
Torchestra: Reducing Interactive Traffic Delays over Tor

Deepika Gopal
UC San Diego

drgopal@cs.ucsd.edu

Nadia Heninger
UC San Diego

nadiah@cs.princeton.edu

ABSTRACT
Tor is an onion routing network that protects users’ privacy
by relaying traffic through a series of nodes that run Tor
software. As a consequence of the anonymity that it pro-
vides, Tor is used for many purposes. According to several
measurement studies, a small fraction of users using Tor for
bulk downloads account for the majority of traffic on the
Tor network. These bulk downloads cause delays for in-
teractive traffic, as many different circuits share bandwidth
across each pair of nodes. The resulting delays discourage
people from using Tor for normal web activity.

We propose a potential solution to this problem: separate
interactive and bulk traffic onto two different TCP connec-
tions between each pair of nodes. Previous proposals to im-
prove Tor’s performance for interactive traffic have focused
on prioritizing traffic from less active circuits; however, these
prioritization approaches are limited in the benefit they can
provide, as they can only affect delays due to traffic pro-
cessing in Tor itself. Our approach provides a simple way
to reduce delays due to additional factors external to Tor,
such as the effects of TCP congestion control and queuing of
interactive traffic behind bulk traffic in buffers. We evalu-
ate our proposal by simulating traffic using several methods
and show that Torchestra provides up to 32% reduction in
delays for interactive traffic compared to the Tor traffic pri-
oritization scheme of Tang and Goldberg [18] and up to 40%
decrease in delays when compared to vanilla Tor.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
- Security and Protection

General Terms
Security, Design

Keywords
Privacy, Tor, BitTorrent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’12, October 15, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1663-7/12/10 ...$15.00.

1. INTRODUCTION
Tor is an anonymizing network designed by Dingledine,

Mathewson and Syverson in 2004 [8] that provides privacy
and anonymity to users all over the world. Traffic from
clients is relayed through three Onion Routers before being
forwarded to the destination. Tor’s goal is to prevent an
attacker from linking together the source and destination
IP addresses of clients and learning their browsing habits.
On any circuit, each Onion Router knows the address of the
node before and after it but not of any other node along the
path between the source and destination, thus preserving
anonymity. Tor has been designed to protect against a non-
global adversary i.e., an adversary who does not have control
over both exit and entrance nodes of a circuit.

Tor is known to suffer from performance issues, as de-
scribed by Dingledine and Murdoch in [9]. Since Tor relays
are run by users, bandwidth is limited to how much a user
is willing to allocate for Tor’s usage. Thus when Tor is used
for bulk file downloads (such as BitTorrent [5]), delays for
interactive traffic (such as web traffic and SSH) increase [9].
Several measurement studies have observed that BitTorrent
users represent only a small fraction (3-10%) of users in the
Tor network, but use the majority (50-70%) of the band-
width [13, 12, 3]. The disproportionate delays caused by
these bulk downloads provide a strong disincentive for users
to use Tor in situations where anonymity is not the main
goal. Since the level of anonymization improves with the
number of users, a reduction in delays for interactive traffic
may result in an increase in the number of Tor users and
benefit the Tor community.

Tor traffic can accumulate delays at many different pro-
cessing stages as it moves through the network. The rela-
tively small amount of traffic from interactive circuits will be
disproportionately delayed due to time spent queued behind
large amounts of bulk traffic in socket buffers or Tor’s output
buffers [7]. Additionally, since all circuits between a pair of
nodes go through a single connection, when TCP’s conges-
tion control is triggered on this connection due to bulk traf-
fic, interactive traffic on that connection will also be slowed
down [15]. We discuss these delays in more detail in Sec-
tion 3.

There have been several proposals to improve Tor’s per-
formance for interactive connections by using heuristics to
classify circuits as interactive or non-interactive, and on
each node prioritizing packets from interactive circuits be-
fore non-interactive circuits [18]. However, this approach is
limited to improving the delay time that interactive packets

spend in Tor’s output buffers when there is not much traffic
already queued up in the buffers [7].

Our approach, which we call “Torchestra”, is to create two
separate connections between each pair of nodes: one for
interactive traffic, and one for bulk traffic. This approach
allows us to address causes of delay that continue to exist in
prioritization schemes: by separating interactive traffic onto
its own connection, we automatically give it greater priority
in the input buffers and it will not be subject to congestion
control triggered by bulk traffic.

To classify traffic as bulk or interactive, we use the ex-
ponentially weighted moving average (EWMA) heuristic in-
troduced by Tang and Goldberg for their Tor traffic pri-
oritization scheme [18]. The EWMA heuristic calculates a
moving average of the number of cells sent on a circuit and
adds greater weight to recent values. Our implementation
continuously updates the EWMA value for each circuit and
transfers a circuit to the appropriate connection according
to its traffic flow. We describe our algorithm and implemen-
tation in Section 4.

In Section 5, we use the Tor simulator ExperimenTor [2]
to evaluate our proposal using several experiments: first by
comparing simple file downloads of various sizes, and then
using simulated traffic emulating packet timings recorded
from our own web and SSH traffic and finally, timing pat-
terns collected on a public, non-exit Tor node. We compare
the results to the vanilla Tor scheme and to the Tor traffic
prioritization scheme of Tang and Goldberg [18]. When we
replayed SSH and HTTP traffic collected from our own nor-
mal usage, we found between 8% to 32% reduction in delays
with Torchestra compared to prioritized Tor and a 13% to
36% reduction in delays when compared to vanilla Tor. In
our simulations with packet timings from Tor traffic, we ob-
served a 2% to 25% decrease in delays for interactive traffic
with Torchestra compared to prioritized Tor and a 4% to
40% decrease in delays when compared to vanilla Tor.

