at first glance, the SVMD problem may resemble the problem of k-means
clustering [15]. However, algorithms for k-means clustering cannot be directly applied
to our problem due to following differences between these two problems. First, k-means
clustering needs to partition a multiset into k groups, whereas in our problem, the min-
imal size of each group must be at least k. Second, k-means clustering is to minimize
the within-cluster sum of squares, while our problem is to minimize the total distance
between each of the flow-vectors and the dominant-vector.

3.3 MVMD Problem

As mentioned in Section 2.3, by correlating flow-vectors in the vector-sequence, an
eavesdropper may refine his guesses of the actual action-sequence. We first discuss the
challenges of traffic padding in such cases by a toy example of auto-suggestion feature.

Example 4. In Table 5, the second column shows each flow corresponding to c1, c2, c3, c4
when entered as the first keystroke, respectively. Similarly, the 16 cells cij in row:
(i ∈ [2 − 5]) and column: (j ∈ [3 − 6]) show the flow corresponding to the second
keystroke when ci−1 is the first keystroke and cj−2 the second keystroke.

Suppose an eavesdropper has observed the flow for the second keystroke. In order
to preserve 2-indistinguishability with minimal padding overhead, we will partition the
16 cells into eight groups Pi = {cjk : cjk

10 = i}, such that the size of each group is not
less than 2. For example, the queried strings c1c1 and c3c2 are in one group and c1c1
should be padded to 15. When the eavesdropper observes that the flow for the second
keystroke is 15, she cannot determine whether the queried string is c1c1 or c3c2.

However, suppose that the eavesdropper also observes the flow corresponding to
the first keystroke, they can determine that the first keystroke is either c1 or c3 when the
flow is 5 or 15, respectively. Consequentially, the eavesdropper can eventually infer the
queried string by combining these observations. �

c1 c2 c3 c4
c1 5 10 20 80 50
c2 10 40 70 30 60
c3 15 65 15 45 75
c4 20 35 55 85 25

Table 5. Padding in the MVMD Case

One seemingly valid solution is padding the flow-vector for each keystroke so that
2-indistinguishability is satisfied separately for each keystroke. Unfortunately, this will
fail to satisfy 2-indistinguishability. To pad traffic for the first keystroke, the optimal
solution is to partition {5, 10, 15, 20} into two padding groups, {5, 10} and {15, 20}.
However, when the eavesdropper observes the flow corresponding to the first keystroke,
he/she can still determine it must be either c1 or c3 when the size is 10 or 20, respec-
tively, because only when the first keystroke starts with c1 or c3 can the flow for second
keystroke be padded to 15. Therefore, the eavesdropper will eliminate c2 and c4 from
possible guesses, which violates 2-indistinguishability.



Another seemingly viable solution is to first collect all vector-sequences for the
sequence of keystrokes and then pad them such that the current input string as a whole
cannot be distinguished from at least k − 1 others. Unfortunately, such an approach
cannot guarantee the privacy property, either. First, the auto-suggestion feature requires
the server to immediately respond to the client upon each single keystroke. Second,
when receiving a single keystroke, the server cannot predict what would be the next
input and hence cannot decide which padding option is suitable. For example, suppose
the flow corresponding to c1 in c1c2 should be padded to 10, while in c1c3 to 15. When
the server receives c1, it cannot determine whether to pad c1 to 10 or to 15.

The above challenges mainly arise due to the approach of padding each vector-set
independently. We now propose a different approach. Intuitively, the partitioning of a
vector-set corresponding to each action will respect the partitioning results of all the
previous actions in the same action-sequence. More precisely, the padding of different
vector-sets is correlated based on following two conditions.

- Given two t-sized vector-sequences ~v1 and ~v2, any prefix pre(~v1, i) and pre(~v2, i)(i ∈
[2, t]), can be padded together only if ∀(j < i), pre(~v1, j) and pre(~v2, j) are
padded together.

