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Abstract. Personalised social search is a promising avenue to increase
the relevance of search engine results by making use of recommendations
made by friends in a social network. More generally a whole class of
systems take user preferences, aggregate and process them, before pro-
viding a view of the result to others in a social network. Yet, those sys-
tems present privacy risks, and could be used by spammers to propagate
their malicious preferences. We present a general framework to preserve
privacy while maximizing the benefit of sharing information in a social
network, as well as a concrete proposal making use of cohesive social
group concepts from social network analysis. We show that privacy can
be guaranteed in a k-anonymity manner, and disruption through spam
is kept to a minimum in a real world social network.

1 Introduction

A fundamental problem contemporary web-based information retrieval (IR) face
is ranking. Given a user query, the IR system has to produce a ranked subset of
documents that are most likely to satisfy the user’s information needs. To achieve
this, techniques beyond simple indexing are required and there are benefits in
taking into account social structure when searching for information [15]. Recent
research [20] suggests that users’ information needs are correlated: it is likely
that a document that has been accessed by Alice will also be relevant to her
friend or colleague Bob. If only Alice and Bob were able to make use of this
information, their search results could be improved.

Two key security problems have to be addressed to enable the sharing of
preferences about search results and documents in a social network, namely
privacy and quality.

Privacy is necessary to ensure that users do not learn about each others’ exact
search patterns or retrieved documents. It is unacceptable to allow particular
query items or documents to be linked with certainty to a user by third parties.
In this work we consider privacy guarantees against both adversarial sybil nodes
that infiltrate the network, as well as curious coalitions of the users’ friends.



Quality in the context of security means that the ranking system should not
be overly influenced by nodes that maliciously inject information to manipulate
the ranking of certain resources. Search engine spamming is a serious problem,
and any sharing of information has the potential to provide the spammers with an
additional tool. The key goal of our scheme is to limit the influence of spammers
to mostly those nodes that consider them as ‘friends’ and limit any further spread
of their poisoned preferences.

Our approach to solving this problem involves propagating the user’s use-
ful search results—more generally we call this the user’s preferences—within a
random subgroup of the user’s social network. We create those subgroups care-
fully to ensure they are cohesive, i.e., with very high density of links between all
nodes. The subgroups form a core anonymity set, and are infiltration resistant
to prevent spammers from being able to send their preferences to everyone. We
present a general model that can be instantiated in many ways depending on the
choice of cohesive subgroup – our concrete solution uses the k-plex definition [24].

We note that the problem of anonymously propagating information with a
social network is far from unique. Similar systems are required for viral market-
ing, where products are recommended to users according to whether someone
socially related to them bought them. Restaurant or movie recommendations
are another example of systems that benefit from users socially sharing their
preferences, without leaking specifics about what they see or where they are.
Generally our solution applies to any system that (a) collects user preferences,
(b) aggregates them centrally or locally on a social graph, (c) does some pro-
cessing operation on the aggregate, (d) and returns the result, or influences the
output to users. We will use the concrete example of personalised social search
throughout this work, while engineering our solution to be general to the full
class of problems.

After reviewing the literature on personalised social search in Section 2, we
define an abstract model of our problem and the families of solutions we con-
sider in Section 3. Then in Section 4 we propose a concrete strategy for sharing
information in personalised search using cohesive social sub-groups and study
the extent to which it satisfies our goals. In the final section we discuss some
nuances of such system and offer conclusions.

2 Related Work

Personalized search, that tailors web search results based on preferences of users,
is already widely deployed by major search engines [27, 30]. Personalized social
search goes a step further and determines the ranking of documents based on the
preferences within the social network of users. It is already piloted by smaller on-
line search engines, like Eurekster [29]. Google is currently piloting a mechanism
that allows users to re-rank results [16]. The re-rankings are not directly shared
but used centrally to increase the quality of the overall results. The Microsoft
Research U Rank prototype [18] allows users to re-rank their results, and share
them with their direct friends, without any further provision for privacy.



Many studies have looked into the privacy preferences of users, in rela-
tion to information they share over social networks [21, 1]. They conclude that
search preferences are considered sensitive, and the controversy surrounding
AOL search data leak confirms this1.

