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Abstract. For over fifty years, “record linkage” procedures have been
refined to integrate data in the face of typographical and semantic er-
rors. These procedures are traditionally performed over personal iden-
tifiers (e.g., names), but in modern decentralized environments, privacy
concerns have led to regulations that require the obfuscation of such at-
tributes. Various techniques have been proposed to resolve the tension,
including secure multi-party computation protocols, however, such pro-
tocols are computationally intensive and do not scale for real world link-
age scenarios. More recently, procedures based on Bloom filter encoding
(BFE) have gained traction in various applications, such as healthcare,
where they yield highly accurate record linkage results in a reasonable
amount of time. Though promising, no formal security analysis has been
designed or applied to this emerging model, which is of concern consider-
ing the sensitivity of the corresponding data. In this paper, we introduce
a novel attack, based on constraint satisfaction, to provide a rigorous
analysis for BFE and guidelines regarding how to mitigate risk against
the attack. In addition, we conduct an empirical analysis with data de-
rived from public voter records to illustrate the feasibility of the attack.
Our investigations show that the parameters of the BFE protocol can be
configured to make it relatively resilient to the proposed attack without
significant reduction in record linkage performance.

1 Introduction

There are many societal needs, as well as legal requirements, for organizations
to share data about their constituents in support of a wide range of endeavors,
ranging from homeland security to biomedical research. At the same time, in-
creasing decentralization of our world has led to the storage of an individual’s
personal information across independent organizations. To ensure accurate ana-
lytics, it is critical to apply “record linkage” techniques to integrate information
that corresponds to the same individual. Record linkage is a relatively mature
field and a sizable number of algorithms have been refined to support the task
[1]. Yet, record linkage has traditionally been applied to explicit identifiers, such



as names and Social Security Numbers, and there are concerns that sharing such
information beyond an organization’s boundaries can endanger an individual’s
privacy. To mitigate risk, various private record linkage (PRL) protocols have
been developed to enable data integration without revealing the identity of the
corresponding individuals (e.g., [2–6]).

Most data sources contain records with typographical (e.g., “ei” vs. “ie”) or
semantic errors (e.g., maiden vs. married name) [7, 8], so it is critical that PRL
protocols enable similarity tests between records. It has been demonstrated that
such tests can be accomplished through the use of sophisticated cryptographic
methods based on secure multi-party computation (SMC) [9, 10]. Unfortunately,
protocols based on SMC are not practical for large dataset integration because
they incur substantial computational costs and require continuous interaction
between the organizations involved in the protocol [11]. More recently, a PRL
protocol based on Bloom filter encoding (BFE) was proposed to measure the
similarity of records in a more efficient manner, which is particularly notable
because it has gained traction in the medical environment [12]. Although the
accuracy and performance of the BFE approach are promising for real world
applications [4], a detailed cryptanalysis has not been performed. Given the
sensitivity of the data which BFEs are being proposed to protect (e.g., medical
information), we believe a formal analysis is necessary and timely. In this paper,
we construct a novel attack for BFEs, based on a combination of constraint
satisfaction and intelligent heuristics. We use real personal identifiers, derived
from publicly available resources, to empirically illustrate that the attack can
compromise a significant amount of private data if the parameters of the BFE
are selected as suggested in the literature. In summary, there are several notable
contributions of this paper:

Frequency-Aware Constraint Satisfaction Model: We frame the attack
against the BFE protocol as a constraint satisfaction problem (CSP). Though a
cryptanalytic method based on constraint satisfaction was previously proposed
for simple substitution ciphers [13], it does not directly apply to BFEs, which are
significantly more complex due to the ingredients involved in the encoding pro-
cess (see Section 2). The proposed cryptanalytic approach integrates frequency
analysis into the construction of the CSP to reduce the complexity.

Statistically Reliable Constraints: The CSP attack on the BFE proto-
col leverages constraints that are approximately correct (i.e., accurate with a
very high probability). While the constraints in a CSP should be accurate, an
overspecified system can lead to high computational costs when solving the prob-
lem. By utilizing statistically reliable constraints, we enable a complex CSP to
be solved efficiently by pruning the search space of the CSP solver.

Empirical Vulnerability Assessment: We show that the BFE protocol
is vulnerable to attack, provided that the adversary has a certain amount of rea-
sonable background information. At the same time, we explore the relationship
between the encoding parameters (e.g., filter length) and vulnerability through
extensive experiments. Our investigations show that BFE can be made relatively
resilient to the proposed attack by tuning the BFE parameters appropriately.



The remainder of the paper is organized as follows. Section 2 provides back-
ground information and describes the adversarial model. Section 3 presents the
proposed attack. We then report our experimental analysis in Section 4. We
review related work in Section 5 and conclude in Section 6.

2 Background

We begin with an overview of the BFE techniques and our threat model. A
legend for the notation used throughout the paper is provided in Table 1.

