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Abstract. Combining and analyzing data collected at multiple administrative lo-
cations is critical for a wide variety of applications, such as detecting malicious
attacks or computing an accurate estimate of the popularity of Web sites. How-
ever, legitimate concerns about privacy often inhibit participation in collaborative
data aggregation. In this paper, we design, implement, and evaluate a practical
solution for privacy-preserving data aggregation (PDA) among a large number of
participants. Scalability and efficiency is achieved through a “semi-centralized”
architecture that divides responsibility between a proxy that obliviously blinds the
client inputs and a database that aggregates values by (blinded) keywords and
identifies those keywords whose values satisfy some evaluation function. Our so-
lution leverages a novel cryptographic protocol that provably protects the privacy
of both the participants and the keywords, provided that proxy and database do
not collude, even if both parties may be individually malicious. Our prototype
implementation can handle over a million suspect IP addresses per hour when
deployed across only two quad-core servers, and its throughput scales linearly
with additional computational resources.

1 Introduction

Many important data-analysis applications must aggregate data collected by multiple
participants. ISPs and enterprise networks may seek to share traffic mix information to
more accurately detect and localize anomalies. Similarly, collaboration can help iden-
tify popular Web content by having Web users—or proxies monitoring traffic for an
entire organization—combine their access logs to determine the most frequently ac-
cessed URLs [1]. Such distributed data analysis is similarly important in the context of
security. For example, victims of denial-of-service (DoS) attacks know they have been
attacked but cannot easily distinguish the malicious source IP addresses from the good
users who happened to send legitimate requests at the same time. Since compromised
hosts in a botnet often participate in multiple such attacks, victims could potentially
identify the bad IP addresses if they combined their measurement data [39]. Coopera-
tion is also useful for Web clients to recognize they have received a bogus DNS response
or a forged self-signed certificate, by checking that the information they received agrees
with that seen by other clients accessing the same Web site [34, 41]. In this paper, we
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present the design, implementation, and evaluation of an efficient, privacy-preserving
system that supports these kinds of data analysis.

Today, these kinds of distributed data aggregation and analysis lack privacy pro-
tections. Existing solutions often rely on a trusted (typically centralized) aggregation
node that collects and analyzes the raw data, thereby learning both the identity and in-
puts of participants. There is good reason to believe this inhibits participation. ISPs and
Web sites are notoriously unwilling to share operational data with one another, because
they are business competitors and are concerned about compromising the privacy of
their customers. Many users are unwilling to install software from Web analytics ser-
vices such as Alexa [1], as such software would track and report every Web site they
visit. Unfortunately, even good intentions may not translate to good privacy protec-
tions, demonstrated all too well by the fact that large-scale data breaches have become
commonplace [35]. There certainly are non-Internet applications as well. Patients could
benefit from the aggregated analysis of medical data, but significant privacy concerns—
and regulation in the form of HIPAA and laws—understandably limit deployment in
practice. As such, we believe that many useful distributed data-analysis applications
will not gain serious traction unless privacy can be ensured.

Fortunately, many of these collaborative applications have a common pattern: ag-
gregating participants’ inputs on common input keys and potentially analyzing the re-
sulting intersection. When designed with privacy in mind, we refer to this problem as
privacy-preserving data aggregation (PDA). Namely, each participant pj (or client) au-
tonomously makes observations about values associated with keys, i.e., input key-value
tuples ⟨ki, vi⟩. The system jointly computes a two-column input table T. The first col-
umn of T is a set comprised of all unique keys belonging to all participants (the key
column). The second, value column is comprised of values T[ki] that are the sum or
union of all participant’s values for ki. This is akin to a database join on matching keys
across each participant’s input (multi)set.

We consider two different forms of this functionality: (1) aggregation-only (PDA),
where the output is just the value column, and (2) conditional-release (CR-PDA), where
the protocol also outputs a key ki if and only if some evaluation function f(∀j|vi,j) is
satisfied. For example, our botnet anomaly detection is an instance of over-threshold
set intersection—also known as the heavy-hitter or iceberg detection problem—where
the goal is to detect keys that occur more than some threshold number of times across
all participants. Here, the keys ki refer to IP addresses, each value vi,j is 1, and f
is true iff its cardinality exceeds some threshold τ (i.e., if values are aggregated as
T[ki]← T[ki] + 1, is T[ki] ≥ τ?)4

A practical PDA system should provide the following:

4 In fact, since CR-PDA also releases the value column of all keys, one can choose the function f
based on the value table itself. (For example, in the case of anomaly detection the dataset may
naturally expose a clear gap between frequency counts of normal and anomalous behavior, and
so it makes sense to set the frequency threshold τ correspondingly.) This increases the utility
of the system by letting the data operators “play” with raw data (without seeing the keys).
However, one should note that in some scenarios this additional information may be seen as a
privacy violation.



Keyword Participant Lack of
Approach Privacy Privacy Efficiency Flexibility Coordination

Garbled-Circuit Evaluation [42, 3] Yes Yes Very Poor Yes No
Multiparty Set Intersection [16, 26] Yes Yes Poor No No

Hashing Inputs [17, 2] No No Very Good Yes Yes
Network Anonymization [11] No Yes Very Good Yes Yes

This paper Yes Yes Good Yes Yes

Table 1: Comparison of proposed schemes for privacy-preserving data aggregation

– Keyword privacy: No party should learn anything about inputted keys. That is,
given the above aggregated table T, each party should only learn the value column
T[ki] at the conclusion of the protocol. In the case of CR-PDA, parties should only
learn the keys ki whose corresponding value T[ki] satisfies f .