- For any two t-sized action-sequences~a1 and~a2 and corresponding vector-sequences
~v1 and ~v2, if pre(~a1, i) = pre(~a2, i)(i ∈ [1, t]), then pre(~v1, i) and pre(~v2, i) must
be padded together.
Once a partition satisfies aforementioned conditions, no matter how an eavesdropper

analyzes traffic information, either for an action alone or combining multiple observa-
tions of previous actions, the mental image about the actual action-sequence (or any of
its subsets) remains the same (detailed proof is omitted due to space limitations). Due
to the similarity between the conditions and a related concept in graph theory, we call a
partition satisfying such conditions the oriented-forest partition.

Problem 3 (MVMD problem). Given a vector-action set VA = (VA1, VA2, . . . , VAt)
where VAi = (Vi, Ai) (i ∈ [1, t]), the privacy property k ≤ |Vt|, find the partition
PVAi on VAi such that the corresponding partition PVi = {P i

1, P
i
2, . . . , P

i
mi
} on Vi

satisfies

- ∀((i ∈ [1, t− 1]) ∧ (j ∈ [1,mi]))

{
|P i

j | ≥ k, if (|Vi| ≥ k),
|P i

1| = |Vi|, if (|Vi| < k);
- ∀(j ∈ [1,mt]), |P t

j | ≥ k;
- The sequence of PVi is an oriented-forest partition;
- The total padding cost of PVi (i ∈ [1, t]) is minimal. �

Obviously, Problem 3 is also NP-complete when k ≥ 3 since Problem 2 is special
case of Problem 3.

4 The Algorithms

In this section, we design three algorithms for partitioning the vector-action set into
padding groups to satisfy a given privacy requirement. Our intention is not to design an
exhaustive list of solutions but rather to demonstrate the existence of abundant possibil-
ities in approaching this PPTP issue.



4.1 The svsdSimple Algorithm

The main intention of presenting the svsdSimple algorithm is to show that, when apply-
ing k-indistinguishability to PPTP problems, an algorithm may sometimes be devised
in a very straightforward way, and yet achieve a dramatic reduction in costs when com-
pared to existing approaches (as shown in the next section). The svsdSimple algorithm
shown in Table 6 basically attempts to minimize the cardinality of padding groups in the
SVSD case. Note that when the cardinality of vector-action set is less than the privacy
property k, there is no solution to satisfy the privacy property. In such cases, our algo-
rithms will simply exit, which will not be explicitly shown in each algorithm hereafter.

Algorithm svsdSimple
Input: a vector-action set VA, the privacy property k;
Output: the partition PVA of VA;
Method:
1. Let PVA = φ;
2. Let SVA be the sequence of VA in a non-decreasing order of V ;
3. Let N = |SVA|

k
;

4. For i = 0 to N − 2

5. Let Pi =
⋃(i+1)×k−1

j=i×k (SVA[j]);
6. Create partition Pi on PVA;

7. Create PN−1 =
⋃|SVA|−1

j=(N−1)×k(SVA[j]) on PVA;
8. Return PVA;

Table 6. The svsdSimple Algorithm for SVSD-Problem

More specifically, svsdSimple first sorts each single flow in the flow-vector into a
non-decreasing order of the flows, and then selects k pairs of (flow-vector, action) each
time in that order to form a padding group. This is repeated until the number of pairs is
less than k. The remainder of pairs is simply appended to the last padding group.

The computational complexity is O(nlogn) where n = |VA|, since step 2 costs
O(nlogn) time and each (flow-vector, action) pair is considered once for the remaining
steps.