Symbol Description Symbol Description

A, B datasets of Alice and Bob AT , BT encoded versions of A, B
G global dataset D,DT (A ∪B), (AT ∪BT )
g string encoding function f n-gram encoding function
bf belief function Xi variable of CSP
vi value assigned to Xi qi, QXi single n-gram, n-gram set of Xi

m filter length k number of hash functions in f

Table 1: Symbol Definitions

2.1 Bloom Filter Encoding

A Bloom filter [14] is a bit array of length m that is affiliated with k hash
functions. Each function maps a given element to one bit location with a uniform
probability. For the purposes of this work, we define an element as a string,
S ∈ Σ∗, over an alphabet Σ.

In the BFE model described in [12], S is represented as the set of substrings
of length n, or n-grams such that QS = {q1, . . . , qz}. Each n-gram is subject to
each hash function and the corresponding bit indices are set to 1. The encoding
of a string is then obtained by combining the n-gram encodings with the bitwise
OR (∨) operation. Formally, let f : Σn 7→ {0, 1}m be the n-gram encoding
function obtained by combining k hash functions and g : Σ∗ 7→ {0, 1}m be the
string encoding function that converts any string into its BFE:

g(S) =
z∨

i=1

f(qi) (1)

Example 2.1 : In Figure 1, the bigrams of “amy” are encoded with two
hash functions. Notice “ a” and “y ” are mapped to the same index by one of
the hash functions.

Fig. 1: Sample BFE: Qamy = { a, am,my, y }



2.2 Threat Model

In this paper, the linkage of data sources A and B, owned by Alice and Bob,
respectively, is facilitated through a third party, Charlie. The utilization of the
third party is a common practice in real world privacy preserving data sharing
environments for healthcare (e.g., [15]). First, the data owners agree on the filter
length, the keyed hash functions, and the secret keys. Next, the owners convert
their strings into the BFEs. Then, the owners transfer the BFE lists (AT ∪BT )
(Henceforth, we will use D and DT to refer (A∪B) and (AT ∪BT ), respectively.)
to Charlie who compares the BFEs using a set-based similarity measure to find
matching pairs of records.

In this setting, we assume Charlie is the adversary and does not collude with
Alice or Bob. Charlie attempts to expose the original records based on their
BFEs without access to the secret keys. However, we assume that Charlie has
access to the following practical background knowledge:

Assumption 1: Charlie knows the global dataset G from which A and B are
drawn, such that D ⊆ G. This is reasonable because record linkage is typically
performed with personal identifiers (e.g., names and addresses), which in many
countries, can be found in public resources.

Assumption 2: Charlie knows the number of hash functions (k) that are
part of the Bloom encoding function. This is reasonable because Charlie can
infer the number of hash functions from the number of bits set in the Bloom
filters. Due to hash collisions, Charlie can only estimate this number, but it can
be restricted to a small range, such that the proposed attack can be applied for
all values in the range.

3 Overview of the Attack

Here, we provide an overview of the attack Charlie can execute on the BFE
system. Without loss of generality, let D be represented in relational form
D(Attr1, . . . , Attry) with string-valued attributes that correspond to personal
identifiers (e.g., surnames). For each record ti ∈ D, the Bloom encoding process
results in an encoding tTi = (g(ti.Attr1), . . . , g(ti.Attry)). An attribute encoding
tTi .Attrj is said to be compromised, if Charlie learns g−1(tTi .Attrj) = ti.Attrj .
The components of the attack are presented in subsections 3.2 to 3.4 and we
refer the reader to Appendix C for a visualization of the attack flow.

3.1 Motivating Example

Consider the scenario in Figure 2. Alice and Bob generate BFEs, which are
transferred to Charlie, who initiates the attack by calculating the frequency
distribution of the items in DT . Next, Charlie performs a statistical analysis
on G to form frequency intervals of the items in an arbitrary dataset of size
equal to DT . The possible encodings that could be associated with a particular
string is reduced significantly via frequency analysis as illustrated in the following
example.



Example 3.1.1 (Frequency Utilization): In Figure 2, Charlie estimates
the frequency interval of “adrianna” as [0.25, 0.4] by performing a statistical
analysis on G. Charlie then observes that the frequencies {0.375, 0.25} of BFEs
{0111101101, 0111001010} are the only ones in the interval of “adrianna”. As a
result, possible encodings for “adrianna” is reduced to these BFEs. �

In addition to frequency analysis, Charlie can use BFEs and the properties
of the encoding for the attack as illustrated in the following example.