Finally, in Sections 6 and 7 we discuss the security proper-
ties of the scheme and potential modifications that may lead
to further improvement, including the possibility of more
fine-grained traffic balancing by dividing Tor traffic between
many different connections.

While there are several considerations to be made when
adopting Torchestra in practice, our results illustrate that
our proposal has the potential to improve Tor performance
significantly beyond the benefits seen by traffic prioritiza-
tion schemes. In essence, we are creating parallel Tor net-
works and using the separate connections to obtain the per-
formance we desire from each.

2. RELATED WORK
Reardon and Goldberg [15] were the first to propose a

scheme to improve Tor’s performance for interactive traffic.
They describe several problems due to bulk traffic, including
TCP congestion control unfairly affecting light traffic and
delays due to queuing of light traffic behind heavy traffic.
Their solution was to create a separate connection for every
client using a user-level TCP stack and to multiplex these
connections over a DTLS/UDP tunnel between every pair
of nodes. In this manner, a heavy circuit can affect only
itself, and not other heavy circuits or light circuits. While
this would be an ideal solution, Dingledine explains in [9]
that it has not yet been implemented due to licensing issues
on most high quality user-level TCP stacks.

Tang and Goldberg [18] proposed “prioritized Tor”, which
aims to reduce the delay of light circuits by giving higher
priority to interactive circuits. They did this by calculating
the Exponentially Weighted Moving Average (EWMA) of
the number of cells to measure the recent activity of a circuit,
and then giving circuits that have a lower EWMA value and
hence lower activity higher priority over other circuits that
have cells ready to transmit. According to Dingledine [7],
the benefit to this approach may be limited: since all circuits
are using the same connection to send data to the next node,
if there is already a large amount of data queued up on the
socket buffer or Tor’s output buffer, interactive circuits will
still face high delays. Also, light circuits will face the effects
of congestion control triggered by heavy circuits.

Dingledine [7] describes another option available for Tor
nodes to control traffic, the PerConnBWRate and PerConnB-
WBurst configuration options. Both these options are used
to separately rate-limit every connection from a non-relay.
In this way, heavy clients which are not relays can be throt-
tled at the entrance router itself. The issue with this ap-
proach as mentioned by Tschorsch and Scheuermann [19] is
that since this form of configuration is static, it does not take
care of the current load and state of the network and even
if there is bandwidth available, clients will be unnecessarily
throttled. To overcome this problem, Syverson, Jansen, and
Hopper [17] propose adaptive bandwidth throttling. They
use EWMA to classify circuits by usage, and throttle an
adjustable fraction of users at the entrance node.

The inspiration for our work and the name we chose for
our scheme comes from the Orchestra project of Chowd-
hury et al. [4], a method to manage network bandwidth in
a map-reduce system by opening a number of TCP connec-
tions proportional to the amount of data to be transferred
across the network in order to reduce the average job com-
pletion time. The node that has more data to transfer will
open more connections and, due to TCP’s max-min algo-
rithm, will get a greater share of the bandwidth. Originally,
we hypothesized that increasing the number of connections
for light circuits would ensure that they get a greater as-
sured share of bandwidth. However, Tor already implements
the max-min algorithm to ensure that bandwidth is divided
equally amongst connections, as well as sending out cells in
round-robin order for the different circuits on a connection.
It turns out that using separate connections for light and
heavy circuits improves Tor’s performance for more subtle
reasons, which we describe in Section 3.

Tschorsch and Scheuermann [19] explain how the division
of bandwidth between circuits is not fair. User-configured
bandwidth is divided equally amongst connections, and each
connection’s bandwidth is divided equally amongst its cir-
cuits. The authors observe that the circuits that exist on
connections shared between very few circuits get a larger
slice of the bandwidth. They implement a solution that
achieves max-min fairness between circuits and uses an N23
congestion feedback scheme to better make use of bandwidth
and prevent congestion. Their observations suggest a poten-
tial problem with our scheme: since the connection used for
interactive traffic likely has many more circuits than the
bulk transfer connection, less bandwidth will be available to
a light circuit using Torchestra than in vanilla Tor. We test
the impact of this in Section 6.2.

Several measurement studies have examined how Tor is
used by analyzing exit node traffic, and published statistics

on protocols and traffic distributions. In 2007, McCoy et
al. measured the fraction of BitTorrent users as 10%, and
their traffic consumption as 67% [13]. One year later in
2008, they measured these percentages as 3.3% and 51.5%,
respectively [12]. In the most recent study we know of, in
2010, Chaabane, Manils, and Kaafar [3] observed that Bit-
Torrent users made up only 10% of Tor connections, but
used 55% of traffic, while about 70% of circuits carried web
traffic, which accounted for about 35% of traffic. We use
this information to design experiments attempting to repli-
cate realistic conditions.

3. TOR TRAFFIC AND DELAYS
In this section, we discuss the potential sources of delay

in the Tor network. Throughout the rest of the paper, we
will refer to interactive traffic as light traffic and bulk traffic
as heavy traffic.

At the exit node, Tor processes the cells from each des-
tination and sends cells to the next node on each circuit in
round-robin order. If all circuits had similar traffic patterns,
this would be ideal. However, in reality, there is a great deal
of disparity between the traffic patterns of different circuits.
After incoming cells are processed, they are sent to Tor’s
output buffer, where cells from light circuits must wait be-
hind cells from heavy circuits before being transferred over
the network. These kind of delays affect the experience of
interactive traffic users but will not make much difference to
bulk traffic users.