4.2 The svmdGreedy Algorithm

The svmdGreedy algorithm, which aims at both SVSD and SVMD problems, is shown
in Table 7. Roughly speaking, the svmdGreedy recursively divides the padding group
Pi in PVA, where |Pi| ≥ 2×k, into two padding groups Pi1 and Pi2 until the cardinality
of any padding group in PVA is less than 2 × k. When svmdGreedy splits a padding
group Pi(VAi) into two, these resultant padding groups, Pi1 and Pi2, must satisfy that
(Pi1 ∪ Pi2 = Pi) ∧ (Pi1 ∩ Pi2 = φ) ∧ (|Pi1| ≥ k) ∧ (|Pi2| ≥ k). Obviously, there
must exist many solutions of Pi1 and Pi2. svmdGreedy limits the optimizing process
insides a subset of possible solutions as follows. For each flow, svmdGreedy first sorts
the flow-vectors in non-decreasing order of that flow, then splits Pi into Pi1 and Pi2

at position pos in the sorted sequence of flow-vectors where (pos ∈ [k, |Pi| − k]).
There are totally (np × (|Pi| − 2 × k)) possible solutions for all flows in the flow-
vector, where np is the number of flows in flow-vector. SvmdGreedy finally selects the



one with minimal padding cost among this set of solutions. Clearly, this algorithm can
solve SVSD-problem when np is set to be 1.

Algorithm svmdGreedy
Input: a vector-action set VA, the privacy property k;
Output: the partition PVA of VA;
Method:
1. If(|VA| < 2× k)
2. Create in PVA the VA;
3. Return;
4. Let np be the number of flows in flow-vector;
5. For p = 1 to np

6. Let SVA
p be the sequence of VA in the non-decreasing order of the pth flow in the vector;

7. For i = k to |SVA
p | − k

8. Let costp,i as the cost when SV
p is split at position i;

9. Let costp be a pair (c, i) where c is the minimal in (costp,i) and i is the position;
10. Let cost be a triple (c, p, i) where c is the minimal in c of costp(p ∈ [1, np]), and

p and i are the corresponding p and i;
11. Split SVA

cost.p into VA1 and VA2 at position cost.i;
12. Return svmdGreedy(VA1);
13. Return svmdGreedy(VA2);

Table 7. The svmdGreedy Algorithm For SVMD-Problem

The svmdGreedy algorithm has an O(np × n2) time complexity in the worst case
(each time, the algorithm splits Pi into k-size Pi1 and (|Pi| − k)-size Pi2), and O(np×
n× logn) in average cases (each time, the algorithm halves Pi), where n = |VA|.

4.3 The mvmdGreedy Algorithm

Both svsdSimple and svmdGreedy algorithms tackle cases where each action-sequence
consists of a single action (correspondingly, each vector-sequence consists of a single
flow-vector). Our intention now in devising the mvmdGreedy is to demonstrate how
the two conditions mentioned in Section 3.3 facilitate the algorithm design. In this al-
gorithm, we extend PPDP solutions to a sequence of inter-dependent vector-action sets.
The only constraint in partitioning vector-action set VAi is to ensure all flow-vectors in
a padding group should have their prefix in an identical padding group of VAi−1.

The mvmdGreedy algorithm for MVMD-Problem is shown in Table 8. Roughly
speaking, mvmdGreedy partitions each vector-action set in the sequence in the given
order, each for the flow-vector corresponding to an action in an action-sequence. More
specifically, mvmdGreedy applies svmdGreedy to partition the first vector-action set in
the sequence. For each remaining vector-action set VAi, mvmdGreedy first partitions
it into |PVAi−1 | number of padding groups based on the adjacent-prefix of the flow-
vectors, and then applies svmdGreedy to further partition these padding groups.

Similarly, the mvmdGreedy algorithm also has an O(np × n2) time complexity in
the worst case (each time, the algorithm splits VAi into k-size VAi1 and (|VAi| − k)-
size VAi2), and O(np × n × logn) in average cases (each time, the algorithm halves
VA), where n is the total number of flow-vectors in those vector-sets.