Example 3.1.2 (Encoding Utilization): In Figure 2, “david” contains
6 bigrams { d, da, av, vi, id, d } with a possible encoding set {0111101101,
0111001010}. Notice, the encoding of “david” cannot contain more than six
1’s according to the construction of the BFE. The only encoding that satisfies
this condition is {0111001010}. Once “david” is mapped to {0111001010}, “adri-
anna” can only be mapped to {0111101101} since encoding function is one-to-one
with very high probability (see Section 3.3). It should be noted that each map-
ping of a name to an encoding reveals additional knowledge about the behavior
of the encoding function. For instance, once “sam” is mapped to {0100000011},
it is known that the encoding function can only set the second, ninth, and tenth
bit locations when applied on the set of bigrams { s, sa, am, m }. And, this type
of knowledge revision can be used to reveal further assignments. Notice that af-
ter the mappings of “david”, “adrianna” and “sam”, the possible encodings for
“adam” contains {0101000111, 1000110110}. But “adam” consists of the bigrams
{ a, ad, da, am, m } which have been included in previous mappings. Thus, to
be compatible with previous mappings, the first bit location of the encoding for
“adam” cannot be set to 1. The only encoding that satisfies this constraint is
{0101000111}, so “adam” is correctly assigned to it.�

Fig. 2: Records are embedded into a 10 bit Bloom filter with 1 hash function

3.2 Bloom Encoding Analysis

Some constraints can be derived from the properties of f , the n-gram encoding
function. The derived constraints should be satisfied by the mapping between
the original strings and the corresponding BFEs. Therefore, the problem of dis-
covering the mappings can be modeled as a CSP. Generally, a CSP is defined
by a set of variables {X1, X2, . . . , Xp}, and a set of constraints {C1, C2, . . . , Cr}



[16]. Each variable Xi has a nonempty domain of possible values. Each con-
straint Ci is related to some variables and allows only some combination of
assignments between the variables and values in their domains. A state of the
problem is defined by an assignment of some, or all, variables to values, such
that {X1 = v1, ..., Xp = vp} and it is said to be consistent if all the constraints
are satisfied by the assignments of the given state.

The variables of the CSP for BFE cryptanalysis are obtained from the global
dataset. The domain of the variables are BFEs and the constraints are derived
from the properties of f . We assemble a CSP for each attribute of the dataset
independently because each attribute may be encoded with different encoding
parameters (e.g., filter length). More formally, the components of the CSP in
this context can be stated as follows:

Variable: Let record ti ∈ G. Then ti.Attrj is a candidate variable for
attribute Attrj . Consider the example in Figure 2, values for the forename at-
tribute in G such as “david” and “sam” are candidate variables. The domain
of the CSP variables consists of the values obtained from the encoded dataset.
Since D ⊆ G, only some of the candidates have corresponding encoding in DT .
CSP variables are selected from the candidates according to the frequency of the
item sets such that selected candidate has an encoding in DT with very high
probability. The selection procedure is described in Section 3.3.

Domain: Let record tTi ∈ DT . Then tTi .Attrj is a candidate value for
attribute Attrj . In Figure 2, the encoded values for the forename attribute,
such as “0100000011” and “0111101101” are candidate values for the domain of
forename variables. The domains of variables are determined in two steps. In the
first step, certain values are eliminated based on the number of bit locations set
to 1. With respect to BFEs, each hash function that is applied to encode n-grams
sets one bit location in the filter. Therefore, any value in the domain of variable
Xi can contain at most k · zi 1’s if Xi contains zi distinct n-grams. Values with
more than k · zi 1’s can be eliminated from the domain of Xi. In the second
step, frequency analysis is performed to refine the domains. This procedure is
described in Section 3.3.

Constraints: The deterministic behavior of f and the number of hash func-
tions are utilized for defining constraints. When f is applied on a particular
n-gram, only particular bit locations are set to 1. When a BFE contains 0’s in
certain bit locations, Charlie can conclude f does not set those locations for the
n-grams that are part of the corresponding string. This assertion is captured
in the Theorem 1. Since, in our threat model we assume that k is known by
the attacker, the maximum number of bit locations that can be set by f when
applied on any n-gram is known to be k. In addition, the minimum number of
bit locations that will be set by f can be determined probabilistically as asserted
by Theorem 2.

Theorem 1. Let variable Xi contain n-grams QXi = {q1, ..., qz}, and let state
CS = {X1 = v1, ..., Xp = vp} be a consistent state. If the value of bit location l̄
is 0 in vi, then f(qx)[l̄] = 0 for any qx ∈ QXi .



Theorem 2. Let num1s : {0, 1}m 7→ N be a function that returns the number
of bit locations with value 1 for the given encoding and w be an integer in range
[1,k]. For any n-gram qi, num1s(f(qi)) ≥ w with probability p such that:

p =

k∑
i=w

(
m
i

)(
k−1
k−i

)
(
m+k−1

k

) (2)

Proof. We refer the reader to Appendix A for the proof of both theorems.