– Participant privacy: No party should learn which key inputs belongs to which par-
ticipant (except for information which is trivially deduced from the output of the
function). This is formally captured by showing that the protocol leaks no more in-
formation than an ideal implementation that uses a trusted third party, a convention
standard in secure multi-party computation [19].

– Efficiency: The system should scale to large numbers of participants, each gener-
ating and inputting large numbers of observations (key-value tuples). The system
should be scalable both in terms of the bandwidth consumed (communication com-
plexity) and the computational complexity of executing the PDA.

– Flexibility: There are a variety of computations one might wish to perform over
each key’s values T[ki], other than the sum-over-threshold test. These may include
finding the maximum value for a given key, or checking if the median of a row
exceeds a threshold. A single protocol should work for a wide range of functions.

– Lack of coordination: Finally, the system should operate without requiring that
all participants coordinate their efforts to jointly execute some protocol at the same
time, or even all be online around the same time. Furthermore, no set of participants
should be able to prevent others from executing the protocol.

Classes of solutions. In this work, we consider privacy-preserving data aggregation
as a form of the general secure multiparty computation problem, where multiple par-
ticipants wish to jointly compute some value based on individually-held secret bits of
information without revealing their secrets to one another. The theoretical cryptographic
literature provides generic solutions for this problem which also satisfy very strong no-
tions of security [42, 20, 4, 7]. In general, however, these tools are not efficient enough
to be used in practice. Few have ever been implemented ([28, 18, 3]), let alone operated
in the real world [5]. Moreover, they do not scale well either to large data sets or to a
large number of participants. More efficient solutions exist for special cases of the PDA
problem, such as secure set intersection [13, 30, 27, 16, 26, 15, 23, 10]. However, while
some of these solutions are quite efficient when the number of participants is small (e.g.,
2), none of them achieve practical efficiency in our setting where there are hundreds or
thousands of participants each generating thousands of inputs.5

5 For example, a careful protocol implementation of [16] found two sets of 100 items each took
213 seconds to execute [18].



On the other extreme, ad-hoc solutions for PDA can be highly efficient. Rather than
building fully decentralized protocols, we could aggregate data and compute results
using a centralized server. One approach is to simply have clients first hash their keys
before submitting them to the server (e.g., using SHA-256), so that a server only sees
H(ki) [2]. While it may be difficult to find the hash function’s pre-image, brute-force
attacks may be possible. In our intrusion detection application, for instance, a server can
easily compute the hash values of all four billion IP addresses and build a simple lookup
table. Thus, while efficient, this approach fails to achieve either keyword or participant
privacy, with the latter not achieved because a client submits its inputs directly to the
server. That said, one possible approach for participant privacy would be to proxy a
client’s request through one or more intermediate proxies that hide the client’s identity
(e.g., its IP address), as done in network anonymity systems such as Tor [11].

Table 1 summarizes these design points. An important goal of this work is to pro-
vide a solution between these two extremes, i.e., a protocol that is efficient enough to be
used in practice and at large scale, yet also provide a meaningful level of security that is
formally provable. There are various ways one could imagine weakening the strongest
notions of secure multi-party computation, which provide privacy guarantees against
any malicious participant. A standard relaxation would be to only guarantee privacy
against honest-but-curious parties, in which participants learn no information provided
that they faithfully execute the correct protocol. Another approach would be to provide
privacy against all small coalitions of malicious parties. But in the large settings we con-
sider, it may be easy for a single party to forge multiple identities and thus circumvent
such protections, the so-called Sybil attack [12].

Instead, we focus on providing security against any malicious participant, provided
that there exists a small set of well-known parties that do not collude. This is a natural
model that already appears in real-world scenarios, such as Democrats and Republicans
jointly comprising election boards in the U.S. political system. For our specific exam-
ples, business competitor ISPs like AT&T and Sprint could jointly provide a service like
cooperative DoS detection. Or, it could be offered by third-party entities who have no
incentive to collude. Such non-collusion assumptions already appear in several crypto-
graphic protocols [8, 14]. It should be emphasized that these well-known parties should
not be treated as trusted: we only assume that they will not collude. Indeed, jumping
ahead, our protocols do not reveal sensitive information to either party.

Contributions. In this paper, we design, implement, and evaluate privacy-preserving
data aggregation—through logical centralization over a small number of non-colluding
parties—that provably offers privacy-preserving data aggregation without sacrificing
efficiency. Rather than full decentralization (as in secure multi-party computation) or
full centralization (as typical in trusted-party solutions), our PDA architecture is split
between well-known entities playing two different roles: a proxy and a database (DB).
The proxy plays the role of obliviously blinding client inputs, as well as transmitting
blinded inputs to the DB. The DB, on the other hand, builds a table that is indexed by
the blinded key and aggregates each row’s values (either incrementally or after some
time). While most of the paper will focus on the case of only two entities—one proxy
and one DB—we also show how to extend the protocol to larger numbers of parties.



The resulting system provides strong keyword and participant privacy guarantees,
provided that the well-known entities—which operate the proxy and the database—do
not collude. Specifically, we describe two variants of the protocol which provides the
following notions of security (see Appendix A for more details):

– Privacy of PDA against malicious entities and malicious participants: Even an ar-
bitrary coalition of malicious participants, together with either a malicious proxy or
DB, learn nothing about other participants’ inputs (except that implied by the pro-
tocols’ output). Such a coalition may violate correctness in almost arbitrary ways,
however. Similar notions of security have appeared before [32, 15, 23].

– Privacy of CR-PDA against honest-but-curious entities and malicious partici-
pants: Our CR-PDA protocol achieves full security in the “ideal-real” framework.
This holds with respect to malicious coalitions of participants, as well as honest-
but-curious coalitions between participants and the DB or proxy.