Algorithm mvmdGreedy
Input: a t-size sequence D of vector-action sets, the privacy property k;
Output: the partition PD of D;
Method:
1. Let D = (VA1, VA2, . . . , VAt);
2. Let P 1 = svmdGreedy(VA1, k);
3. For each (w ∈ [1, |P 1|]), assign group G1

w ∈ P 1 a unique gid = w;
4. For i = 2 to t
5. Create in P i |P i−1| number of empty groups Gi

w(w ∈ [1, |P i−1|]);
6. For each via in VAi

7. Let w be the gid of the group Gi−1
w in P i−1 that the prefix of via in VAi−1 belongs to;

8. Insert via into Gi
w;

9. For each (w ∈ [1, |P i−1|])
10. P i = (P i \Gi

w) ∪ svmdGreedy(Gi
w, k);

11. For each (w ∈ [1, |P i|]), assign group Gi
w ∈ P i a unique gid = w;

12. Return PD = {P i : 1 ≤ i ≤ t};

Table 8. The mvmdGreedy Algorithm For MVMD-Problem

5 Evaluation

In this section, we evaluate the effectiveness of our solutions and efficiency through
experiments with real world Web applications. Section 5.1 first elaborates on the ex-
perimental settings. Then, Section 5.2, 5.3, and 5.4 present experimental results of the
communication, computation, and processing overhead, respectively.

5.1 Experimental Setting

We collect testing vector-action sets from two real-world web applications, a popular
search engine engineB (where users’ searching keyword needs to be protected) and
an authoritative drug information system drugB from a national institute (where users’
possible health information need to be protected). Specially, for engineB , we collect
flow-vectors with respect to query suggestion widget for all possible combinations of
four letters by crafting requests to simulate the normal AJAX connection request. For
drugB , we collect the vector-action set for all the drug information by mouse-selecting
following the application’s three-level tree-hierarchical navigation. Such data can be
collected by acting as a normal user of the applications without having to know internal
details of the applications. For our experiment, these data are collected using separate
programs whose efficiency is not our main concern in this paper.

Information about data cardinality and action levels is shown in Table 9(a), and
information about the distribution and distinct number of data sizes is shown in Ta-
ble 9(b). We observe that the flows of drugB are more diverse than those of engineB

evidenced by the standard deviations (σ) of the flows. The flows of drugB are also
larger than those of engineB based on their means (µ). Besides, the flows of drugB

are much more disparate in values than those of engineB . For example, there are only
889 different flow sizes among 456976 flow-vectors in engineB , while there are 1015
different among 4883 vectors in drugB . Later we will show the effect of these different
characteristics of flows on the costs.



engineB drugB

Level Number 4 3
1 26, 1,
2 676, 27,
3 17.6K, 4883
4 457K -

Vector Number in Total 475254 5091
(a).The Number of Vectors

Level engineB drugB

µ σ # µ σ #
1 936 71 23 - 0 1
2 896 70 229 37833 22102 27
3 768 216 741 23411 9796 1015
4 429 173 889 - - -

(b). Distribution of Data Sizes

Table 9. Flow Data Outline of engineB and drugB

Note that the size information collected through our programs may have integrally
shifted from the original one. However, we argue that such information is still suffi-
cient and reasonable for our experimental evaluation due to following facts. First, the
collected data preserve adequate characteristics of the original data with respect to the
traffic-size distinction. Second, although the length of HTTP request and response may
vary due to different browsers and platforms, the variance is constant for the same
setting and can be determined in advance. Also, the size information may vary when
adopting compression in the web objects or HTTP body. Our solutions regard such
variances as different inputs.

All experiments are conducted on a PC with 2.20GHz Duo CPU and 4GB mem-
ory. We evaluate the overhead of computation, communication, and processing using
execution time, padding cost ratio, and processing cost ratio, respectively. Specifically,
for each application, we first obtain the total size of all flows ttl for all possible actions
before padding, and then compute the padding cost cost as shown in Definition 5 after
padding. The padding cost ratio of traffic padding is formulated as cost

ttl . We also count
the number of flows which need to be padded, and then formulate the processing cost
ratio as the percent of flows to be padded among all flows.