As the packets are sent over the network, the connection
may trigger TCP congestion control to slow the transmission
rate [15]. Since cells from light circuits and heavy circuits
share the same connection, the heavy traffic may trigger
congestion control due to no fault of the light circuits, but
the cells from the light circuits will also be slowed.

How Torchestra can help.
The main idea behind Torchestra is to separate heavy traf-

fic from light traffic and thus prevent bulk traffic from in-
creasing delays for interactive traffic. All of the problems
mentioned are due to light traffic and heavy traffic going over
the same connection. Let us consider how having separate
connections might help solve each of the two problems. Re-
garding the queue waiting times, light traffic will no longer
be forced to wait behind heavy traffic since the socket buffers
and Tor output buffers (per connection) for the two types
of traffic will no longer be the same. For the congestion
control issue, if the two types of traffic are separated onto
different connections, when TCP’s congestion control algo-
rithm is triggered due to heavy traffic, light circuits will not
get affected. Thus we see that having separate connections
should lead to improvement in Tor’s performance for light
traffic.

4. OUR ALGORITHM
In our scheme, we open two connections between every

pair of communicating Tor nodes, one “light” connection
and one “heavy” connection. Circuits begin on the light
connection, and are transferred to the heavy connection if
their measured traffic crosses a relative threshold; similarly
we move a circuit back to the light connection if its traffic
drops below a certain threshold on the heavy connection.

We describe our classification methods and protocols be-
low.

4.1 Classifying a circuit
The classification of a circuit as light or heavy is done by

the exit node. This is because a node can identify when it
is running as an exit for a circuit without any ambiguity. In
this work we have considered the case where only one node
is responsible for switching a circuit, and the entire circuit
is switched at once. An alternative version of this scheme
could do this transfer on a node-by-node basis; see Section 6
for more information.

For a chosen window of time, the node collects statistics
about the number of cells sent on each connection and on
circuits using this node as an exit node. As in Tang and
Goldberg [18] we want to maintain a metric for how many
cells a circuit and the connection have sent recently. We
use the EWMA metric they chose for this purpose. We now
give an overview of EWMA and then a description of how
we classify circuits as light or heavy.

4.1.1 Exponentially Weighted Moving Average
The Exponentially Weighted Moving Average (EWMA)

is a statistic used to calculate the moving average while giv-
ing more weight to recent data [16]. For our application, it
smoothes the input, giving more priority to recent measure-
ments, and can be updated using a simple formula requiring
no memory.

The formula used to calculate the EWMA value at time t
is given by:

EWMA(t) = α · Y (t) + (1 − α) · EWMA(t− 1)

where EWMA(t) is the EWMA value at time t, Y (t) is the
data observation at time t and 0 ≤ α ≤ 1 is the multiplier
that determines the depth of memory of the EWMA.

The choice of the multiplier will determine to what extent
changes in recent data affect the average value. The larger
α, the larger the influence of Y (t) on the EWMA value. We
can define a parameter W which is related to the half-life of
the EWMA, and define α in terms of W .

α =
2

W + 1

To begin, we compute the unweighted average over the first
W periods, then from period W + 1, calculate the EWMA
using the above equation.

4.1.2 Circuit classification
In order to decide whether a circuit belongs on the light or

heavy connection, we define two relative thresholds T` and
Th.

The node calculates the EWMA of the traffic for every cir-
cuit using the node as an exit and for every corresponding
connection for a length of time; two seconds in our imple-
mentation.

After this initial period, we move a circuit from the light to
the heavy connection if its EWMA is above the threshold T`

times the average EWMA for the light connection. Similarly,
we move a circuit from the heavy connection back to the
light connection if its EWMA is below the threshold Th times
the average EWMA for the heavy connection.

In order to prevent inactive circuits from contributing to
a connection’s statistics and causing unnecessary transfers

(a) Inbound direction (b) Outbound direction

Figure 1: In our connection switching protocol, the connection is transferred first on the inbound direction, from the destination
to the source (in this figure, from the exit node to the middle node). No more cells are sent on the light connection after the
SWITCH cell has been sent. The circuit is then switched to the heavy connection, and a SWITCHED_CONN cell is sent on this
connection followed by further cells. To switch the conection on the outbound direction, the destination sends a SWITCHED

cell on the light connection and then sends all further cells on the heavy connection.

of circuits from light to heavy, we define a third threshold
Ti. If a circuit’s EWMA drops below Ti times the average
EWMA for the light connection, it is considered inactive
and is not counted toward the connection’s circuit count. In
order to expedite this process, we define a higher multiplier
β which is used to update the EWMA for circuits that do
not send any cells in a time interval.

4.2 Protocol to switch a circuit
Once a decision has been made on the exit node that a cir-

cuit needs to be switched, the exit node initiates the protocol
for the switch. The exit node is responsible for switching the
circuit to the new connection between the exit and middle
nodes. Once this switch is done, the middle node is respon-
sible for switching the circuit to the new connection between
the middle and entrance nodes.

New control cells.
We define three new control cells to manage the connec-

tion transfer: a SWITCH cell that is sent by the initiator on
the old connection indicating that all further cells for this
circuit will be sent on the new connection, a SWITCHED_CONN

cell sent by the initiator on the new connection before the
newly transferred circuit’s cells are sent, and a SWITCHED

cell sent by the receiver node informing the initiator that
the switch is complete and it will also send further cells on
the new connection.