Using a semi-centralized architecture greatly reduces operational complexity and
simplifies the liveness assumptions of the system. Clients can asynchronously provide
inputs without our system requiring any complex scheduling. Despite these simplifica-
tions, the cryptographic protocols necessary to provide strong privacy guarantees are
still non-trivial. Specifically, our solution makes use of oblivious pseudorandom func-
tions [33, 15, 23], amortized oblivious transfer [31, 24], and homomorphic encryption
with re-randomization. In summary, the contributions of this paper include:

– We demonstrate a tradeoff between efficiency and security in multi-party compu-
tation. Our protocols achieve a relatively strong notion of provable security, while
remaining practical for large numbers of participants with large input sets.

– At an abstract level, we introduce and implement a new cryptographic primitive
that extends the notion of oblivious pseudorandom function (OPRF) as follows: A
sender with input k communicates with a receiver via a mediator who holds a PRF
key s. At the end of the protocol, the receiver learns Fs(k), and the sender and
mediator learn nothing. We believe that this notion, as well as our specific imple-
mentation, are of independent cryptographic interest and may be useful elsewhere.

– There are very few implementations of secure multi-party computation ([28, 3, 5]),
and our system is one of the first to demonstrate practical efficiency. To our knowl-
edge, it also includes the first implementation of some cryptographic machinery we
use as sub-protocols (e.g., amortized oblivious transfer [24]); our evaluation show
that they realize significant benefits in practice.

– Finally, we illustrate that our system provides a level of performance that is suf-
ficient for several applications of interest, including anomaly detection, certificate
cross-checking, and distributed ranking.

The remainder of this paper is organized as follows. Section §2 describes our PDA
protocols and sketches proofs of their privacy. We describe our system architecture and
implementation in §3, evaluate its performance in §4, and conclude in §5. The appendix
details some security definitions, protocol extensions, and proofs.
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Fig. 1: High-level system architecture and protocol. Conditional release extensions to PDA
are steps 4 and 5, as well as additional input in step 2 (all shown in blue). Fs is a keyed hash
function whose secret s is known only to the proxy.

2 Our Protocols

In this section, we describe our protocols and analyze their security. We first describe
a simplified version of the CR-PDA protocol that achieves somewhat weaker security
properties, and we then extend this protocol to support a stronger notion of security.
We conclude by explaining how to adopt the CR-PDA protocol to support the (simpler)
case of the PDA functionality and sketch an extension to the case of t > 2 mutually-
distrustful parties. Formal security proofs are deferred to the full version of this paper.

2.1 The Basic CR-PDA Protocol

Our protocol consists of five basic steps (see Figure 1). In the first two steps, the proxy
interacts with the participants to collect the blinded keys together with their associated
values encrypted under the DB’s public key, and then passes these encrypted values
on to the DB. Then, in the next two steps, the DB aggregates the blinded keys with the
associated values in a table, and it decides which rows should be revealed according to a
predefined function f . Finally, the DB asks the proxy to unblind the corresponding keys.
Since the blinding scheme Fs is not necessarily invertible, the revealing mechanism
uses additional information sent during the first phase. The specific steps are as follows.

– Parties: Participants, Proxy, Database.
– Cryptographic Primitives: A pseudorandom function F , where Fs(ki) denotes

the value of the function on input ki with a key s. A public-key encryption E,
where EK(x) denotes an encryption of x under the public key K.

– Public Inputs: The proxy’s public key PRX, the database’s public key DB.
– Private Inputs. Participant: A list of key-value pairs ⟨ki, vi⟩. Proxy: key s of PRF
F and secret key for PRX; Database: secret key for DB.

1. Each participant interacts with the proxy as follows. For each entry ⟨ki, vi⟩ in its
list, the participant and the proxy run a sub-protocol for oblivious evaluation of
the PRF (OPRF). At the end of this sub-protocol, the proxy learns nothing and
the participant learns only the value Fs(ki) (and nothing else, not even s). The
participant computes EDB(Fs(ki)), EDB(vi), and EDB(EPRX(ki)), and it sends
them to the proxy. (The last entry will be used during the revealing phase.) The
proxy adds this triple to a list and waits until most/all participants send their inputs.

2. The proxy randomly permutes the list of triples and sends the result to the DB.



3. The DB decrypts all the entries of each triple. Now, it holds a list of triples of the
form

⟨
Fs(ki), vi, EPRX(ki)

⟩
. If a value vi is not valid (i.e., vi /∈ D, where D is

the domain of legal values), the corresponding triple is omitted. The DB inserts
the valid values into a table which is indexed by the blinded key Fs(ki). At the
end, the DB has a table of entries of the form

⟨
Fs(ki),T[ki],E[ki]

⟩
. T[ki] is some

aggregation of all vi’s that appeared with ki (e.g., the actual values or, for threshold
set intersection, simply the number of times that ki was inputted). E[ki] is a list of
values of the form EPRX(k).

4. The DB uses some predefined function f to partition the table into two parts: R,
which consists of the rows whose keys should be revealed, and H, which consists
of the rows whose keys should remain hidden. It publishes the value column of the
table H (without the blinded-keys) and sends R to the proxy.

5. The proxy goes over the received table R and replaces all the encrypted EPRX(ki)
entries with their decrypted key ki. It then publishes the updated table.

Security Guarantees. This protocol guarantees privacy against the following:
Coalition of honest-but-curious (HBC) participants. Consider the view of an HBC

participant during the protocol. Due to the security of the OPRF, a single participant
sees only a list of pseudorandom values Fs(ki), and therefore this view can be easily
simulated by using truly random values. The same holds for any coalition of partici-
pants. In fact, this protocol achieves reasonable security against malicious participants
as well. The interaction of the proxy with a participant is completely independent of the
inputs of other participants. Hence, even if participants are malicious, they still learn
nothing about other participants’ inputs. Furthermore, even malicious participants will
be forced to choose their inputs independently of other honest participants. (See [31,
23] for similar security definitions.) However, malicious participants can still violate
the correctness of the above protocol. We fix this issue in the extended protocol.