5.2 Communication Overhead

We first compare the communication overhead of our algorithms against an existing
padding method, namely, packet-size rounding (simply rounding) [9]. We set the round-
ing parameter∆ = 512 and∆ = 5120 for engineB and drugB , respectively. Note that
these ∆ values just lead to results satisfying 5-indistinguishability in the padded data,
and are adapted only for the comparison purpose. The first set of experiments evaluate
svsdSimple, svmdGreedy, and mvmdGreedy algorithms. To apply the svsdSimple algo-
rithm, we generate two vector-action sets by synthesizing the flow-vectors for the last
action of engineB , drugB , respectively. Note that the svmdGreedy and mvmdGreedy
algorithms are equivalent with length-one action sequences.

Figure 2(a) shows padding cost of each algorithm against k. Compared to round-
ing [9], our algorithms have less padding cost, while svmdGreedy incurs significantly
less cost than that of rounding. Table 10(a) shows the details of padding cost overhead
ratio in percentage for k = 192. We observe that our algorithms are superior specially
when the number of flow-vectors in a vector-action set is larger since our algorithms
have high possibility to partition the flow-vectors with close value into padding group.

We then compare the mvmdGreedy with rounding algorithm in the case of action-
sequences of lengths larger than one. Figure 2(b) shows padding cost of our mvmd-
Greedy algorithm and rounding algorithm against k. Packet-size rounding incurs larger
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Application svsdSimple mvmdGreedy Rounding
EngineB 0.0748 0.0604 39.4043
DrugB 3.0743 1.8097 10.5922

(a). One-level Action

Application mvmdGreedy Rounding
EngineB 3.3297 38.2659
DrugB 2.8864 10.5672

(b). Many-level Action
Table 10. Padding Cost Overhead Ratio When k = 192

padding cost than mvmdGreedy in all cases. Note that, rounding will get worse when
∆ is set to be larger to minimize an eavesdropper’s capability of inference [9]. For ex-
ample, the padding ratio is 118% for drugB when applying rounding to make all drug
information indistinguishable. Table 10(b) shows the detail of overhead ratio in per-
centage for k = 192. The reason for mvmdGreedy algorithm has more padding cost
in the case of many-level action than in one-level is as follows. In many-level action,
mvmdGreedy first partition each vector-action set (except VA1) into padding groups
based on the prefix of actions and regardless of the values of flow-vectors.

5.3 Computational Overhead

Figure 3(a) illustrates the computation time of mvmdGreedy algorithm and rounding
algorithm against the flow data cardinality n. We generate n-sized flow data by synthe-
sizing n∑

i(|VAi|) copies of engineB , drugB respectively. We set k = 160 for this set of
experiments, and conduct each experiment 1000 times and then take the average.

As the results show, the mvmdGreedy algorithm is practically efficient (1.2s for
2.7m flow-vectors) and the computation time increases slowly with n, although our
algorithm requires slightly more overhead than rounding when it is applied to a single
∆ value. However, this is partly due to the application-agnostic nature of the rounding
method, which results in worse performance in terms of padding cost. Also, as shown
in the previous section, such a method may require to test many∆ values for an optimal
choice since larger values do not guarantee better privacy protection.

We then study computation time against privacy property k on the two synthesized
vector-action sets (6× engineB and 64×drugB). As expected, rounding is insensitive
to k since it does not have the concept of k. On the other hand, a tighter upper bound
on the time required for mvmdGreedy is O(np × n × 2k × λ) in the worse case and
O(np × n × log(2k × λ)) in the average case, where λ is the maximal number of
actions which has the same prefix in all action-sequences. Clearly, when λ is O(n),
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the computational complexity here is equivalent to that in Section 4.3. The reason for
this tighter upper bound is that mvmdGreedy always feeds a vector-action set with
maximal 2k × λ cardinality to svmdGreedy (except VA1 whose size is 26, a constant,
for searchB), since:

- For each vector-action set VAi, mvmdGreedy first partitions it into padding groups
based on the prefix of each flow-vector (which has O(|VAi|) solution).

