
Efficient Proofs of Attributes in Pairing-Based
Anonymous Credential System

Amang Sudarsono1?, Toru Nakanishi2, and Nobuo Funabiki2

1 Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia
2 Department of Communication Network Engineering, Okayama University, Japan

nakanisi@cne.okayama-u.ac.jp

Abstract. An anonymous credential system allows the user to convince
a verifier of the possession of a certificate issued by the issuing authority
anonymously. One of the applications is the privacy-enhancing electronic
ID (eID). A previously proposed anonymous credential system achieves
constant complexity in the number of finite-set attributes of the user.
However, the system is based on the RSA. In this paper, we show how to
achieve the constant complexity in a pairing-based anonymous credential
system excluding the RSA. The key idea of the construction is the use of
a pairing-based accumulator. The accumulator outputs a constant-size
value from a large set of input values. Using zero-knowledge proofs of
pairing-based certificates and accumulators, we can prove AND and OR
relations with constant complexity in the number of finite-set attributes.

1 Introduction

Electronic identification has been widely applied to access authorization to build-
ings, use of facilities, Web services, etc. Currently, electronic identity (eID) such
as eID card is often used. The eID is issued by a trusted organization such as
the government, company, or university, and is used for services provided by the
organization. Trusted ID is very attractive for secondary use in commercial ser-
vices. The eID includes attributes of the user such as the name, the address, the
gender, the occupation, and the date of birth. In commercial cases, the attribute-
based authentication can be desired. For example, a service provider can refuse
the access from kids, by checking the age in the eID.

One of serious issues in the existing eID systems is user’s privacy. In the
systems, the eID may reveal the user’s identity. The service provider can collect
the use history of each user. Anonymous credential systems [13], [12], [10] are
one of the solutions.

Anonymous credential systems allow an issuer to issue a certificate to a user.
Each certificate is a proof of membership, qualification, or privilege, and contains
user’s attributes. The user can anonymously convince a verifier for the possession
of the certificate, where the selected attributes can be disclosed without revealing
any other information about the user’s privacy. The user can prove complex
? This work was done while this author was with Okayama university.

relations of the attributes using AND and OR relations. AND relation is used
when proving the possession of all of the multiple attributes. For example, the
user can prove that he is a student, and has a valid student card, when entering
the faculty building. OR relation represents the proof for possession of one of
multiple attributes. For example, he can prove that he is either a staff or a
teacher when using a copy machine in a laboratory. An implementation of eID
on a standard java card is shown in [5].

In [13], Camenisch and Lysyanskaya firstly proposed an anonymous credential
system based on RSA. Unfortunately, it suffers from a linear complexity in the
number of user’s attributes in proving AND and OR relations. Hence, this system
is not suitable for small devices such as smart cards. In [10], Camenisch and
Groß extended the scheme to solve the drawback. They classify attribute types
into two categories: string attributes and finite-set attributes. The former can
be represented as a string, such as name and ID number. The latter can be
represented as an element from relatively small finite-set, such as gender and
profession. There are much fewer string type of attributes, and thus the costs on
finite-set attribute types impacts the total efficiency. In Camenisch-Groß system,
by encoding a large number of finite-set attributes into prime numbers, one value
for the finite-set attributes can be embedded into the certificate. Then, the AND
and OR relations are proved with the constant complexity in the number of
finite-set attributes using zero-knowledge proofs of integer relations on prime
numbers.

In this paper, for a pairing-based anonymous credential system using BBS+
signatures [7], we show how to prove AND and OR relations with constant
complexity. The key idea of the construction is the use of a pairing-based accu-
mulator [12]. The accumulator outputs a constant-size value from a large set of
input values. We consider that the input values are assigned to attributes. Then,
we utilize an extended BBS+ signatures to certify a set of attributes as the ac-
cumulator. Using zero-knowledge proofs of BBS+ signatures and accumulators,
we can prove AND and OR relations with constant complexity in the number of
finite-set attributes. The drawback is that the size of public key is depending on
the number of attribute values. It varies from 200 KBytes to 2 MBytes for the
number of attribute values 1, 000 to 10, 000. In the current mobile environments,
the data size is sufficiently practical, since the public key is not changed after it
is distributed.

Remark 1. In the RSA-based anonymous credential system with efficient com-
plexity [10], NOT relation is also equipped. Namely, the prover can prove that a
specified attribute is not in his certificate. On the other hand, our system does
not have the protocol to directly prove NOT relation. However, OR relation
substitutes NOT relation. In an attribute type, we consider the set of attribute
values except for the attribute value targeted by NOT relation. Then, proving
that an attribute value in the set is in his certificate means that the target at-
tribute value is not in the certificate. For example, for proving that the user is
not student, we can prove that she has some of other profession attribute values.