HBC coalition of proxy and participants. The proxy’s view consists of three parts:
(1) the view during the execution of the OPRF protocol—this gives no information due
to the security of the OPRF; (2) the tuples that the participants send—these values are
encrypted under the DB’s key and therefore reveal no information to the proxy; and (3)
the value column of the table H and the key-value pairs that the DB sends during the
last stage of the protocol (encrypted under the proxy’s key)—this information should
be revealed anyway as part of the the actual output of the protocol.

This argument generalizes to the case where the proxy colludes with HBC partici-
pants: their joint view reveals nothing about the inputs of the honest participants.

HBC database. The DB sees a blinded list of keys encrypted under his public key
DB, without being able to relate blinded entries to their owners. For each blinded key
Fs(ki), the DB sees the list of its associated values T[ki] and encryptions of the keys
under the proxy’s key PRX. Finally, the DB also sees the key-values pairs that were
released by the proxy (i.e., , the table R which is chosen by f ). The values Fs(ki) and
EPRX(k) bear no information due to the security of the PRF and the encryption scheme.
Hence, the DB learns nothing but the table R and the value column of H, as it should.

2.2 A More Robust Protocol
We now describe how to immunize the basic protocol against stronger attacks.



HBC coalition of participants and DB. The previous protocol is vulnerable against
such coalitions for two main reasons.

First, a participant knows the blinded version Fs(ki) of its own keys ki, and, in ad-
dition, the DB can associate all the values T[ki] to their blinded keys Fs(ki). Hence, a
coalition of a participant and a DB can retrieve all the values T[ki] that are associated
with a key ki that the participant holds, even if this key should not be revealed accord-
ing to f . To fix this problem, we modify the first step of the protocol. Instead of using
an OPRF protocol, we will use a different sub-protocol in which the participant learns
nothing and the proxy learns the value EDB(Fs(ki)) for each ki. This solves the prob-
lem as now that participant himself does not know the blinded version of his own keys.
To the best of our knowledge, this version of an encrypted-OPRF protocol (abbreviated
EOPRF and detailed in §2.3) has not previously appeared in the literature.

Second, we should eliminate subliminal channels, as these can be used by partici-
pants and the DB to match the keys of a participant to their blinded versions. To solve
this problem, we use an encryption scheme that supports re-randomization of cipher-
texts; that is, given an encryption of x with randomness b, it should be possible to
recompute an encryption of x under fresh randomness b′ (without knowing the private
key). Now we eliminate the subliminal channel by asking the proxy to re-randomize the
ciphertexts—EDB(Fs(ki)), EDB(vi), and EDB(EPRX(ki))—which are encrypted un-
der the DB’s public key (at Step 1). We should also be able to re-randomize the internal
ciphertext EPRX(ki) of the last entry as well.

Coalition of malicious participants. As we observed, malicious participants can vi-
olate the correctness of our protocol, e.g., by trying to submit ill-formed inputs. Re-
call that the participants are supposed to send to the proxy triples ⟨a, b, c⟩, of the
form a = EDB(Fs(ki)), b = EDB(vi) and c = EDB(EPRX(ki)) for some ki and
vi. However, a cheating participant might provide an inconsistent tuple, in which
a = EDB(Fs(ki)) while c = EDB(EPRX(k

′
i)) for some k′i ̸= ki. To prevent this

attack, we let the proxy apply a consistency check to R in the last step of the protocol.
The proxy makes sure that EPRX(k

′
i) and Fs(ki) match, and otherwise omits the in-

consistent values. Then the DB checks again if the corresponding row should still be
revealed.

A cheating participant might also try to replace b with some “garbage” value b′ =
EDB(v

′) which is not part of the legal domain D or for which he does not know the
plaintext v′. (While this might not seem beneficial in practice, we must prevent such
an attack to meet strong definitions of security.) To prevent such attacks, we use an
encryption scheme which supports only messages taken from the domainD, and ask the
participant to provide a zero-knowledge proof of knowledge (ZK-POK) that he knows
the plaintext v to which b decrypts. As seen later, this does not add too much overhead.

2.3 Concrete Instantiation of the Cryptographic Primitives

In the following section, we assume that the input keys are represented by m-bit strings.
We assume that m is not very large (e.g., less than 192–256); otherwise, one can hash
the input keys and apply the protocol to resulting hashed values.

Public Parameters. We mostly employ Discrete-Log-based schemes. In the fol-
lowing, g is a generator of a multiplicative group G of prime order p for which the



decisional Diffie-Hellman assumption holds. We publish (g, p) during initialization and
assume that algorithms for multiplication (and thus for exponentiation) in G exist.

El-Gamal Encryption. We will use El-Gamal encryption over the group G. The
private key is a random element a from Z∗

p, and the public key is the pair (g, h = ga).
In case we wish to “double-encrypt” a message x ∈ G under two different public keys
(g, h1) and (g, h2), we will choose a random b from Z∗

p and compute (gb, x · hb) where
h = (h1 · h2). This ciphertext as well as standard ciphertexts can be re-randomized
by multiplying the first entry (resp. second entry) by gb

′
(resp. hb′ ), where b′ is chosen

randomly from Z∗
p.