- There are at most 2k adjacent-prefixes in same padding group of VAi−1.

Therefore, when 2k × λ � n, the execution time of mvmdGreedy algorithms for
concrete vector-action sets is also a function of k. These two datasets in our experi-
mental environment satisfy above condition, for example, 26(λ) × 320(k) � 2.7m
for searchB . In other words, in such case the execution time should be in the range of
[log(2k×λ), 2k×λ] times of O(np×n) which is the execution time of rounding algo-
rithm. Figure 3(b) illustrates the computation time of mvmdGreedy algorithm against
the privacy property k. Interestingly, the computation time increases slowly (from 1.19s
to 1.42s) with k for engineB , and decreases slowly (from 0.147s to 0.136s) for drugB .
Stress that the results are reasonable since both results fall within the expected range.

5.4 Processing Overhead

Our previous discussions have focused on reducing the communication overhead of
padding while ensuring each flow-vector to satisfy the desired privacy property. To
implement traffic padding in an existing Web application, if the HTTPS header or data
is compressed, we can pad after compression, and pad to the header; if header and data
are not compressed, we can pad to the data itself (e.g., spaces of required padding bytes
can be appended to textual data). Clearly, the browser’s TCP/IP stack is responsible
for the header padding, while the original web applications regard the data padding as
normal data. An application can choose to incorporate the padding at different stage of
processing a request. First, an application can consult the outputs of our algorithms for
each request and then pad the flow-vectors on the fly. Second, an application can modify
the original data beforehand based on the outputs of our algorithms such that the privacy
property is satisfied under the modifications. However, padding may incur a processing
cost regardless of which approach to be taken. Therefore, we must aim to minimize the



number of packets to be padded. For this purpose, we evaluate the processing cost ratio,
which captures the proportion of flow-vectors to be padded among all such vectors.

Figure 4 shows the processing cost of each algorithm against k. Rounding algo-
rithm must pad each flow-vector regardless of the k’s and the applications, while our
algorithms have much less cost for engineB and slightly less for drugB . Note that in
this paper our model and algorithm design has focused on minimizing the padding cost
only. We consider refining them for reducing both the padding and processing cost as
our future work.
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6 Extension and Discussion
In this section, we first present an extension of our model and then discuss the imple-
mentation of our solutions.

6.1 Extension to l-Diversity

We now outline an extension of our model to further show that many existing PPDP
concepts may be adapted to address PPTP issues. Specifically, we adapt l-diversity [20]
to address cases that no all actions should be treated equally in padding (e.g., some
statistical results regarding the likelihood of different inputs may be publicly known).

We first assign an integer weight to each action to represent the possibility it occurs.
A larger weight indicates that the corresponding action is more likely to be performed.
We also slightly change the definition of vector-action set to include the weight infor-
mation. Then we apply l-diversity to quantify the privacy by ensuring the constraint as
follows. For each padding group, the summation of weights corresponding to the ac-
tions in the group should be at least l times of the maximal weight value in that group.

With the aforementioned revisions, we reformulate the PPTP problem (MVMD
problem in Section 3.3) to satisfy l-diversity instead. Observe that, the reformulated
problem, called diversity problem, is simplified to Problem 3 if the weights of actions
in a vector-action set are set to be identical and l = k. Thus, the diversity problem is at
least as hard as Problem 3.



Although l-diversity in PPTP shares the same spirit with that in PPDP, algorithms
for PPDP cannot be directly applied here, because in PPDP, many tuples may have
the same sensitive values, whereas any action in an action-set is always unique, and we
assign a weight for each action to distinguish its possibility to be performed from others.
The detail of diversity problem and its algorithms are omitted due to space limitations.