The header in each of these control cells uses the same cell
header structure as other cells in Tor. SWITCHED_CONN and
SWITCHED cells have no payload. The SWITCH cell’s payload
contains a flag that indicates whether the switch has to be
extended to the previous node in the inwards direction.

Since packets may arrive out of order on the two con-
nections during switching, the node stores any out-of-order
packets in a buffer. The reason a SWITCHED_CONN cell is re-
quired is because cells on the new connection may arrive be-
fore all the remaining cells on the old connection have been
processed and this may lead to out–of–order processing.

Switching protocol.
The protocol to switch a circuit from a light to a heavy

connection is depicted in Figure 1. The steps are as follows:

1. Check whether a heavy connection has been created
between exit and middle router. If not, create a new
connection.

2. The exit node sends a SWITCH cell on the light con-
nection to inform the middle node that no more cells
for this circuit will be coming in on this connection.
The payload in the SWITCH cell contains a flag that
the exit node sets to inform the middle node that it
needs to extend the heavy connection towards the en-
trance. The exit node continues to receive cells from
the middle node on the light connection.

3. The exit node sends a SWITCHED_CONN cell on the heavy
connection followed by the circuit’s cells.

4. Once the middle router has received both the control
cells, it sends a SWITCHED cell on the light connection
and only then does it start processing the circuit’s cells
from the heavy connection. The cells that might have
arrived on the heavy connection before the SWITCH cell
arrived on the light connection are saved in a queue
and these cells are processed once both the control
cells are processed. This completes the circuit switch
on the middle node.

5. After the exit node receives the SWITCHED cell on the
light connection, no more cells for this circuit will be
coming from the middle node on this connection. It
completely switches the circuit to the heavy connec-
tion. The cells that might have arrived on the heavy
connection before the SWITCHED cell arrived on the light
connection are saved in a queue and these cells are pro-
cessed once the SWITCHED cell has been processed.

The middle node follows the same procedure to create a
heavy connection to the entrance node and switch the cir-
cuit. The middle node does not set the flag in the SWITCH

cell and hence the entrance node does not create any extra
connections to the client. A similar procedure is followed
when a circuit is to be switched from a heavy connection to
a light connection.

If the middle node does not support Torchestra, the SWITCH
control cell received from the exit will be dropped. A flag
is set for the circuit on the exit so it does not attempt to

(a) Physical experiment setup (b) Virtual setup

Figure 2: Experimental setup. Routers and clients are run as virtual nodes on the physical edge node and all traffic between
these virtual nodes are forced to pass through the emulator.

switch again. Thus, a maximum of one extra cell per circuit
will get sent if Torchestra is not supported.

5. EXPERIMENTAL RESULTS
We performed several different experiments in order to

evaluate Torchestra’s performance.

5.1 Experimental setup
We evaluate Torchestra using the ExperimenTor frame-

work [2], a Tor emulation toolkit and testbed. Experimen-
Tor is built on top of the ModelNet network emulator [20]
and uses commodity hardware to simulate an entire network.
ModelNet emulates distributed systems by allowing virtual
nodes to be set up on one or more physical machines. It al-
lows bandwidth, queuing, propagation delay and drop rate
to be configured on the links between these virtual nodes to
give realistic effects of the network. One machine is desig-
nated as the emulator and traffic between any two virtual
nodes is forced to pass through it.

Our ExperimenTor setup consists of two machines as shown
in Figure 2(a). The first machine is an edge node, on which
the different virtual nodes representing routers and clients
are run as separate processes. The second machine is the em-
ulator, through which traffic between any two virtual nodes
is forced to pass. Once all the virtual routers and clients
are configured, ExperimenTor behaves as if each router and
client is a separate node, depicted in Figure 2(b).

In our experiments, the edge node has a 2.8Ghz Intel Core
processor and runs Ubuntu 11.04. The emulator has a 2.5
GHz Intel Core processor and runs Ubuntu 10.04.

Our algorithm switches a circuit when its EWMA hits a
threshold value relative to the average EWMA of the connec-
tions on its circuits. The parameters we chose for our exper-
imental threshold values are designed only to distinguish cir-
cuits with traffic falling outside of an arbitrary range of nor-
mality; these values are not carefully optimized, and more
detailed measurement studies should be undertaken in order
to select proper parameters. Similarly, we chose parameters
for the EWMA filter to ensure a reasonable sized window of
time over which the average is taken, but did not study the
effect of these parameters on the performance of the algo-
rithm. Tang and Goldberg parameterize their EWMA using
a value H corresponding to the half-life of the running av-
erage. They studied the effect of different choices for the
EWMA parameters on their prioritization scheme [18] and
observed that a wide range of values seemed to produce good

results. In the following experiments we have run the prior-
itized Tor scheme using H = 66, the value that performed
the best in their experiments; we note here that the value of
α we used to parameterize the EWMA for Torchestra cor-
responds to a much shorter half-life, and as such a more
detailed understanding of appropriate parameter choices is
necessary before drawing any conclusions from the results.

Although ExperimenTor allows simulation of the real net-
work, our setup consists of three router nodes (which also
act as directory servers) and multiple clients. The results of
our experiments are preliminary demonstrations of the fea-
sibility of Torchestra in a simple setup. We intend to carry
out further experiments to confirm that Torchestra provides
the same degree of improvement on a larger, more complex
setup.