Eurekster [29] allows users to designate search mates, with whom they share
their search preferences. Effectively any query and subsequent information is
shared within this group of friends. Some primitive privacy features are provided
through the ability to perform private searches, as well as the ability to delete
past searches from being visible to others. Our approach, on the other hand,
allows users to share, to some degree, their preferred search results, without
compromising their privacy. Additional privacy controls, based on opt-outs like
in Eurekster, are orthogonal to our scheme and can be applied independently.

Social networking site, like Facebook,2 have also tried to share user prefer-
ences amongst friends, but for the purposes of viral marketing. The “Facebook
Beacon” system caused controversy by sharing user’s preferences, often gen-
erated outside of the Facebook site, with their network of friends. The initial
privacy strategy of an opt-out mechanism was turned into an opt-in mechanism
after some pressure [10].

We use the naive sharing strategy of simply broadcasting preferences to the
sets of friends or friends-of-friends of a node as a benchmark to assess the se-
curity benefits of our proposal. Without better privacy and quality preserving
techniques, this naive scheme is the one most likely to be deployed, as has been
the case in Facebook Beacon and Eurekster.

A serious body of scientific work is concerned with preserving privacy in
on-line services. Our schemes borrow privacy notions like k-anonymity from the
literature on data sanitation and anonymization [23, 2]. The basic premise of
those schemes is that any inference drawn by an observer should be attributable
to at least k participants, effectively forming an anonymity set. To our knowl-
edge, this is the first time that k-anonymity is used in the context of data mining
on social networks.

The adversary model we consider—an attacker is assumed to control a very
large number of nodes in the network—was first introduced in the context of
peer-to-peer systems by Douceur as the Sybil attack [13]. Our approach is cen-
tralised, and admission control [3] as well as intrusion detection methods could
be used to keep the number of corrupt nodes down. Despite this, we aim to re-
sist attacks without such measures, keeping the cost of running the system down
and relying on distributed trust decisions for security. These two approaches are
complementary and can be combined.

Our security assumptions to combat sybil attacks aiming to degrade privacy
and quality are based on the tradition of SybilGuard [33], SybilLimit [32] and
SybilInfer [7]. They assume that honest nodes form a connected social graph,
and only few misguided nodes introduce an unbounded number of adversary

1 CNN money included AOL releasing search data as #57 of its “101 Dumbest Mo-
ments in Business” for the year 2007.

2 http://facebook.com



nodes. This small number of nodes or links to bad nodes can be used as a ‘choke
point’ to limit the impact of the adversary on the running of the system. The
idea of using the social structure itself to fend systems against those attacks was
first proposed in [6] and [19].

For privacy we also consider a more traditional threat model, in which a
coalition of a user’s friends is curious to find out her preferences. The assumption
of a limited fraction of dishonest or misguided nodes in a set goes back to work on
secret sharing [26], threshold cryptography [28] and double entry book keeping
in banking [22].

3 Model of anonymity in preference sharing

Preference sharing has often been implemented with little regard to privacy.
In this section we cast the problem of sharing preferences privately against an
adversary (sections 3.1 and 3.2). We discuss how to correctly measure anonymity
(section 3.3), as well as a generic framework that achieves privacy and utility for
preference sharing (section 3.4). Finally, we discuss how quality is preserved in
our model (section 3.5).

3.1 Preference sharing

The most basic concepts in our model are the universe of users U and the universe
of preferences P . We say that a user u ∈ U may set a preference p ∈ P . The
system then propagates the preference from the source u to a set of users T ⊆ U ,
which is called the target group. We also say that the source user has an initial
preference and the target users have propagated preferences.

We assume that users submit their preferences to a trusted centralised sys-
tem, that is in charge of performing the search and ranking of results, as current
search engines are. The target group for the propagated preferences is chosen by
the system from possible target groups Groups(u, p) ⊆ P(P(U)) (a set of sets of
users). We also assume that each preference is set by only one user at a time,
which simplifies the model greatly, as we will see, without loss of generality.

Note that the source user itself does not decide the possible target groups
or the actual target group. The system chooses the target group based on a
propagation policy, which is partly specified by the function Groups. The goal of
this paper is to find a propagation policy that meets several sometimes conflicting
criteria:

1. First, the policy should preserve privacy.
2. Second, the policy should take into account social relations between the users

to increase the relevance of propagated policies to the target users.
3. Third, the policy should be easy to implement.