Another important information resource for defining constraints is available
assignments in a CSP state which accommodates some knowledge about f . This
knowledge is accumulated through a belief function:

Definition 3.2.1 (Belief Function): Belief function bf : Σn 7→ {0, 1}m
is a function, that takes n-grams as input and yields a BFE as output, which
simulates f on each n-gram. In its initial state, for any n-gram qi, it is believed
that f(qi) may set any bit location. The belief function reflects this knowledge
by satisfying the equation bf(qi)[l̄] = 1 for 1 ≤ l̄ ≤ m.

Once a new assignment {Xi = vi} is added to the current state of the CSP,
the belief function is modified to satisfy Theorem 1. Basically, the new belief
about the encoding of any qi that is part of variable Xi is obtained by applying
the bitwise AND (∧) operation to current belief bf(qi) and vi. Let variable Xi

contain n-grams QXi = {q1, ...qz}. Then for each qi ∈ QXi :

bf(qi)updated = bf(qi)current ∧ vi (3)

Equation 3 extracts the knowledge from the assignment, such that if vi contains
0 in l̄, then f(qi)[l̄] = 0 for an updated state of the CSP.

Example 3.2.1 (Belief Update): An illustration of the belief update pro-
cess is presented in Figure 3. Initially, bf(jo) = 11111. Now, suppose {joe =
10001} is added to the current state of the CSP. According to Theorem 1, f
does not set the second, third, or fourth bit locations when applied on the bi-
grams of {joe}, so we can update bf(jo) to be 10001. After the assignment
{john = 10110}, we learn that the second and fifth bit locations cannot be set
to 1 if f is applied on the bigrams of {john}. Therefore, bf(jo) = 10000.

Fig. 3: Belief Update

Belief Validity Constraint (BVC): The belief validity constraint is
based on Equation 1 and belief function. Let CS = {X1 = v1, . . . , Xp = vp}



be a consistent state. Then all assignments {Xi = vi} should be compatible
with the current belief function. Compatible means Equation 1 should be satisfi-
able with the current belief function and the known assignments. Let Xi contain
the n-gram set QXi = {q1, . . . , qz}. Then,

vi =
z∨

i=1

bf(qi) ∀{Xi = vi} ∈ CS (4)

Example 3.2.2 (BVC Check): Imagine a belief state such that bf( j) =
bf(jo) = 10001 and bf(oe) = bf(e ) = 01001 and suppose {joe = 11001} ∈ CS.
Now, consider the potential assignment {john = 00111}. If this assignment is
performed, then bf( j) = bf(jo) = 00001. Yet, to satisfy the BVC, (bf( j) ∨
bf(jo) ∨ bf(oe) ∨ bf(e ) = 11001) should hold true, which is not the case. As a
result, the assignment {john = 00111} is not permitted in this state. �

Min-Location Constraint (MLC): The minimum location constraint is
based on Theorem 2 and belief function. Let w be the threshold for the minimum
number of bit locations set by f , then we can enforce the following constraint:

num1s(bf(qi)) ≥ w (5)

If w could be set to a large value, the search space of the CSP solver could be re-
duced significantly, and the CSP could be solved in a more timely manner. How-
ever, according to Theorem 2, w should be set to 1 to satisfy num1s(bf(qi)) ≥ w
with probability p = 1. By reducing p slightly, w could be increased significantly.
At the same time, a reduction in p could lead to an unsatisfiable CSP, since
num1s(bf(qi)) ≥ w may not hold with probability 1− p. As a result, there is a
tradeoff between solving a complex CSP in a timely manner and accepting the
risk of converting a satisfiable CSP into an unsatisfiable one. In this setting, the
risk is controlled by p (i.e., if p is large the risk is small). Once p is fixed, the
threshold w can be calculated via Equation 2.

Example 3.2.3 (MLC Check): Consider the state prior to the poten-
tial assignment {joe = 11000}, such that bf(jo) = 10111. After the assign-
ment, bf(jo) = 10000 and num1s(bf(jo)) = 1. If the threshold w is 2, then
num1s(bf(jo)) ≥ w no longer holds true after the assignment. Therefore, the
assignment {joe = 11000} is not permitted in this state. �

3.3 Frequency Analysis

In section 3.2, the problem of discovering the mappings between original strings
and their BFEs is modeled as a CSP with candidate variables and domains.
To select the variables and their domains from candidates, the frequency distri-
bution of the elements in sets G and DT can be used. CSPs are generally hard
problems to solve, however they can be solved in a timely manner by minimizing
the domains of the variables and using heuristics based on domain restrictions.
Such restrictions can be achieved by leveraging frequency analysis. In particular,
we introduce a fair assumption to form the basis of frequency analysis.