5.2 Experiment 1: Simple file downloads
The first experiment we carried out was to simulate light

and heavy traffic by having clients continuously download
files of fixed size. In this experiment, our ExperimenTor
setup used 3 routers and 13 clients. Seven of these clients
are heavy clients, each continuously downloading a 100MB
file. The other six clients are light clients, each of which
downloads a 300KB file with about 50 seconds of gap be-
tween each download. This ratio of heavy clients and light
clients, gaps between downloads and file sizes is designed to
emulate the ratio of heavy to light traffic observed in [13].
Between every pair of routers, the bandwidth is rate-limited
to 3mbps. For all other links, bandwidth is rate-limited to
1mbps.

We ran our experiment ten times each of ten minutes du-
ration on vanilla Tor, prioritized Tor and Torchestra. We
used the default parameters in vanilla Tor. For prioritized
Tor, we set H = 66 as in [18]. For Torchestra, we used the
following parameters:
α = 0.18, β = 0.18, T` = 1.4, Th = 0.3.

This setting of α is designed so that we compute our run-
ning average over 10 time periods; as such this corresponds
to a different EWMA half-life than H = 66. Also, as ex-
plained above, in this experiment we used slightly different
parameters than in later experiments. This is because the
circuits we intended to be “light” consume as much band-
width as heavy circuits while downloading, and were corre-
spondingly transferred to the heavy connections as often as
heavy circuits. These parameters are designed to prevent

(a) Traffic pattern of heavy and light traffic (b) Average time to download first byte and average time to
download a 300KB file for light circuits.

Figure 3: Experiment 1: Modeling traffic with file downloads. We set up a simulated Tor network with light clients periodically
downloading a 300KB file and heavy clients continuously downloading a 100MB file and observed that prioritized Tor has the
least delay of the three schemes we compared, although the delay in receiving the first packet was lowest in Torchestra.

this. We use different parameters later on to deal with more
realistic data.

5.2.1 Results
The results are shown in Figure 3.
With simple downloads, prioritized Tor has the lowest av-

erage download time. Interestingly, the time to download
the first byte is the lowest in Torchestra. We hypothesize
that this may be happening because the initial packets re-
quired to start the download are behind many heavy cells
and hence delays will be initially high. But once the down-
load starts, since a light circuit will take up as much band-
width as a heavy circuit and since light cells will be given
higher priority in prioritized Tor, every cell from a light cir-
cuit will be sent faster.

In order to test our hypothesis, we carried out an ex-
periment where we deliberately introduced a variable delay
ranging from 4 msec to 128 msec in powers of two between
each packet sent to the light circuits. We then found the
average delay per cell to reach the source client from the
destination. As seen in Figure 4, with a smaller amount of
delay between arriving light cells, prioritized Tor exhibits a
lower transmission delay than Torchestra, but as the delay
between cells grows, Torchestra’s transmission delay drops
below that of prioritized Tor.

5.3 Simulating web and SSH traffic
The simple file downloads we experimented with above

are unlikely to represent real traffic patterns. In order to
construct a more realistic experiment, we captured traffic
patterns of our own web and SSH usage and replayed them
as Tor traffic for light circuits, over a background of contin-
uous file downloads for heavy circuits.

We recorded HTTP and SSH traffic from our own sessions
using the network protocol analyzer Wireshark [6]. We then
replayed this Wireshark traffic as light traffic for four rep-
resentative intervals of 10 minutes each over a background
of four heavy clients continuously downloading 100MB files.

We compared the results between vanilla Tor, prioritized
Tor, and Torchestra.

We used the following method to replay traffic timings:

Method for replaying traffic.
We used a Java process to simulate traffic timings. It cre-

ates a separate thread for every circuit ID to be simulated,
each of which is created with a different IP address and lis-
tens on different sockets. The ExperimenTor source clients
connect to each of these threads’ sockets through Tor.

Figure 4: Experiment 1: Simple downloads with delays be-
tween cells. We wanted to test the hypothesis that priori-
tized Tor performed well in a simple file download scenario
because both light and heavy circuits were saturating their
circuits. We injected pauses between sending cells on light
connections and observed that as the length of the pause in-
creased, Torchestra’s performance relative to prioritized Tor
improved.

(a) Experiment 2: Replaying HTTP and SSH traffic (b) Experiment 3: Replaying Tor traffic

Figure 5: Experiments 2 and 3: Replaying captured traffic. In order to simulate realistic traffic patterns, we captured traffic
timings from interactive HTTP and SSH sessions and from a public, non-exit Tor node and used the timing data to simulate
dummy traffic through our ExperimenTor setup. In both of these cases, Torchestra had the least delay. More detailed
experimental results can be found in Figures 6 and 7 in the Appendix.

Every thread maintains a table of cell transmission times,
and sleeps for the appropriate interval after sending a cell.
Each cell consists of 498 bytes of dummy data. Tor adds 14
bytes of header information thus creating a cell of 512 bytes.

In our experiments, we measured the transmission time as
the difference between the time at which a thread sends a
cell and the time at which the source client receives it. The
thread-switching time on our machine was about 2.7µs, and
thus provides negligible overhead.

The parameters that we used in our experiment are as
follows. We used the default parameters with vanilla Tor,
and set H = 66 in prioritized Tor. For Torchestra, we used
the following parameters:
α = 0.18, β = 0.36, T` = 1.7, Th = 0.3.