The selection of the target group may be deterministic or nondeterministic.
With deterministic target selection, |Groups(u, p)| = 1 for all u and p. With
nondeterministic selection, there can be multiple possible target groups and the



actual target group is chosen randomly from them. (For the time being, let’s
assume uniform random selection.) An interesting case is one where the target
group is selected from multiple possibilities based on a pseudorandom function
and a secret key. In that case, the selection process is similar to a random oracle:
the target group T is chosen randomly from Groups(u, p) for each new u, p pair
but, if the selection is repeated for the same parameters, the target group will
not change.

3.2 Anonymity and the adversary model

After the preference setting and propagation, each user has a set of initial prefer-
ences, which remains secret to that user, and propagated preferences, which are
considered public3. The adversary is a coalition of users that observe the propa-
gated preferences and try to determine which user initially sets each preference.
We base our analysis on a rather strong adversary that knows the function
Groups and can observe all the propagated preferences. Real-world systems can
of course make it difficult for the adversary to observe all preferences through
access control, network security and cryptography.

The assumption that each preference is set by at most one user at a time, is
explained by the following: we assume that the attacker can observe the target
group for each instance of setting the preference, rather than observing only
the end result of multiple users setting the preference. This is a kind of worst-
case scenario, but also corresponds with the fact that users are unlikely to set
their preferences at exactly the same time and each act of setting may affect the
propagated preferences for other users.

After observing a preference p propagated to a target group T , the adversary
can narrow down the identity of the source to the following set:

Uanon = {u′ ∈ U | T ∈ Groups(u′, p)} (1)

This set is called the anonymity group. The adversary knows that one mem-
ber of the anonymity group initially set the preference. The size of the anonymity
group |Uanon| can be used as a measure of anonymity. This is similar to k-
anonymity in computer-security literature [4]. Note that here Uanon and k depend
on u and p. We say that a preference propagation policy preserves k-anonymity
if k ≤ |Uanon| for all u and p.

The relation between the members of the anonymity group must be sym-
metric in the sense that, for a given preference and target group, if u′ is in the
anonymity group when the real source is u, then u is in the anonymity group
when the real source is u′. This is natural because an anonymity group arises
from the fact that any one of them could be the real source.

The adversary defined above corresponds to an outsider who can require all
users to reveal their propagated preferences but does not have access to anyone’s

3 This is a modeling assumption, and real world systems may further limit their visi-
bility.



initial preferences. This could, for example, be someone who demands that users
show their current search results, which are influenced by propagated preferences.

We are also interested in an adversary that has, additionally, access to the
initial preferences of some colluding users. These could, for example, be a set
of friends who try to figure out the source of a preference propagated to them.
For an adversary with the combined knowledge of a coalition of users Ubad, the
anonymity set is reduced to Uanon \ Ubad. In practical situations, however, we
expect the size of the coalition to be small, often just a single user. This is
because the members of the coalition need to trust each other to tell the truth
about their initial preferences, and because sybil attacks will be prevented by
the user of social networks (see section 3.4).

From equation 1, we make the important observation that privacy does not
depend on the random selection of the target group T . A deterministic algorithm
could be just as anonymity-preserving, as long as it picks the same target group
for several users. Randomized selection does not guarantee anonymity either:
it needs to be carefully designed to produce anonymity sets of sufficient size.
This is why we consider both deterministic and nondeterministic propagation
algorithms.

Finally, we make a couple of further observations. First, the target groups
cannot be selected independently for each source user because they need to
coincide, or otherwise the anonymity sets will be small. This has implications
to the extent that the target group selection can be distributed. Second, the
possible target groups for each preference can be selected independently of other
preferences. The parameter p is carried in the notation as a reminder of this fact.
Third, if privacy is the only goal, we could just as well select the empty target
group (no preference sharing) or the all-users group U (share with everyone).
This is in fact the current practice of recommender systems (such as Amazon or
Netflix). The reasons for selecting something in between, which will be discussed
in section 3.4, are unrelated to privacy, but crucial for adding value to search
while preventing spam.