Goldwasser-Micali Encryption. The values vi which are taken from the domain D
will be encrypted under the Goldwasser-Micali (GM) Encryption scheme [21]. Specifi-
cally, if the domain size is 2ℓ, we represent the values of D by all possible ℓ-bit strings,
and encrypt such strings under GM in a bit-by-bit manner. The GM scheme provides ci-
phertext re-randomization, and it allows the party who generates a ciphertext c to prove
in zero-knowledge that he knows the decryption of c and that c is valid (i.e., decrypts
to an ℓ bit string) [22]. Furthermore, both these operations and encryption cost only ℓ
modular multiplications.6 Decryption costs 2ℓ modular exponentiations, but ℓ is typi-
cally bounded by a very small integer in our protocols. Finally, the ZK proof consists
of 3 moves and can run in parallel with the EOPRF.

Naor-Reingold PRF [33]. The key s of the function Fs : {0, 1}m → G contains m
values (s1, . . . , sm) chosen randomly from Z∗

p. Given m-bit string k = x1 . . . xm, the
value of Fs(k) is g

∏
xi=1 si , where the exponentiation is computed in the group G.

Oblivious-Transfer [36, 31] and Batched Oblivious Transfer [24]. To implement
the sub protocol of Step 1, we need an additional cryptographic tool called Oblivious
Transfer (OT). In an OT protocol a sender holds two strings (α, β), and a receiver has
a selection bit c. At the end of the protocol, the receiver learns a single string: α if
c = 0, and β if c = 1. The sender learns nothing (in particular, it does not learn c). In
general, OT is an expensive public-key operation (e.g., it may take two exponentiations
per invocation and, in the above protocol, we would execute OT for each bit of the
participant’s input ki). However, Ishai et al. [24] show how to reduce the amortized cost
of OT to be as fast as matrix multiplication. This “batch OT” protocol uses a standard
OT protocol as a building block; we implemented our batch OT on top of [31].

2.4 The Encrypted-OPRF protocol
Our construction is inspired by a protocol for oblivious evaluation of the PRF F [15,
30, 31]. We believe that this construction might have further applications.

– Parties: Participant, Proxy.
– Inputs. Participant: m-bit string k = (x1 . . . xm); Proxy: secret key s =
(s1, . . . , sm) of a Naor-Reingold PRF F .

1. Proxy chooses m random values u1, . . . , um from Z∗
p and an additional random

r ∈ Z∗
p. In parallel, for each 1 ≤ i ≤ m: the proxy and the participant invoke the

6 For the case of zero-knowledge, the protocol of [22] provides only weak soundness at the cost
of ℓ multiplications. However, [9] provides strong soundness guarantees with amortized cost
of ℓ modular multiplications. Our setting naturally allows such an amortization.



OT protocol where proxy is the sender with inputs (ui, si · ui) and receiver uses xi

as his selector bit. (i.e., the participant learns ui if xi = 0, and si · ui otherwise.)
The proxy also sends the value ĝ = gr/Πui .

2. The participant computes the product M the values received in the OT stage. Then
it computes ĝM = (gΠxi=1si)r = Fs(k)

r, encrypts Fs(k)
r under the DB’s public

key DB = (g, h), and sends the result (ga, Fs(k)
r · ha) to the proxy.

3. The proxy raises the received pair to the power of r′, where r′ is the multiplicative
inverse of r modulo p. It also re-randomizes the resulting ciphertext.

Correctness. Since G has a prime order p, the pair (ga, Fs(x)
r · ha) raised to the

power of r′ = r−1, results in (gar
′
, Fs(k) · har′), which is exactly EDB(Fs(k)).

Privacy. All the proxy sees is the random tuple (u1, . . . , um, r) and EDB(Fs(k)
r).

This view gives no additional information except of EDB(Fs(k)). The participant, on
the other hand, sees the vector (sx1

1 · u1, . . . , s
xm
m · um), whose entries are randomly

distributed over G, as well as the value ĝ = (g1/Πui)r. Since r is randomly and in-
dependently chosen from Z∗

p, and since G has a prime order p, the element ĝ is also
uniformly and independently distributed over G. Hence, the participant learns nothing
but a sequence of random values. The protocol supports security against malicious par-
ticipants (in the sense that was described earlier) and malicious proxy as long as the
underlying OT is secure in the malicious setting.

2.5 Efficiency of our Protocol

In both the basic and extended protocol, the round complexity is constant, and the com-
munication complexity is linear in the number of items. The protocol’s computational
complexity is dominated by cryptographic operations. For each m-bit input key, we
have the following amortized complexity: The participant (who holds the input key),
proxy and DB compute a small constant number of exponentiations and perform O(m)
modular multiplication / symmetric-key operations. In the extended protocol, the DB
computes another 2 lg |D| exponentiations where D is the domain of legal values. (One
can optimize the exact number of exponentiations in the basic protocol by employing
RSA instead of El-Gamal.)

2.6 Extensions and variations

PDA Protocol. Our PDA protocol is based on the CR-PDA protocol. The proxy and
participant first use an EOPRF to send the proxy a list of pairs EDB(Fs(ki)) and
EDB(vi). (The value EDB(EPRX(ki)) is not needed in this case.) Then, the proxy
passes the (randomly shuffled) list to the DB, which aggregates the tuples according to
the blinded keys in the table

⟨
Fs(ki),T[ki]

⟩
and outputs the tuples T[ki] in a random

order. Security analysis (details omitted) is similar to the previous: malicious behavior
of either proxy or DB does not affect its own view or that of a colluding participant.

Using many mutually-distrustful servers. One might want a generalized protocol
with t > 2 proxies/DBs (hereafter referred to as servers), in which privacy holds as
long as not all of the servers collude. We now sketch one such simple extension of
our PDA protocol which works for HBC servers. This change increases the complexity
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Fig. 2: Distributed proxy and database architecture

by a multiplicative factor of t, and so we get a smooth tradeoff between security and
efficiency.