5.3.1 Results
For each of our four traffic samples shown in Figure 6,

Torchestra displays the least delay for light circuits. This
is in contrast to the simple file download experiment above,
where prioritized Tor showed the least delay. Comparing
Torchestra with prioritized Tor, in each of the samples there
is a 32.87%, 8.68%, 28.97%, 25.14% decrease in average de-
lay respectively. Comparing Torchestra with vanilla Tor we
see that in each of the samples there is a 36.36%, 13.17%,
30.48%, 33.9% decrease in average delay respectively. We
display the average of these four cases for light circuits in
Figure 5(a). In the average case there is a 23.4% decrease in
Torchestra compared to prioritized Tor and a 28.5% decrease
compared to vanilla Tor.

5.4 Simulating real traffic

5.4.1 Description
In both the above experiments, the heavy traffic is created

artificially using wget. These traffic patterns may not match
those of the real network.

In order to investigate the performance of our system on
the real Tor network in a repeatable fashion, we wanted
to test it on more realistic data. To this end, we collected

timing information from a non-exit Tor node and used this to
simulate traffic during our experiments. We ran our machine
as a public, non-exit Tor node for more than a week before
we started collecting data in order to ensure that our node
had stabilized. We set the bandwidth on the node to be
5mbps.

We took steps to ensure that no traffic is de-anonymized
and no non-metadata is collected. We collected only the cir-
cuit ID of the cell and the socket number of the connection
on which cells left our node in order to determine which
circuits belonged to a particular connection and the time
the cells arrived at our node. Since we have collected logs
only on a non-exit node, all transmitted data was encrypted
and thus illegible to us; we did not examine or log the con-
tents of these encrypted packets. When we replay traffic,
we use the logged timing information to send dummy data
with the same time patterns and circuit distributions, using
the method described in the previous experiment. After we
finished plotting our graphs we have made sure that all logs
have been securely deleted.

We collected four 15 minute intervals of timing informa-
tion at 6am, 12pm, 6pm, and 12am PDT. From each time
interval we chose the connection with the largest number of
cells and circuits to replay.

The parameters that we used in our experiment are as
follows. We used the default parameters with vanilla Tor,
and set H = 66 in prioritized Tor. For Torchestra, we used
the following parameters:
α = 0.18, β = 0.36, T` = 1.7, Th = 0.3.

5.4.2 Results
The results of these experiments are depicted in Figure 7.

Torchestra displays the least average delay per cell in each
case.

In the 6am case, there is a 25% decrease in average delay
from the prioritized Tor case and 40% decrease from the
vanilla Tor case. In the 12pm, 6pm and 12am cases there is
a 8.41%, 7.43% and 2.2% decrease in average delay from the
prioritized case and 8.93%, 17.9% and 4.83% decrease from

the vanilla case. We display the average of these four cases
for light circuits in Figure 5(b). In the average case there is
a 9.64% decrease in Torchestra compared to prioritized Tor
and a 16% decrease compared to vanilla Tor.

6. DISCUSSION
There are several performance and security concerns that

need to be considered in Torchestra’s design. We explain
the reasoning behind our design decisions and the trade-offs
involved.

6.1 Connection-switching
Tor’s design specifically avoids moving active connections

to different circuits in order to make the system more usable
for real applications. Our decision to transfer circuits to
different connections might be seen as counter to this goal,
and a potential cause of performance problems as the nodes
must expend effort to ensure in-order delivery.

However, unlike the case of an active connection switching
to a new circuit, we do not have to contend with unexpect-
edly switching to nodes that are potentially down or have
severely limited bandwidth. There will be no extra delays
incurred by cells during a circuit switch, as cells are not
made to wait circuit switching protocol runs.

6.2 Are we reducing bandwidth in some cases?
One might ask whether sharing bandwidth across two con-

nections actually reduces the bandwidth available for light
circuits in some situations.

When the number of light circuits exceeds the number of
heavy circuits and the amount of light traffic exceeds the
amount of heavy traffic, light circuits may have less band-
width available under Torchestra. This is because the band-
width will be shared equally between the light and heavy
connections. Tor sends out cells from different circuits on
a connection in round-robin order. If there are n active
circuits on a connection, each circuit will get 1

n
th of the

bandwidth. If there are more active circuits on the light
connection than circuits on the heavy connection, then as
explained by Tschorsch and Scheuermann [19] this would
lead to less bandwidth per circuit on the light connection
which will affect interactive traffic.

In order to check for how often there are bursts of time
when number of light circuits is greater than the number of
heavy circuits, we carried out the following experiment.

6.2.1 Experiment to measure how many light con-
nections we should open

As we described above, when we use a single connection
each for light and heavy circuits, there is a possibility that
bandwidth available to light circuits is reduced if there are
bursts of time when the number of active light circuits is
greater than the number of active heavy circuits. In the
following experiment, we measure how often this happens.

We collected timing information from a non-exit Tor node
as described in Section 5.4.1. We labelled the circuits“heavy”
in order of contribution to total cells over the connection, up
to a threshold of 70% of total cells. We checked for over-
lapping subintervals of 50msec, 70msec, 80msec and 100msec
whether the number of light circuits is greater than the num-
ber of heavy circuits when there is at least one heavy circuit.

We considered 15 minute windows of time at 6am, 6pm,
12am and 12pm for different overlapping burst lengths of

50msec, 70msec, 80msec, and 100msec. In the 6am interval
the percentage of cases where number of light circuits is
greater than the number of heavy circuits is 3%. In the
6pm, 12am and 12pm intervals, the percentage of cases are
6.9%, 0.79% and 4.68%. Thus the fraction of cases where
bandwidth may be decreased for light circuits was between
0.79% to 6.9% in our experiment. As shown in the previous
section, even with this tradeoff the scheme still showed an
improvement with only one connection each.