Assumption 3.3.1 (g is a 1-1 function): It can be assumed that there
is a one-to-one mapping between each distinct string and each distinct BFE. Let
S1 and S2 be two strings, then

g(S1) = g(S2), if S1 = S2

g(S1) ̸= g(S2), otherwise (6)

It is guaranteed that g(S1) = g(S2) when S1 = S2 by the construction
of the encoding. It is highly unlikely that g(S1) = g(S2) if S1 ̸= S2. In this
context, two strings are defined to be distinct if they have at least one distinct
n-gram. Suppose qx ∈ QS1 and qx /∈ QS2 , then g(S1) = g(S2) if and only if the
Bloom filter check on g(S2) indicates membership of qx in S2. The probability
of such false positives (pf ) depends on k, m, and the size of QS2(s) such that

pf = (1− e−ks/m)
k
(see [17]). Notice that pf becomes negligible with large k and

m. In fact, k andm should be large in a PRL protocol; otherwise record matching
quality would degrade significantly. We can derive additional information if we
know that g is a 1-to-1 function, such as frequency conservation:

Corollary 3.3.1 (Frequency Conservation): Let fri be the frequency of
Xi in set D. Then the frequency of g(Xi) in set DT is also fri. Given Equation
(6), any string with value Xi will be mapped to the same encoding g(Xi). Strings
with values other than Xi will not be mapped to the g(Xi). Therefore, the
frequencies are preserved during transformation.

Definition 3.3.1 (Relative Frequency (fr)): Let freq : Σ∗ ×Z 7→ N be
a function that returns the number of occurrences of x in Z. Then the relative
frequency of x is defined as:

frZ(x) =

{
freq(x,Z)

|Z| if x ∈ Z

0 otherwise

}
(7)

If we know that Z is a random sample of size |Z| from G, we can bound
the relative frequency of any item in Z using statistics learned from G. This
implies we can draw multiple samples of size |Z| from G using Monte Carlo
techniques [18] and, for each sample set U from G, we can compute frU (x) to
determine the frequency intervals in which the true value of frZ(x) belongs with
high confidence. Using these samples, for any Xi, we can compute αXi and βXi

such that αXi ≤ frZ(Xi) ≤ βXi with high confidence. In our problem setting,
D is a random sample of size |D| and DT is the encoded dataset such that
Xi ∈ D → g(Xi) ∈ DT . Now, suppose αXi ≤ frD(Xi) ≤ βXi for each Xi ∈ D
with 99% confidence, then αXi ≤ frDT (g(Xi)) ≤ βXi for each g(Xi) ∈ DT with
99% confidence by the frequency conservation principle.

In the attack model, Charlie can calculate the relative frequency of items in
DT , but can also learn αXi and βXi for any Xi ∈ G. CSP construction could
then be finalized using this set of knowledge. Variables of the CSP and their
domains could be selected from the candidates ( see Section 3.2) as follows:

Variable Selection: Let Xi be a candidate variable. Then Xi could be
selected as a CSP variable if and only if αXi > 0. This means that Xi ∈ G is
expected to have the corresponding encoding g(Xi) ∈ DT if αXi > 0.



Domain Selection: Let vi be a candidate value for the domain of Xi, then
vi could be selected for the domain of Xi if and only if αXi ≤ frDT (vi) ≤ βXi .

Example 3.3.1 (Variable & Domain Selection): Imagine the dataset
DT consists of 20,000 records. Charlie draws a sample dataset of size 20,000 from
G multiple times. Given these samples, Charlie obtains an approximate sampling
distribution of frZ(Xi) for each Xi ∈ G for the forename attribute. Now imagine
αjohn = 0.08 and βjohn = 0.1. Since αjohn > 0, ‘john’ could be selected as a
variable. When Charlie receives DT , he calculates frDT (vi) for each vi ∈ DT for
the forename attribute. Suppose frDT (11001) = 0.09 and frDT (01000) = 0.04.
Then ‘11001’ is in the domain of the variable {john} while ‘01000’ is not because
αjohn ≤ frDT (vi) ≤ βjohn is satisfied for vi = 11001, but not for vi = 01000.

Clearly, the frequency analysis should also consider possible erroneous records
in D because they may affect the relative frequency of items in the dataset.
A simple approach to deal with errors is to update the frequency intervals of
the variables by considering the possible error rate that can affect the records.
Error rates could be determined by domain experts or could be extracted from
the historical data [7]. Once the error rates are determined, frequency intervals
could be updated accordingly. Let the amount of reduction and increment in
the relative frequency of an item be at most errr and erri respectively, then
αXiupdated

= (1− errr)×αXi and βXiupdated
= (1+ erri)×βXi . The effect of the

erroneous records on the attack is examined in Section 4.

Notice that if the frequency of all the elements in the global dataset is similar,
frequency analysis is not useful to Charlie. In such a case, domain of the variables
cannot be reduced. Even worse, the variables cannot be determined since αXi will
be 0 for most of the candidates. However in real life, the frequencies of items tend
not to be similar. The distribution of a wide variety of natural and man made
phenomena such as frequencies of family names follow power-law distribution
[19]. In our problem, such frequent elements in G will have a corresponding
encoding in the transformed dataset with high probability. In fact, the proposed
variable selection method only allows the selection of such frequent items.