The basic idea is to make sure that both the key of the PRF (s) and the public key
of the database (DB) remain hidden from any coalition of t − 1 servers. Specifically,
each server holds a random share of an El-Gamal private key for DB (i.e., the sum
of the shares equals to the private key), and a key si for the Naor-Reingold PRF. We
define a PRF Fs(x) to be the product of Fs1(x), . . . , Fst(x). The protocol proceeds
as follows: (1) For each input ⟨k, v⟩, each participant performs the first EOPRF step
of the previous PDA protocol with all the servers, and broadcasts the value EDB(v).
Thus, the i-th server learns the ciphertexts ⟨EDB(Fsi(k)), EDB(v)⟩. In addition, the
participant supplies to each server a POK for knowing a corresponding legal value v.
(Some overhead can be saved here by using a single invocation of non-interactive ZK-
POK.) (2) Now, the servers use the homomorphism properties of El-Gamal to compute
EDB(Fs(k)); they can pass the EDB(Fsi(k))’s to each other in a chain-like order or
via a broadcast. (3) Then, the servers emulate the second step of the previous protocol
to get a randomly-ordered list of decrypted pairs ⟨Fs(k), v⟩. This is done in t rounds:
At the i-th round, the i-th server decrypts each pair under his share of the private key
(removes the i-th “layer” of encryption), rerandomizes the encryption, shuffles the list
in a random order, and passes the result to the next server. The final server aggregates
the values according to the blinded keys and broadcasts the result.

3 Distributed Implementation

This section describes our design and implementation of a scalable PDA architecture.
For simplicity, we present the case of two administrative entities, one running a single
logical proxy and the other a database. Both of these proxy and database logical com-
ponents can be physically replicated in a relatively straightforward manner, however.
In particular, our design can scale out horizontally to handle higher loads, by increas-
ing the number of proxy and/or database replicas, and then distributing requests across
these replicas. (Note that this replication strategy differs from the extension for t > 2
administrative entities, per Section 2.6.) Our distributed architecture is shown in Fig-
ure 2. Our current implementation covers all details described in the basic protocol, as
well as some security improvements of the extended version (e.g., including the EO-



PRF, but not ciphertext re-randomization, proofs of knowledge, or the final consistency
check).

3.1 Proxy: Client-Facing Proxies and Decryption Oracles

One administrative domain can operate any number of proxies. Each proxy’s function-
ality may be logically divided into two components: handling client requests and, in the
case of CR-PDA, serving as decryption oracles for the DB when a particular key should
be revealed. None of these proxies need to interact, other than having all client-facing
proxies use the same secret s to key the pseudorandom function F and all decryption-
oracle proxies use the same public/private key PRX. In fact, these two proxies play
different logical roles and could even be operated by two different administrative do-
mains. Currently, all proxies register with a single group membership server, although
a fault-tolerant, distributed membership service could be implemented [6].

To discover a client-facing proxy, a client contacts this group membership service,
which returns a proxy IP address in round-robin order (this could be replaced by any
technique for server selection, including DNS, HTTP redirection, or a local load bal-
ancer). To submit its inputs, a client connects with this proxy and then executes an
amortized Oblivious Transfer (OT) protocol on its input batch. This results in the proxy
learning

⟨
EDB(Fs(ki)), EDB(vi), EDB(EPRX(ki))

⟩
for each input tuple, with the fi-

nal element only present for CR-PDA protocols. The proxy pushes this tuple onto an
internal queue. (While Section 2.3 only described the use of ElGamal encryption, its
special properties are only needed for EDB(Fs(ki)); the other public-key operations
can be RSA, which we use in our implementation.) When this queue reaches a certain
length—10,000 in our implementation—the proxy randomly permutes the items in the
queue, and sends them to a database server.

Conditional-release PDA protocols have one final step. The database, upon deter-
mining that a key ki’s value satisfies f , sends EPRX(ki) to a proxy-decryption oracle.
The proxy-decryption oracle decrypts EPRX(ki) and returns ki to the database for stor-
age and potentially for subsequent release to other participants in the system.

3.2 Database: Front-end Decryption and Back-end Storage

The database component can also be replicated. Similar to the proxy, we separate
database functionality into two parts: the front-end module that handles proxy sub-
missions and decrypts inputs, and a back-end module that acts as a storage layer. Each
logical module can be further replicated in a manner similar to the proxy.

The servers comprising the front-end DB tier do not need to interact, other than
being configured with the same public/private keypair DB. Thus, any front-end DB can
decrypt the EDB(Fs(ki)) input supplied by a proxy, and the proxies can load balance
input batches across these servers.

The back-end DB storage, on the other hand, needs to be more tightly coordinated,
as we ultimately need to aggregate all Fs(ki)’s together, no matter which proxy or
front-end DB processed them. Thus, the back-end storage tier partitions the keyspace
of all 1024-bit strings over all storage nodes (using consistent hashing). All such front-
end and back-end DB instances also register with a group membership server, which the
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Fig. 3: Scaling effect of number of (a) keys, (b) participants, and (c) proxy/database replicas.

front-end servers contact to determine the list of back-end storage nodes. Upon decrypt-
ing an input, the front-end node determines which back-end storage node is assigned
the resulting key Fs(ki), and sends the tuple

⟨
Fs(ki), vi, EPRX(ki)

⟩
to this storage

node (the final element again present only for CR-PDA protocols). As these storage
nodes each accumulate a horizontal portion of the entire table T , they can aggregate the
values of each table row accordingly. In the case of CR-PDA, they can test the value
column for their local table to see if any keys satisfy f . For each such row, the storage
node sends the tuple

⟨
Fs(ki), T [ki], EPRX(ki)

⟩
to a proxy-decryption oracle.