Though this situation occurs less than 10% of the time,
we could presumably reduce this fraction further by open-
ing more connections; we discuss this possibility in the next
section.

Once the feature presented in [19] is integrated with Tor,
no light circuits should be affected as bandwidth will be di-
vided equally amongst circuits irrespective of the connection
they are on.

6.2.2 Extending to many connections
Since we get benefits from opening a single connection for

light circuits, it is natural to ask whether we can achieve
further benefit from opening even more light connections to
decrease the share of bandwidth for bulk traffic. In theory,
we could open many connections in order to achieve any
desired fractional allocation of bandwidth.

One potential problem with extending the scheme to many
more connections is that each node, instead of having a
socket open to n, will then have up to kn sockets open if
k connections are used to share bandwidth with each node.
Reardon and Goldberg [15] observe that a large number
of connections may cause compatibility problems, as some
versions of Windows have a limit on the number of con-
nections allowed, 3977 outbound concurrent connections for
versions prior to Windows Vista, and 16384 on Vista and
later [1]. We measured the number of connections used on
our (vanilla) Tor node over five different 15-minute intervals
and we found the maximum number of open sockets to be
171.

6.2.3 Backward compatibility
Our circuit-switching method requires every node in the

circuit to understand the protocol; therefore, it will have
little benefit until a significant number of nodes have been
updated. However, there is little harm in deploying it incre-
mentally, since nodes that do not understand the protocol
will simply drop the control packets and the initiating node
will refrain from attempting to switch again for that circuit.
As and when nodes’ software is upgraded to a version that
supports Torchestra, this method will automatically start
working. In order to get any benefits, the entrance, middle
and exit nodes should all be running versions that support
Torchestra otherwise the behavior will be same as before.
Thus Torchestra is backward-compatible but no benefits will
be seen unless it is supported on all nodes the circuit passes
through.

6.2.4 Does Torchestra compromise security?
We must carefully consider whether changing the behavior

of Tor might enable new attacks. We consider different cases
below.

An adversary who is not a Tor node who is sniffing a link
between nodes will be able to observe when a new connec-
tion is created and when a switch happens for the first time.

They may be able to make intelligent guesses about when
circuits are switched based on changes in the traffic flow be-
tween connections, and estimate the number of packets sent
by the switched circuit if it occupies a significant fraction
of the overall bandwidth. However, this information is al-
ready visible to an attacker on the existing Tor network who
looks for changes in traffic across a link to signal when new
connections are created.

This type of information might enable a traffic-analysis
or packet-counting attack, except that in order for these
attacks to be effective, the adversary should also be able to
observe the connections on the guard or exit node. But an
attacker who can observe both ends of a circuit can already
carry out a very effective packet-counting attack.

For nodes within the Tor network, the fact that a signal
is sent through the circuit to switch connections gives the
other nodes in the circuit an estimate of the traffic load on
the old connection at the exit node, which may allow for
some de-anonymization. An attacker in control of the guard
and exit node of a circuit would likely be able to correlate the
timing of the circuit switches, but again, such an attacker
would have enough access to do a packet-counting attack.

One could also imagine a variant of the Murdoch-Danezis
[14] active attack where the attacker creates circuits through
specified nodes and attempts to force a targeted circuit to
switch connections. There are two considerations here. The
first is the question of whether this attack provides enough
of a signal in the current Tor network; the original Murdoch-
Danezis attack worked in a much smaller Tor and was re-
cently shown that Tor has grown enough to render ineffec-
tive, although the attack could be modified to work in to-
day’s Tor network [10]. We must leave an analysis of this to
future work, but we note that our scheme could be modified
so that circuit switches happen independently at every node
in order to protect against this attack.

A final potential attack, which does not compromise se-
curity but would circumvent all attempts by Tor nodes to
prioritize or rate-limit traffic based on flows through each
circuit, would be for clients to split large downloads among
many individually light-traffic circuits.

7. FUTURE WORK
There are several avenues to explore in future work. The

first is whether we can further improve Torchestra’s perfor-
mance for light traffic by opening additional connections.
From our experiments, we observed that light traffic might
benefit from additional bandwidth about 10% of the time;
however, in order for every light circuit to get more band-
width by opening additional connections, we will have to be
careful to balance light traffic across the connections dedi-
cated to it. The second modification to be studied in future
work is the possibility of allowing every node to indepen-
dently decide when to switch a circuit, rather than having
only the exit node decide when to switch a circuit, as we do
now.

Before deploying our scheme, it should be evaluated in
realistic scenarios on the real Tor network. The wildly dif-
fering results we obtained using our different experimental
methods suggest that simple downloads are not an accurate
way of simulating Tor traffic. A study on the actual Tor
network should also include a test of the security properties
of Torchestra; particularly, whether any of the theoretical

attacks we outlined are feasible in practice on the real net-
work.

A final, more methodological question, is to accurately
measure the amount of delay that Tor cells experience due to
all of the potential factors in the network. With a framework
for these types of measurements in place, this would allow
us to more carefully evaluate different schemes for improv-
ing Tor’s performance under different scenarios, and better
understand their limitations and avenues for improvements.