3.3 Probabilistic anonymity model

Above, we have not considered the probability distribution between different
choices of target groups. This lead to using k-anonymity as the measure of pri-
vacy: the anonymity group includes everyone who might be the source, no matter
how unlikely it is. Now, we extend the model to take into account probabilities.
Given a source u and a preference p, the probability distribution of target groups
is denoted by P (u, p, T ). The function Groups can now be defined as

Groups(u, p) = {T ⊆ U | P (u, p, T ) > 0}

As established in the literature [25, 11], anonymity in the probabilistic model
is measured by entropy, i.e., the adversary’s uncertainly about the identity of
the source. Entropy is measured in bits, i.e., how many more bits of information
would the adversary need to be certain of the source identity. We assume that



all users are initially equally likely to be the source (equal a-prior probabilities),
and that only one at a time sets the preference. When the adversary observes a
preference p propagated to a target group T , the entropy for the source can be
calculated as follows.

H(u|p, T ) =
∑

u∈Uanon

(
P (u, p, T )

S
)·(− log2(

P (u, p, T )
S

)) where S =
∑

u∈Uanon

P (u, p, T )

What can we learn from this? Obviously, the larger the anonymity set, the
higher the entropy. Analogous to our earlier comparison of deterministic and
nondeterministic propagation policies, we also note that it makes no difference
how many different choices |Groups(u, p)| there are for T . The most important
lesson from the above formula is that, given a fixed-size anonymity set, the
entropy is maximized when all members of the anonymity set are equally likely
to choose the specific target group. It does not matter how or whether this
probability is large or small, as long as it is uniform across the possible sources.

3.4 Preference sharing in a social network

The privacy model above does not explain why we want to propagate the pref-
erences in the first place. Our aim is to select a target group that is by some
measure close to the source, so that the propagated preferences are relevant to
the group. This will not only result in more effective use of the preference infor-
mation but also in spam resistance. It is important to note, however, that there
is no simple right way for defining closeness between users. Before considering
possible definitions, we will consider some general factors in propagation policies
that are based on the concept.

Since the preferences set by a user are naturally closest to its own needs, we
only consider propagation policies that are reflexive in the sense that each user
is in all of its own propagation targets:

T ∈ Groups(u, p) implies u ∈ T. (2)

In a reflexive propagation policy, the anonymity group is always a subset of the
target group.

For a given target group T , we denote Uext = T \ Uanon. Thus, the target
group is the disjoint union of the anonymity group and an extended group: T =
Uanon∪̇Uext.

The discussion so far gives one possible outline for constructing propagation
algorithms. The algorithm can be executed independently for each preference p,
or the same groups can be used for many preferences:

1. Select anonymity groups in such a way that they cover all users U . Members
of the anonymity set should be close to each other, based on some arbitrary
social metric.

2. For each anonymity set, decide on the extended groups. The members of the
extended groups should be close to the members of the anonymity set, but
not necessarily to each other.



It makes sense to start by fixing the anonymity groups because that is an easy
way to guarantee k-anonymity. If we instead expected anonymity to arise prob-
abilistically, it would be difficult to guarantee that they all will be sufficiently
large. The members of each anonymity group need to be all close to each other
because any one of them could be the source. The members of the extended
group, on the other hand, are targets and need to be close to potential sources.

A simpler model would be one where Uext = ∅ and T = Tanon. In this restricted
model, preferences are shared mutually among a sets of users who are close to
each other, such as the members of a club or a clique of users who all know each
other. An advantage of the more general model, especially when |T | � |Uanon|,
is that the preferences can be propagated to a larger number of target users
without any reduction in anonymity. In practical social networks, we are looking
at anonymity sets of around ten users and target groups that are one order of
magnitude larger (as studied is section 4.3).

We are particularly interested in social networks that are based on a friend-
ship graph G ⊆ U×U . The friendship relations in this kind of graph are typically
symmetric, which means that any metric of closeness between members will be
symmetric as well. In the above outline for propagation algorithms, the first step
is to select anonymity sets in such a way that all their members are close to each
other.

3.5 Spam resistance

For the purposes of modeling spam resistance, we categorise nodes in the system
as being in one of three categories: honest nodes genuinely share their preferences,
and dishonest nodes try to propagate to honest nodes spam preferences. We
consider that a class of honest nodes are misguided in that they have created
friendship links with dishonest nodes.

We can use this intuition to build anonymity sets Uanon and broadcast groups
Uext that are infiltration resistant. This means that once a number of honest
nodes are part of a group they are unlikely to form links with dishonest nodes,
thus disallowing them from broadcasting their preferences within the group. Part
of our security analysis is concerned with validating this property in a real-world
social network.