3.3 Prototype Implementation
Our design is implemented in roughly 5,000 lines of C++. All communication is per-
formed over TCP using BSD sockets, and concurrency is achieved through Linux
pthreads. We use the GnuPG library for large numbers (bignums) and cryptographic
primitives (e.g., RSA, ElGamal, and AES). The Oblivious Transfer protocol (and its
amortized variant) were implemented from scratch, comprising 625 lines of code. All
RSA encryption used a 1024-bit key, and ElGamal used a 1024-bit group size. AES-256
was used in the batch OT and its underlying OT primitive. The back-end DB currently
stores table rows only in memory.

4 Performance Evaluation
In this section, we evaluate system throughput (number of updates/queries per second)
as a function of the number of keys and system participants. We also investigate how
throughput scales with greater resources. In each case, we are concerned with both
how long it takes for clients to send key-value pairs to the proxy during the OT phase
(proxy throughput), as well as how long it takes for the DB to decrypt and identify
keys with values that satisfy the function f (DB throughput). Our experiments were run
on multiple machines. The proxy and DB were run on quad-core Intel Xeon 2 GHz
machines running CentOS Linux. These machines can perform a 1024-bit ElGamal
encryption in 2.2 ms, ElGamal decryption in 2.5 ms, RSA encryption in 0.5 ms, and
RSA decryption in 2.8 ms. Clients were run on separate local machines.

As discussed earlier, our system can be used in different contexts. One potential ap-
plication of collaborative anomaly detection. As modern botnets can range up to roughly
100,000 unique hosts [37], we would like our system to be able to correlate suspicions



of hundreds of participating networks within a few hours. Thus, our implementation
should be able to process millions of keys in the span of hours, or hundreds of keys per
second. We revisit the feasibility of supporting applications in Section 4.2.

4.1 Scaling and Bottleneck Analysis
Effect of number of keys (Figure 3a). Figure 3a measures throughput of a single
proxy and DB (each running on a single core) as a function of the number of keys. The
throughput of the OT primitive is exceedingly low—less than 1 key per second—and
was thus not evaluated on the full range of input sizes. However, when using the amor-
tized OT, proxy throughput significantly improves. Throughput increases with larger
numbers of keys per batch, as the amortized OT calls the primitive OT a fixed number
of times regardless of the number of input keys. DB throughput, on the other hand, does
not increase with larger input batches. The DB must perform a fixed number of decryp-
tions per input tuple—initiated when it receives a batch of encrypted inputs from the
proxy—and thus its computational cost is relatively constant per input. Figure 3a shows
our DB processes about 90 keys per second (and then becomes CPU limited).

The amortized OT protocol [24] introduces a trade-off between message overhead
and memory consumption. The memory footprint of this protocol per client-proxy in-
teraction for n keys is n× 32× 2× 1024/8 = 8196n bytes (i.e., we assume 32 bits per
key, the 2 values for the OT primitive, and 1024-bit encryption lengths). For n=10, 000
keys, for example, this requires 82 MB on both the proxy and the client. To reduce this
memory footprint, a user of the protocol could choose to execute the amortized OT
protocol in stages by sending k keys at a time.

Effect of number of participants (Figure 3b). We next evaluate the throughput of our
system as a function of the number of clients submitting inputs. In this experiment, we
limit the proxy and DB to one server machine each. Four client-facing proxy processes
are launched on one machine and four front-end DB processes are launched on the
other. Figure 3b shows that the proxy scales well with the number of clients, increasing
by nearly a factor of two between 8 and 32 clients. When communicating with a single
client, a proxy spends a substantial fraction of its time idling (largely while the client
is performing its cryptographic operations). The four proxies in this experiment are not
CPU limited until they handle 32 clients, at which time the throughput approaches 900
keys per second. The DB, however, is CPU-bound throughout these experiments. It has
a throughput of about 350 keys per second, independent of the number of clients (a like
amount of work per core as that seen in Figure 3a).

Effect of number of replicas (Figure 3c). Finally, we analyze how our distributed
architecture scales with computing resources. Here, we provide up to 8 cores on 2 ma-
chines to each of the proxy and DB front-ends. While the proxy functionality alone is
evaluated using 64 clients, computing resource constraints meant that the DB (which
also required proxies to test) is evaluated using 32 clients. Performance of both the
proxy and DB scale linearly with the number of CPU cores allocated to them, enabling
a few servers to handle inputs on the order of a few million keys per hour.

Micro-benchmarks. To understand the factors limiting our design’s performance, we
instrumented the code to account for how CPU cycles are spent. While the DB is en-
tirely CPU bound by the cost of decrypting inputs, the proxy and client engage in the



oblivious transfer protocol whose bottlenecks are less clear. When communicating with
a single client, we found that the client-facing proxy spends more than 60% of its time
idling while waiting for the client (some of the OT time is also spent waiting on clients).
The 60% idle time is primarily due to waiting for the client to encrypt ki and Fs(ki).
The single largest computational expense for the proxy is performing modular expo-
nentiations at 16%; the remaining non-OT tasks add up to 15%. Given that concurrent
clients will reduce the proxy’s waiting state, achieving higher proxy throughput will
require either more efficient cryptographic operations or faster bignum libraries.

We noted earlier that the GnuPG cryptographic library we used performed public-
key operations in approximately 2.5–2.8 ms. On the same servers, we benchmarked the
Crypto++ library to perform RSA decryption in only 1.2 ms, increasing speed by 130%.
Crypto++ would also allow us to take advantage of elliptic curve cryptography, which
would increase system throughput. In future work, we plan to modify our implementa-
tion to use this library.