3.4 CSP Solver

Initially, the adversary models the mapping of BFEs to strings as a CSP ac-
cording to the procedures described in sections 3.2 and 3.3. Once the problem is
modeled, a CSP solver is applied to associate BFEs with corresponding strings.

Standard algorithms such as backtracking search [16] could be applied to
solve the CSP. The performance of this search can be improved via additional
heuristics. One of the most successful heuristics is dom/deg [20], which selects the
variable with the smallest domain involved in the greatest number of constraints
(i.e., maximum degree). For the BFEs, constraints are defined over the n-grams
of the variables through the belief function. If a variable contains frequently used
n-grams, then it is said to be involved in most of the constraints. In this setting,
the degree of a variable is the sum of the frequencies of its n-grams.



Definition 3.4.1 (dom/deg): Let ngramFreq : Σn 7→ N be a function
that returns the number of occurrences of a particular n-gram in all variables of
the CSP. Let Xi be a variable in the CSP with domain size dsizeXi such that
Xi contains the n-grams {q1, ..., qz}. Then the dom/deg of Xi is defined as:

dom/degXi =
dsizeXi

z∑
i=1

ngramFreq(qi)

In any state of the CSP, the variable with the smallest dom/deg is selected as
the next variable to assign. The CSP solver applies backtracking search directed
by dom/deg to assign variables according to defined constraints. We provide the
summary of our CSP solver in Algorithms 1 and 2 in Appendix B.

4 Experimental Results

In this section, we present the experimental evaluation of the proposed attack.
To perform our evaluation, we selected a publicly available dataset of real per-
sonal identifiers, derived from the North Carolina voter registration list (NCVR),
which contains 6,190,504 records [21]. NCVR was used as dataset G from which
a random sample of 20,000 records was selected to form dataset D. We investi-
gated the success of the attack with the forename attribute, but note that the
attack could be repeated for each attribute. The resulting dataset contained ap-
proximately 3,500 unique forenames. To evaluate the effect of typographical and
semantic name errors, we also generated a perturbed version of D by implement-
ing a data corrupter based on the errors typically observed in practice [7]. The
corrupter introduced errors based on optical character recognition, phonemes,
and typography at rates typical of real datasets.

We use precision (i.e., ratio of correctly assigned names to all assigned names)
and recall (i.e., ratio of matched names to all available names) as metrics for the
attack’s success.

4.1 Attack on BFEs based on Parameters in the Literature

In this part, we evaluate the success of the proposed attack and the effects of the
CSP parameters on the computational complexity with a fixed BFE setting. The
encoding of D was obtained using the parameters: k (number of hash functions):
15, m (filter length): 500 and n (encoding unit): 2 that are reported in [12]. The
effect of varying encoding parameters is then examined in subsection 4.2.

To select CSP variables and domains, frequency intervals were constructed
via a Monte Carlo sampling of 10,000 datasets with 20,000 records each from G.
The 400 most frequent names in G were selected as the CSP variables according
to this analysis (αXi > 0 holds for only 400 names). For the experiments with
perturbed data, the frequency intervals were updated according to the data
corrupter’s error rates, such that errorr = 0.5 and errori = 0 (see Section 3.3).



Number of variables (sv): The effect of sv is depicted in Figure 4(a)
and 4(b). In Figure 4(a) we observe that the recall and precision of the as-
signments increases with sv. This is because the constraints of the CSP become
stronger with an increasing number of assignments (i.e., belief function updates).
Once the constraints are sufficiently strong, only the correct assignment satisfies
the constraints. We note that recall has an upper bound of approximately 0.11
(400/3500) due to the outcome of the frequency analysis. In fact, recall of the
proposed attack reaches this upper bound along with precision 1.

In Figure 4(b), it can be seen that the complexity of the CSP increases signif-
icantly with sv. This is because, variables with larger domains are added to the
CSP as sv grows, which makes the search space larger. For the perturbed data
analysis, the attack becomes more time consuming to execute because the fre-
quency intervals are broadened to compensate for error, which leads to variables
with larger domains. For instance, although the assignment of 400 variables is
fulfilled in 94 sec. in unperturbed case, it takes 870 sec. for the perturbed dataset.
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Min-Location Threshold (w) : Figure 4(c) illustrates that the CSP’s com-
plexity depends on the threshold w associated with the Min-Location constraint
(MLC). Specifically, MLC becomes more restrictive as w increases. Therefore,
the search space of the CSP solver shrinks, which permits the problem to be
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solved more quickly. However, w can only be increased up to a certain point,
after which the CSP becomes unsatisfiable. In this setting, w was initially set
to 10 with 0.99 probability (based on Equation 2), and the CSP solver correctly
assigned all the variables up to this threshold. The CSP solver could not propose
a solution for higher w because, during the pruning of the search space, some of
the true mappings were eliminated due to the wrong w constraint.