4 Outline of solution

We propose a concrete nondeterministic propagation strategy that is based on
broadcasting users’ preferences within socially cohesive subgroups. The sub-
groups can be overlapping, and are formed by k-plexes of some s-minimal size. A
k-plex is a sub-graph of size gs ≥ s of the social network in which all nodes link
to at least gs − k other nodes in the sub-graph. It is an established relaxation
of cliques (which are a special case for k = 1) that defines robust and cohesive
subgroups, extensively used in social network analysis [24].



The properties of s-minimal size k-plexes make them a very good fit for
supporting our security and functional properties. The parameters k, defining
how many links can be missing within a subgroup, as well as s, the minimal size
of the subgroup, are naturally related to quality and privacy.

First, k-plexes of a minimum size s are infiltration resistant. For a single node
of a coalition of c nodes to be part of a k-plex they need to form a large number
of links lc:

lc = max(s− k, [(s− k)− (c− 1)] · c) ≥ s− k (3)

This has a direct security implication for quality since a small number of mis-
guided nodes in a k-plex forming links with adversary nodes, will not allow those
nodes to infiltrate the k-plex, containing other honest nodes. (Although mis-
guided nodes can be conned into joining k-plexes dominated by corrupt nodes.)
Therefore limiting broadcast of preferences within those sub-groups curbs the
potential for abuse and spam – an adversary will have to invest a lot of effort to
infiltrate them, and a few vigilant members of each group will be able to thwart
such actions.

While a set of k-plexes form the anonymity groups Uanon each of them is
augmented by a set of additional nodes i.e., the extended broadcast group Uext.
Membership of nodes to the extended broadcast group is parameterized by a
threshold T on the number of friends a node has that belong to the anonymity
group Uanon. If a node has T or more friends in Uanon then it belongs to the
extended broadcast group Uext.

4.1 The preference-sharing algorithm

The preference sharing algorithm works in two phases. First a pre-computation
extracts cohesive sub-groups that are used to form anonymity sets Uanon, and
their corresponding extended broadcast groups Uext. Only the structure of the
social network is required to perform group extraction. In a second phase pref-
erences are continuously set by users and are propagated to other users through
the extracted groups. Only propagated preferences are collected to compute the
ranking of resources for each user, and the initial preferences can even be for-
gotten.

The parameters of the preference-sharing algorithm are:

– k, the parameters of the k-plexes we use.
– sa, the size of the anonymity set required.
– T , a threshold that defines the extended broadcast groups membership.

We require sa > 2k and T > 1 (in our analysis we use k = 2, sa = 8 and
T = 2). These conditions ensure that the diameter of the sub-groups extracted
is at most 2 [31]. This in turn enforces strong locality and makes the extraction
of the cohesive subgroups faster.

Sub-group extraction. First the anonymity sets are extracted. Given the
social graph G a set of k-plexes of size sa is extracted and associated with
each user. These are the sets Uanon that form the core anonymity sets providing
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Fig. 1. An illustration the anonymity groups and the broadcast groups selected to
propagate a single preference.

privacy for preference propagation. Second the extended broadcast groups for
each anonymity set are extracted. For each cohesive subgroup Uanon we define a
broadcast set Uext containing all nodes that are friends with at least T members
of the cohesive subgroup. This defines a ‘wider circle’ of people around each
subgroup to which preferences will also be broadcast.

Sub-group extraction is not necessarily real-time and can be performed peri-
odically depending on how often the social graph changes. The anonymity sets
for each user contained in Uanon as well as their broadcast groups Uext can be
reused for propagating multiple preferences. Sub-group extraction does not need
to be exhaustive either. In this work we chose to extract the set of k-plexes for
each user that contain at least all neighbours of each node which share a k-plex
with the user. This strategy ensures that all the friends that share a cohesive
subgroup with a node could possibly be receiving the user’s preferences.

Preference-propagation. At some point in time, a user u sets a preference
for a p. Our system chooses at random a k-plex containing the user g ∈R {Uanon}
to act as the anonymity set for this preference. If there is no such k-plex no prop-
agation of results takes place, and the algorithm ends. Otherwise, the preference
of node u is broadcast to all nodes in Uanon∪Uext, i.e., the anonymity set and the
extended broadcast group corresponding to the selected anonymity set Uanon.