6.2 Implementation Issues

In previous sections, we have presented algorithms for determining the amount of
padding for each flow given the vector-action set. To incorporate our techniques into an
existing Web application requires following three steps. First, gather information about
possible action-sequences and corresponding vector-sequences in the application. Sec-
ond, feed the vector-action sets into our algorithms to calculate the desired amount of
padding. Third, implement the padding according to the calculated sizes.

The main difference between implementing an existing method, such as rounding,
and the ceiling padding method lies in the second stage. Thus, we have focused on
this stage in this paper. Nonetheless, we have also briefly described how to collect the
vector-action sets in Section 5.1 and how to facilitate the third stage in Section 5.4.

One may question the practicality of gathering information about possible action-
sequences since the number of such sequences can be very large. However, we believe
it is practical for most Web applications due to following facts. First, the aforemen-
tioned side-channel attack on web applications typically arises due to highly interactive
features, such as auto-suggestion. The very existence of such features implies that the
application designer has already profiled the domain of possible inputs (that is, action-
sequences) for implementing the feature. Therefore, such information must already ex-
ist in certain forms and can be easily extracted at a low cost. Second, even though a
Web application may take infinite number of inputs, this does not necessarily mean
there would be infinite action-sequences. For example, a search engine like Google
will no longer provide auto-suggestion feature once the query string exceeds a certain
length. Third, all the three steps mentioned above are part of the off-line processing,
and would only need to be repeated when the Web application undergoes a redesign.

We also note that implementing an existing padding method, such as packet-size
rounding, will also need to go through the above three steps if only the padding cost is
to be optimized. For example, without collecting and analyzing the vector-action sets,
a rounding method cannot effectively select the optimal rounding parameter.

7 Related Work
The privacy preserving issue has received significant attentions in various domains,
such as, data publishing and data mining [10, 24], mobile and wireless network [4, 5],
social network [11, 22], multiparty computation [21], web applications [6, 9, 26], and so
on. In the context of privacy-preserving data publishing, since the introduction of the k-
anonymity concept [24, 28], much effort has been made on developing efficient privacy-
preserving algorithms [1, 16]. Many other models are also proposed to enhance the k-
anonymity, such as l-diversity [20], t-closeness [17]. Recently, differential privacy [12]
has been widely accepted as a strong privacy model for answering statistic queries.



Various side-channel leakages have been extensively studied in the literature. By
measuring the amount of time taken to respond to the queries, an attacker may extract
OpenSSL RSA privacy keys [7]. By differentiating the sounds produced by keys, an
attacker may recognize the key pressed [3]. Ristenpart et al. discover cross-VM infor-
mation leakage on Amazon EC2 [23]. Search histories may be reconstructed by session
hijacking attack [8]. Saponas et al. show the transmission characteristics of encrypted
video streaming may allow attackers to recognize the title of movies [25]. HTTPOS are
proposed to prevent information leakages of encrypted HTTP traffic in [19]. Timing
mitigator is introduced to achieve any given bound on timing channel leakage in [2].

Closest to our work, Chen et al. in [9] demonstrate through case studies that side-
channel attacks are fundamental to web applications. Our model and solutions provide
finer control over the tradeoff between privacy protection and cost. The model section
of this paper has previously appeared as a short paper in [18] and now we significantly
extend it with problem formulation, algorithm design, and experimental evaluations.

8 Conclusion
As Web-based applications become more popular, their security issues will also attract
more attention. In this paper, we have demonstrated an interesting connection between
the traffic padding issue of Web applications and the privacy-preserving data publishing.
Based on this connection, we have proposed a formal model for quantifying the amount
of privacy protection provided by traffic padding solutions. We have also designed three
algorithms by following the proposed model. Our experiments with both real-world
applications have confirmed the performance of our solutions to be superior to existing
ones in terms of communication and computation overhead. For future research, we
intend to investigate padding approaches for frequently updated vector-action sets, and
the possibility of extrapolating the proposed model and approach to mitigate threats of
other side-channel leaks.
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