In summary, the results reported in Figure 4 indicate that proposed attack
can compromise 11% of the records with precision close to one in a reasonable
amount of time even under the corrupted data scenario.

4.2 Tuning BFE Parameters to Mitigate Attack

The previous experiments show that BFEs are vulnerable when the parameters
are set according to recommendations in the literature. However, given that the
values of the parameters can be tuned, we set out to determine if the security
of BFEs can be strengthened without sacrificing record linkage accuracy. To in-
vestigate, we performed a systematic analysis with the number of variables in
the CSP fixed to 50. This is a smaller set than the 400 used in the previous ex-
periments, but Figure 4(b) shows that the assignment time grows exponentially
with the number of variables, and certain experiments required several days to
complete. As a result, for the following experiments, the recall of the attack is
fixed to 1.43%. Since the main use of BFEs is to tolerate errors in records during
PRL, all experiments were conducted over perturbed data .



Encoding unit: We note that BFEs gain resistance to the attack as n in-
creases. Specifically, the complexity of the CSP rapidly increases and the preci-
sion of the assignments drops off as shown in Figure 5(a) and 5(b). For instance,
while 50 assignments were achieved in several seconds for n = 2, it required
almost 2 days for n = 4. Additionally, this was accompanied by a 12% reduc-
tion in precision. This is an expected finding because as n grows the constraints
become less restrictive. Both BVC and MLC constraints depend on the belief
function, such that the more accurate the belief function is, the more restrictive
the constraints are. If n becomes larger, the quality of the belief function de-
grades significantly. This is because records share fewer n-grams as n increases,
which leads to less accurate reasoning about the n-gram encoding function.

To characterize the effect of increasing n on record linkage accuracy, we
attempted to match the records in the perturbed version of the dataset (P ) with
the ones in the unperturbed version (O). Once encoding of the datasets was
formed (PT and OT ), each item in PT was associated with exactly one item
in OT according to similarity between encodings. Similarity was measured with
Dice-coefficient [12] which is a set based similarity measure. The experiments,
summarized in Figure 5-c, show that as n increases the record matching precision
(i.e., ratio of correct associations to all associations) is only slightly affected.
These results suggest that large n (e.g., n = 4) may provide sufficient record
matching accuracy, while significantly reducing the recall rate of the attack and
increasing its computational cost.

B loom filter length(m) and Number of hash functions(k): According
to our empirical observations, the security of the encoding does not depend on
m or k independently, but rather on their ratio. As the m/k decreases, the
number of bit locations set by individual n-gram encodings decreases. Therefore,
the strength of the constraints that are dependent on the distinction between
individual n-gram encodings via belief function diminishes. The complexity of
the CSP increases with less restrictive constraints as shown in Figure 5(d). On
the other hand, record matching quality degrades if m/k becomes smaller (see
[12]). This is because less distinction between n-gram encodings leads to more
false positives in the record matching process.

In summary, BFEs become more resistant to the proposed attack with in-
creasing n and decreasing m/k.

5 Related Work

Various protocols for private record linkage (PRL) have been developed [2–5].
PRL protocols tend to use two primary mechanisms for protecting sensitive in-
formation: secure multi-party computation (SMC) and data transformation. Al-
though SMC protocols provide strong security guarantees, they are impractical
for many real data integration tasks due to their reliance on inefficient cryptog-
raphy. As an alternative to heavyweight SMC, there are approaches to selectively
reveal information through transformation [22–25]. Such approaches perturb, as
opposed to encrypt, private information to protect individual identity. Unlike



SMC, transformation can leave data vulnerable to compromise due to the pres-
ence of partial information. In fact, several attack models have emerged against
transformation techniques. Of note, the disclosure risk of pseudonymization [26]
is examined in [22], and the approach is particularly applicable for situations in
which the attacker has some background information (e.g, frequency distribu-
tion of anonymized items). Another popular approach for data transformation
relies on distance preserving data perturbation (e.g., [25]). Disclosure risk of such
approaches is examined in [27] and [28]. Their research demonstrated that an ad-
versary can discover the original values with high confidence if mutual distances
between data objects is known. While attacks and security investigations have
been reported for various transformation methods, to the best of our knowledge
ours is the first work to explicitly address BFEs.

In addition to attack scenarios against privacy preserving protocols, informa-
tion theoretic measures have been proposed to evaluate the degree of the privacy
provided by such protocols, especially in the context of anonymous routing ([29],
[30], [31]). The quality of the privacy is measured according to the amount of
information an attacker can gain after observing the message flow (see [29] and
[30]) under various attack scenarios. The quality assessment is extended in [31]
by considering the possible prior knowledge of the attackers. Available informa-
tion theoretic metrics can be used as a basis to evaluate the degree of privacy
provided by BFE with different BFE parameter settings. In fact, our work pro-
vides a particular attack scenario to enable such analysis for BFE.