4.2 Feasibility of Supporting Applications

Anomaly detection. Network operators commonly run systems to detect and localize
anomalous behavior by dynamically tracking traffic characteristics. For example, Mao
et al. [29] found that most DDoS attacks observed within a large ISP were sourced by
fewer than 10,000 source IPs, and generated 31,612 alarms over a four-week period
(0.8 events per hour). Ramachandran et al. [38] were able to localize 4,963 Bobax-
infected host IPs sending spam from a single vantage point. We envision our system
could be used to improve the accuracy of these techniques by correlating anomalies
across ISP boundaries. This correlation may be done on the level of IP addresses (given
DoS attackers typically do not spoof source IPs given ingress filtering [29] and for
applications such as email spam that require bidirectional TCP connections), or on the
level of subnets. Our system could handle 10,000 IP addresses as keys, with a request
rate of several hundred keys per second, even with several hundred participants.

Cross-checking certificates. Multiple vantage points may be used to validate authen-
ticity of information (such as a DNS reply or ssh certificate [34, 41]) in the presence
of “man-in-the-middle” attacks. Such environments demand privacy—DNS responses
reveal domains that clients access, ssh keys reveal host connection patterns—as well
as present scaling challenges due to the potentially large number of keys that could be
inserted. Under typical workloads [25, 40] (15 key updates per hour, with 30 keys per
participating host), our system scales to support several hundred hosts with a single
proxy. Extrapolating out to larger workloads, our system can handle tens of thousands
of clients storing tens of thousands of keys with under fifty proxy/database pairs.

Distributed ranking. Search tools such as Alexa and Google Toolbar collect informa-
tion about user behavior to refine search results returned to users. Users have incentive
to install these tools, as they provide benefits (simplified searching and other features).
However, they are sometimes labeled as spyware as they reveal information about the
contents of queries performed by users. Our tool may be used to improve privacy of user
submissions to these databases. Alexa Toolbar has an estimated 180,000 active users,
and average web users browse 120 pages per day. Roughly extrapolating this data to



our results and assuming that users batch their daily usage, our system could handle
this daily workload with a single 4-core proxy and DB pair.

5 Conclusions

In this paper, we presented the design, implementation, and evaluation of a collabo-
rative data-analysis system that is both scalable and privacy preserving. Since a fully-
distributed solution would be complex and inefficient, our design divides responsibility
between a small number of well-known, independent parties—most commonly, a proxy
that obliviously blinds the client inputs and a database that aggregates the inputs based
on the (blinded) keys. The functionality of both the proxy and the database can be eas-
ily distributed for greater scalability and reliability. Experiments with our prototype
implementation show that our system performs well under increasing numbers of keys,
participants, and proxy/database replicas. The performance is well within the require-
ments of our motivating applications for collaborative data analysis.
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A Security Assumptions

We now motivate and clarify some security assumptions and privacy definitions.

Security against coalitions. We insist on providing security against any coalition of
an arbitrary number of participants together with either the database or the proxy. This
is essential as otherwise the DB (or proxy) can perform a Sybil attack [12], i.e., create
many dummy participants and use their views, together with his own view, to reveal
sensitive information. On the other hand, in order to have an efficient and scalable sys-
tem, we are willing to tolerate vulnerability against a coalition of the DB and the proxy,
which could otherwise break participant and keyword privacy.

Power of the adversaries: honest-but-curious vs. malicious adversaries. In our CR-
PDA protocol, both proxy and DB are expected to act as HBC. We believe this model
is very appropriate for our semi-centralized system architecture. In many deployments,
the DB and proxy may be well-known and trusted to act to the best of their abilities, as
opposed to simply another participant amongst a set of mutually-distrusted parties. Of
course, these trust assumptions do not extend to the potentially large number of partici-
pants, and therefore we require security against any coalition of malicious participants
(who are allowed to deviate arbitrarily from the protocol). We mention that our PDA
protocol provides security even when the DB or proxy are malicious. More generally,
security holds against any arbitrary coalition of malicious participants that include ei-
ther a malicious proxy or a malicious DB. Typically, security against fully malicious
behavior comes at a great computational cost. We avoid this overhead by providing a
weaker notion of security as discussed next.

Notions of security: ideal-real framework vs. input indistinguishability. In cryp-
tography, the security of a protocol is usually defined via the ideal-real framework.
Roughly speaking, the protocol should be as secure as an ideal-world implementation
in which the players can employ a fully trusted party. This means that any attack that
can be carried against the real protocol should be simulatable in the ideal world as well.
This notion is very strong, as it shows that the protocol essentially achieves the highest
possible level of security. Our CR-PDA protocol provides this notion of security.

A weaker notion (recently studied in [32, 15, 23]) tries to deal separately with pri-
vacy and correctness in order to improve efficiency. In particular, malicious parties
are allowed to arbitrarily corrupt the correctness of the protocol as long as they do
not learn anything about the inputs of honest players. (Formally, this is captured by
an indistinguishability-based definition [23].) This is motivated by the fact that a ma-
licious party can often violate semantic correctness in an ideal implementation, e.g.,
by adding, changing, or omitting inputs to the function—by “lying,” in more informal
terms. Therefore, it may be reasonable to give up completely on correctness against
malicious parties (proxies and DBs) and gain significant computational savings.7

7 For technical reasons this relaxation makes sense mainly when the malicious parties do not
get any output. Since in our PDA functionality only the DB gets an output, we may adopt this
relaxed notion and provide privacy (at the form of input indistinguishability) against malicious
participants and/or malicious proxy, and full security (at the form of the ideal-real framework)
for coalitions that include a malicious DB.