Each node v ∈ bg aggregates all preferences broadcast in a multiset of prefer-
ence Pvi relating to a resource i. Each broadcast updates the multiset with the
received preference P ′

vi = {f(i, u)}
⊎

Pvi. A simple function can then be applied
to this multi-set of preferences to determine the final preference of this each node
relating to each resource g(i, v).



4.2 Privacy Analysis

Our first task is to evaluate the privacy offered by the preference-sharing al-
gorithm, against two types of adversaries. The first is a very powerful global
adversary, that can see the preferences output by the preference sharing algo-
rithm for every single node in the network. Yet this adversary is passive in that
it does not know the private inputs to the algorithm and tries to infer them. The
second threat we consider is a curious coalition of a user’s friends, that wants to
infer what her preferences are.

Global passive adversary. We assume that an eavesdropper can see all the prop-
agated preferences. Through those they can extract the sub-group g (of size
sa) that formed the core of the anonymity set used to propagate a particular
preference f(i, u).

Any of the members of g could have been the originators of the preference.
This already ensures some plausible deniability and privacy to the real originator.
To be more specific one has to calculate the probability a user set a preference
given that it was broadcast in sub-group g, that we will denote as Pr[u|g]. By
applying Bayes theorem we can express it in terms of known quantities:

Pr[u|g] =
Pr[g ∈R Gu] Pr[u]∑

w∈g Pr[g ∈R Gw] Pr[w]
(4)

Pr[g ∈R Gu] is the probability that a user u chooses group g and Pr[u] is the
a-prior probability we assign to user u being the originator of a preference i. If
we assume that the a-prior probability over all users is uniform, and that they
all choose the sub-groups g ∈R Gu uniformly out of the sets Gu we get:

Pr[u|g] =
1

|Gu|
∑

w∈g
1

|Gw|
(5)

In case all users chose amongst a set of fixed size |Gu| = c, this expression
simplifies, and the sought probability becomes: Pr[u|g] = 1/sa. This related
nicely the parameter sa of the algorithm with the privacy provided. The larger
sa the larger the anonymity provided, when measured information theoretically.

Yet there is likely to be an imbalance between the sizes of the sets Gu for
different users. We try to establish what the worse case scenario is, assuming
that we have some maximal size of max |Gu| = cmax as well as some minimal
size min |Gu| = cmin. In those cases we still have that:

Pr[u|g] <
cmax

cmin(sa − 1) + cmax
(6)

This expression makes it possible to compute the probability a preference
is associated with a user. A system can either try to keep it low by choosing
carefully sub-groups to guarantee cmin ≤ |Gw| ≤ cmax, or simply not propagate
preferences in case this probability is higher than a threshold.



The adversary model assumed is extremely conservative, assuming that most
information in the system is available to pinpoint g. It is most likely that coali-
tions of dishonest nodes will receive much less information. In particular a single
node in the system will not be able to distinguish which of the nodes in its set
bu was the originator of a preference.

Yet an important concern is the possibility that nodes in the anonymity
set g are in fact corrupt. We assume this is very difficult since k-plexes are
infiltration resistant. Sharing a k-plex of size sa with sa dishonest nodes, requires
a misguided node to make sa−k+1 bad friends. In any case such an attack would
only affect misguided nodes in the system, which we assume are in a minority.

Honest nodes (with mostly honest friends) will never find themselves in a
k-plex dominated by dishonest nodes. Even a misguided node with fewer than
sa − k + 1 dishonest friends will never have their privacy totally compromised
through infiltration.

Coalition of curious friends. The second key threat to the privacy to users are
their very own friends. A collection of a user’s friends may exchange information
about their private preferences in an attempt to infer the preferences of a user.

First we note a very strong privacy property against such attacks. In any
case coalitions of fewer than sa − 1 users will fail to attribute a preference with
certainty to a single user. This is a very strong result that sets a lower bound
on the size of the conspiracy.

At least sa − 1 nodes are necessary to fully de-anonymize a preference, but
this condition is not sufficient to perform an actual attack. It is also necessary
that the coalition of node coincides exactly with the members of the cohesive
sub-group used as an anonymity set to broadcast the preference. This places
additional restrictions and difficulties in creating such a malevolent coalition.