8. CONCLUSION
In this paper we investigated whether Tor’s performance

on interactive traffic could be improved by separating light
traffic from heavy traffic on different TCP connections be-
tween Tor nodes. We classified circuits as light or heavy us-
ing the exponentially weighted moving average of the num-
ber of cells on a circuit. In our experiments we measured
the average delays for interactive traffic using a variety of
methods: simple file downloads, replaying traffic with the
same timing patterns as in the real Tor network, and re-
playing SSH and HTTP traffic collected from our own us-
age. With simple file downloads, we found that the priori-
tized Tor scheme has the least overall download time of the
schemes we tested, although Torchestra had the lowest delay
before receiving the first byte. Replaying our own captured
HTTP and SSH traffic, we found between 8% to 32% reduc-
tion in delays with Torchestra compared to prioritized Tor
and a 13% to 36% reduction in delays when compared to
vanilla Tor. When we simulated traffic patterns using the
real Tor network, we found between a 2% to 25% decrease in
the delays with Torchestra compared to prioritized Tor and
a 4% to 40% decrease in delays when compared to vanilla
Tor. While there are several factors to be considered and
carefully evaluated before deploying Torchestra on the real
Tor network, these results suggest that the simple idea of
separating very heavy Tor users onto separate connections
may lead to real improvements in Tor’s usability for most
users.

Acknowledgements
We are grateful to Kevin Bauer, Roger Dingledine, and Da-
mon McCoy for helpful pointers and discussion, and to Rob
Jansen for pointing us to his work. This material is based
upon work supported by the National Science Foundation
under Award No. DMS-1103803 and the MURI program un-
der AFOSR Grant No. FA9550-08-1-0352.

9. REFERENCES
[1] Maximum socket limit on Windows.

http://smallvoid.com/article/winnt-tcpip-max-

limit.html.

[2] K. Bauer, M. Sherr, D. McCoy, and D. Grunwald.
ExperimenTor: A testbed for safe and realistic Tor
experimentation. In USENIX Workshop on Cyber
Security Experimentation and Test (CSET), 2011.

[3] A. Chaabane, P. Manils, and M.A. Kaafar. Digging
into anonymous traffic: A deep analysis of the Tor
anonymizing network. In Network and System Security
(NSS), 2010 4th International Conference, pages
167–174. IEEE, 2010.

[4] M. Chowdhury, M. Zaharia, J. Ma, M.I. Jordan, and
I. Stoica. Managing data transfers in computer

clusters with Orchestra. SIGCOMM-Computer
Communication Review, 41(4):98, 2011.

[5] B. Cohen. The BitTorrent protocol specification, 2008.

[6] G. Combs et al. Wireshark.
http://www.wireshark.org/lastmodified, 2007.

[7] R. Dingledine. Research problem:adaptive throttling
of Tor clients by entry guards. https:
//blog.torproject.org/blog/research-problem-

adaptive-throttling-tor-clients-entry-guards.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. Technical report,
DTIC Document, 2004.

[9] R. Dingledine and S.J. Murdoch. Performance
Improvements on Tor or, Why Tor is slow and what
we’re going to do about it.
http://www.torproject.org/press/presskit/2009-

03-11-performance.pdf, 2009.

[10] N.S. Evans, R. Dingledine, and C. Grothoff. A
practical congestion attack on tor using long paths. In
Proceedings of the 18th conference on USENIX
security symposium, pages 33–50. USENIX
Association, 2009.

[11] D. Gopal. Torchestra : Reducing interactive traffic
delays over Tor, Master’s thesis, UC San Diego.
Master’s thesis.

[12] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and
D. Sicker. Shining light in dark places: Understanding
the tor network. In Privacy Enhancing Technologies,
pages 63–76. Springer, 2008.

[13] D. McCoy, K. Bauer, D. Grunwald, P. Tabriz, and
D. Sicker. Shining light in dark places: A study of
anonymous network usage. University of Colorado
Technical Report CU-CS-1032-07 (August 2007), 2007.

[14] S.J. Murdoch and G. Danezis. Low-cost traffic
analysis of Tor. In Security and Privacy, 2005 IEEE
Symposium, pages 183–195. IEEE, 2005.

[15] J. Reardon and I. Goldberg. Improving Tor using a
TCP-over-DTLS tunnel. In Proceedings of the 18th
conference on USENIX security symposium, pages
119–134. USENIX Association, 2009.

[16] SW Roberts. Control chart tests based on geometric
moving averages. Technometrics, pages 239–250, 1959.

[17] P. Syverson, R. Jansen, and N.J. Hopper. Throttling
tor bandwidth parasites. Usenix Security, 2012.

[18] C. Tang and I. Goldberg. An improved algorithm for
Tor circuit scheduling. In Proceedings of the 17th
ACM conference on Computer and communications
security, pages 329–339. ACM, 2010.

[19] F. Tschorsch and B. Scheuermann. Tor is unfair–And
what to do about it. In Local Computer Networks
(LCN), 2011 IEEE 36th Conference, pages 432–440.
IEEE, 2011.

[20] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. ACM
SIGOPS Operating Systems Review, 36(SI):271–284,
2002.

APPENDIX

Figure 6: Experiment 2: Replaying web and SSH traffic. We collected samples of web and SSH traffic from our own usage,
and replayed them through our ExperimenTor setup to compare vanilla Tor, prioritized Tor, and Torchestra. The left column
shows the traffic pattern and the right column shows the average delay per cell. In contrast to the simple download experiment
where prioritized Tor performed the best, Torchestra displays the least delay for light circuits in this experiment.

Figure 7: Experiment 3: Replaying Tor traffic. We collected timing information from a public, non-exit Tor node and used
the timing data to simulate dummy traffic through our ExperimenTor setup. The left column shows the traffic patterns at
6am, 12pm, 6pm and 12am respectively, and the right column shows the average delays for vanilla Tor, prioritized Tor, and
Torchestra on this data. In each case average delay per cell is the least for Torchestra.