6 Conclusions and Future Work

In this paper, we proposed an adversarial model against private record linkage
protocols based on Bloom filter encoding (BFE). BFEs are part of an impor-
tant emerging record linkage model for real world application domains, such as
healthcare, because they enable approximate data matching with low computa-
tional resources. We modeled the problem of learning the original data from their
encoded versions as a constraint satisfaction problem (CSP) using the proper-
ties of the encoding function and the frequency distribution of the identifiers in
encoded and global unencoded datasets from which the encodings are derived.
The unencoded records are assigned to the encoded versions iteratively, accord-
ing to the constraints. We experimentally evaluated the attack with real data
derived from a publicly available voter registration list. We illustrated that the
attack can be highly successful if encoding is applied with the settings published
in existing literature. However, we also demonstrated that the encodings can be
made more resistant to the attack by adjusting encoding parameters with only
a slight reduction in record matching quality.

In future work, we plan to extend the attack to determine if additional en-
codings, or portions of the encodings, can be compromised. In particular, the
current CSP is designed to crack high frequency encodings, but items with lesser
frequencies may be predictable using the knowledge learned about the encoding
function.



APPENDIX

A Proof of Theorems

Proof of Theorem 1: Let us assume vi[l̄] = 0 and f(qx) set l̄ in the Bloom
filter to 1. According to the following equation, that is derived from Equation 1

vi[l̄] =

 ∨
qi∈(QXi−qx )

f(qi)[l̄]

 ∨
f(qx)[l̄] (8)

Notice, (f(qx)[l̄] = 1) → (vi[l̄] = 1) by the definition of bitwise OR and Equation
8. Since f(qx)[l̄] = 1, it follows that vi[lx] = 1, which contradicts the initial fact
that (vi[l̄] = 0) ≡ true. Therefore, by contradiction, we conclude that f(qx)[l̄] =
0 provided that (vi[l̄] = 0) is satisfied and qx ∈ QXi .

Proof of Theorem 2: Each hash function hashi for 1 ≤ i ≤ k, sets a random
bit location in Bloom filter for each input qj . Consider the set L = {1, 2...,m},
which contains the bit locations in the Bloom filter, and the multiset MS =
{l1, ..., lk}, such that li = hashi(qj) and li ∈ L. MS is a multiset since some
hash functions may set same bit locations of filter. MS could be considered as
a k-multicombination [32] from set L and the number of all such multisets is:

n1 =

(
m+ k − 1

k

)
Let MSw be a multiset of size k from L with exactly w distinct elements, MSw

i

be a set that contains w distinct elements selected from L, and MSw
r be a

multiset that contains (k−w) elements such that li ∈ MSw
r → li ∈ MSw

i . Then
MSw = MSw

i ∪MSw
r . In other words, multiset MSw is constructed by selecting

w distinct elements from set L and selecting the remaining (k−w) elements from
initially selected w elements. MSw

i is also defined to be w-combination [32] from
L and the number of all such sets is C(ℓ, w). MSw

r is (k −w) multicombination
from MSw

i and the number of all such sets is C(k− 1, k−w). Then the number
of multisets MSw is C(m,w)C(k − 1, k − w), since MSw is the union of MSw

i

and MSw
r . As a result, the number of multisets of size k from set L with at least

w distinct elements is:

n2 =
k∑

i=w

(
m

i

)(
k − 1

k − i

)
n1 represents the number of all possible encodings of length m with k hash func-
tions. n2 represents the number of encodings of length m with k hash functions
such that at least w of them set different locations in the Bloom filter. As a
result, n2/n1 is the probability p such that at least w locations of Bloom filter
are set by k hash functions. Since at least w distinct locations are set, there are
at least w 1’s exist in the corresponding encoding with probability p.



B CSP Solver Algorithm

As described in Section 3.3, the frequency analysis is applied to select the CSP
variables and their domains. However, we may want to assign only a portion
of these variables to reduce the complexity. In Algorithm 1, sv items with the
smallest domains are retrieved. As described in Section 3.2, the belief function is
proposed to simulate the n-gram transformation function. At the implementation
level, the belief function could be represented by a hashtable. Each n-gram qi is
a key in this hashtable, and belief about the n-gram encodings are the values3.

Fig. 6: CSP Solver

3 setBf(H,K,V) sets the value of key K as V, lookupBf(H,K) returns the value for the
key K in hashtable H.



C Attack Flow

The attack flow that is executed on BFEs is depicted in Figure 7. In this setting,
the adversary attempts to compromise BFEs received from Alice and Bob.

Fig. 7: A schematic of BFE data sharing and the attack issued by the third party
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