Through simulations we try to estimate the quality of anonymity remaining
after such an attack. For those we use about 100000 user profiles downloaded
through the livejournal public interfaces using snowball sampling. Only sym-
metric links were kept to form a social graph. We assume that a fraction f of all
users collude to deanonymize users. These users are curious but make no special
effort to place themselves in the social graph to maximise the information they
receive (they are not as such sybil nodes – just curious friends.) Therefore we
assume they are randomly distributed across the network.

Figure 2 summarises the results of attack simulations on a real-world social
network. The Preference Propagation (PP.) algorithm (yellow, right hand size
columns) is compared with the naive strategy (Std.) of broadcasting preferences
to all friends (red, left hand side columns.) When a very low number of nodes
collude to infer a user’s preference (f = 1%) the naive scheme provides good
anonymity, since on average a corrupt users cannot narrow down the originator
of a preference beyond his full circle of friends. Yet as the fraction of curious nodes
grows (f = 10%, 20%, 30%) the anonymity sets for the standard strategy shrink
to zero aside from some exceptional cases. On the other hand the anonymity
sets of the Preference Propagation algorithm remain large with high probability.



Fig. 2. The sizes of the anonymity sets remaining after a colluding coalition of friends
tries to de-anonymize a preference. The fraction f represents the probability a friend
is participating in the adversary coalition.

Their reduction is only due to the fraction of curious nodes actually being in the
anonymity set of the propagated preference.

4.3 Quality Analysis

The second security objective of the proposed preference propagation algorithm
is to limit the potential for the propagation of spam. Our objective is to limit
the propagation of preferences from dishonest nodes mostly to the misguided
nodes, but to make it difficult for such preferences to travel any further in the
social graph.

The simple minded 1-hop propagation algorithm, in which users only broad-
cast their preferences to their neighbours, by definition achieves this property. Its
down side is that the number of nodes that could benefit from the shared pref-
erence is limited to the number of friends. The simple extension of this scheme
to a 2-hop broadcast extends the reach of the shared preferences but also makes
it very likely that nodes are the recipients of some spam. Figure 3 (right) plots
the number of nodes that are affected by users with different degrees in each
mechanism. As expected the preference propagation algorithm affects a wider
circle per node than the simple 1-hop propagation. At the same time the number
of nodes included in a extended broadcast group is smaller than the reach of the
2-hop naive propagation.

Despite the order of magnitude increase in the nodes affected by the prefer-
ence propagation algorithm compared with the 1-hop scheme, quality is to a large
extent maintained, even for larger fractions of misguided nodes all connected to
collaborating dishonest nodes. Figure 3 (left) illustrates the probability that a
node receives spam for all systems, as the fraction of misguided nodes grows,
in a real social network. In the 2-hop scheme receiving spam becomes quasi-
certain even when a small minority of users are misguided (f = 1%− 10%). For



Fig. 3. The probability of honest nodes receiving malicious preferences, depending on
the fraction of malicious nodes in the system (Left). The size of the naturally occurring
broadcast groups as a function of node degree, compared with the 1-hop and 2-hop
neighborhood (right).

the preference propagation scheme on the other hand the probability of receiv-
ing spam remains low even for large fractions of misguided nodes. It is in fact
closely tracking the probability of being misguided for low rates of infiltration
(f = 1%−10%). For higher rates of infiltration (f = 10%−30%) the probability
non-misguided honest nodes receive spam increases slowly (marked at “PP. (Non
Misg.)” on the illustration.)

There is a further fine, but important, difference between the proposed pref-
erence propagation algorithm and the traditional 1-hop or 2-hop schemes. In our
approach the dishonest nodes, connected to the misguided honest nodes, must
all be acting in a coordinated way to spam the system. They need to form cohe-
sive subgroups between themselves and the users to broadcast their preferences.
In effect it means that a single adversary must be connected to a fraction f of
the honest nodes, unless they start applying social engineering to target related
nodes to form cohesive subgroups.

The standard 1-hop and 2-hop propagation on the other hand does not re-
quire adversaries to coordinate in any way to spam. This means that the total
fraction of misguided nodes, connecting to even unrelated adversaries, needs to
be f for the probability of attack illustrated in figure 3 (left) to hold. It is much
more likely that the total number of misguided nodes reaches a fraction f , than
the number of misguided nodes connected to a single adversary’s nodes reaches
the same fraction. Unless there is a conspiracy at a massive scale it is difficult to
imagine a single adversary connecting sybils to more than 10% of honest nodes
in a larger network, at which point purpose built sybil attack defenses based on
social networks should be employed [7].

Even in the absence of other sybil defenses the proposed system offers excel-
lent guarantees against spam, as 10% of misguided nodes would lead to barely
more than 10% of nodes being spammed (Figure 3 (left)). At the same time our



strategy affords honest preferences a wide reach, of an order of magnitude above
simply propagating preferences to friends (Figure 3 (right)).

4.4 Future work: adversarial profiling

As preferences are propagated in groups it might be possible for adversaries to
modify established disclosure attacks [17, 8] to try to de-anonymize or profile
users. For example if a user keeps receiving preferences about rare comic books,
or another relatively rare subject, from many anonymity sets they might assume
a single user is the originator and try to intersect the anonymity sets to de-
anonymize them. The general attack considers users on one side, each with some
abstract interests, and propagated preferences on the other side. Every time a
preference is propagated to a broadcast group, this is modeled as a communica-
tion though a mix with the same anonymity set. Then the statistical disclosure
attacks can be applied to extract user profiles in the long term.

The effectiveness of this attack in this new context is not clear, as the ad-
versary has to ascribe preferences to categories – a fuzzy step that was not pre-
viously necessary. Subgroups are also likely to be coherent in their preferences
which creates dependencies in the anonymity sets not previously considered by
disclosure attacks. Adapting those traffic analysis techniques to extract prefer-
ence profiles could be a valuable contribution to the literature. Bayesian models
of such attacks are likely to be the most amenable to this setting [9].

5 Conclusions

We presented a general framework for anonymously sharing information in a so-
cial network. Our framework guarantees some k-anonymity, maintains high value
by allowing information to be shared based on social proximity, and increases
the cost of spamming the network. Our approach, extracting special cohesive so-
cial structures to protect users, adds to a body of work that uses social network
information for security, as SybilInfer does for sybil defenses [7], and other pro-
posals for automatically extracting privacy policies in social networks [5]. In the
absence of a top-down trust structure we believe that the hints the users provide
as to who they know and trust are the only way to bootstrap such policies, even
though they might not be as bullet proof as traditional mandatory access con-
trol systems. Notions of differential privacy [14] can also be used to show that a
published statistic leaks no identifiable information, and the application of this
framework to our problem would be an interesting avenue for future work.

The framework we provide can be extended through alternative definitions
of broadcast groups, that may provide a different anonymity, quality and spam-
resistance trade-offs. Some structures could make use of explicit user hints of
groups and communities, or even try to route preferences to groups that would
most benefit from those (i.e., preferences about technical searches staying within
technical communities). A further open question remains: how can traditional
long term traffic analysis attacks be adapted, from inferring patterns of commu-
nications, to inferring users profiles despite the anonymization?
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Fig. 4. Reach of cohesive groups per node degree and sa value.

A Measuring k-plexes in the wild.

The privacy offered by our scheme against passive adversaries as well as dishonest
nodes is closely related to the minimal size of the cohesive subgroups defining
our anonymity sets, namely sa. This parameter is not up to the designer of
the system to tune, and is heavily dependant on the natural sizes of cohesive
subgroups appearing within real-world social networks. Choosing sa to be too
large means that few nodes can broadcast their preferences, but choosing it to
be too small results in lower degrees of anonymity for preferences.

To better understand the range of possible subgroup sizes sa we measure the
number of nodes reachable through a k-plex with parameters k = 2, sa > 4
and sa > 7. We use the Live Journal (LJ) data set4, where edges represent
the mutual consent of two LJ users to read each others’ private journal entries.
Figure 4 illustrates the number of users reachable for these two parameters. It
is clear that the number of nodes sharing cohesive subgroups with a user grows
roughly linearly with the degree of the node. As expected the a higher sa leads to
fewer nodes being in cohesive subgroups of that size. We use sa > 7 throughout
all our experiments, since it seems to offer a good trade-off between privacy and
reachability.

The natural emergence of social structures that are large and cohesive could
be of great importance for other security designs. Traditional threshold cryp-
tosystems, or secret sharing schemes, assume that their processes are distributed
across a number of participants out of whom some are honest. Yet there has been
little research in measuring the natural sizes of subgroups in a social network
over which such functions could be distributed. Our work is the first to inform
the debate with such figures.

4 http://www.livejournal.com/