2

2 Preliminaries

2.1 Bilinear Groups

Our scheme utilizes the following bilinear groups:

1. G and T are multiplicative cyclic groups of prime order p,
2. g is a randomly chosen generator of G,
3. e is an efficiently computable bilinear map: G × G → T , i.e., (1) for all

u, u′, v, v′ ∈ G, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′), and
thus for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g, g) 6= 1.

2.2 Assumptions

The security of our scheme is based on the q-SDH assumption [7, 8], the q-HSDH
(Hidden SDH) assumption [9], and q-TDH (Triple DH) assumption [4] for the
underlying signatures, and n-DHE assumption [12] for the accumulator, where
q, n are non-negative integer.

Definition 1 (q-SDH assumption). For all PPT algorithm A , the probability

Pr[A(u, ua, . . . , uaq

) = (b, u1/(a+b)) ∧ b ∈ Zp]

is negligible, where u ∈R G and a ∈R Zp.

Definition 2 (q-HSDH assumption). For all PPT algorithm A , the proba-
bility

Pr[A(u, v, ua, (u1/(a+b1), ub1 , vb1), . . . , (u1/(a+bq), ubq , vbq)) = (u1/(a+b), ub, vb)
∧∀i ∈ [1, q] : ub 6= ubi]

is negligible, where u, v ∈R G, a ∈R Zp, and b, bi ∈ Zp.

Definition 3 (q-TDH assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(u, ua, ub, (c1, u
1/(a+c1)), . . . , (cq, u

1/(a+cq))) = (ura, urb, urab)
∧∀i ∈ [1, q] : c 6= ci ∧ r 6= 0]

is negligible, where u ∈R G, a, b ∈R Zp, and ci, c ∈ Zp.

Definition 4 (n-DHE assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(u, ua, . . . , uan

, uan+2
, . . . , ua2n

) = uan+1
]

is negligible, where u ∈R G and a ∈R Zp.

3

2.3 Extended Accumulator with Efficient Updates

In [12], the accumulator with efficient updates is proposed. the accumulator is
generated from a set of values, and we can verify that a single value is accu-
mulated. Thus, for k values, we have to verify that each value is accumulated
multiple times. This means that the complexity depends on the number of proved
values, k. Here, we extend the accumulator to verify that k values are accumu-
lated with the constant complexity.

Here, we consider that some values in {1, . . . , n} with size n are accumulated.
Let V be a set of accumulated values that is a subset of {1, . . . , n}. Let U =
{i1, . . . , ik} be a subset of V with size k. The accumulator allows us to confirm
that all elements of U belong to V , i.e., U ⊆ V , all at once.

AccSetup: This is the algorithm to output the public parameters. Select bilin-
ear groups G, T with a prime order p and a bilinear map e. Select g ∈R G.
Select γ ∈R Zp and compute and publish p,G, T , e, g, g1 = gγ1

, . . . , gn =
gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

and z = e(g, g)γn+1
as the public parame-

ters.
AccUpdate: This is the algorithm to compute the accumulator using the public

parameters. The accumulator accV of V is computed as accV =
∏

i∈V gn+1−i.
AccWitUpdate: This is the algorithm to compute the witness that values

are included in an accumulator, using the public parameters. Given V and
the accumulator accV , the witness of values i1, . . . , ik in U is computed as
W =

∏
ı̃∈U

∏j 6=ı̃
j∈V gn+1−j+ı̃.

AccVerify: This is the algorithm to verify that values in U are included in an
accumulator, using the witness and the public parameters. Given accV , U ,
and W , accept if

e(
∏

ı̃∈U gı̃, accV)
e(g,W)

= zk.

Theorem 1. Under the n-DHE assumption, any adversary cannot output (U, V ,
W) where U ⊆ {1, . . . , n}, V ⊆ {1, . . . , n} on input p,G, T , e, g, g1, . . . , gn, gn+2,
..., g2n and z s.t. AccVerify accepts U, accV ,W and U \ V 6= ∅.

Proof. Assume an adversary which outputs (U, V,W) s.t. AccVerify accepts
U, accV , W and U \ V 6= ∅. Let U1 = U \ V and U2 = U ∩ V . U \ V 6= ∅ (i.e.,
U1 6= ∅) implies |U2| 6= k.

Since AccVerify accepts these,

e(
∏

ı̃∈U gı̃, accV)
e(g,W)

= zk = e(g, gn+1)k,

where gn+1 = gγn+1
. From accV =

∏
i∈V gn+1−i,

e(
∏

ı̃∈U gı̃,
∏

i∈V gn+1−i)
e(g,W)

= e(g, gn+1)k,

4

e(g,
∏
ı̃∈U

∏
i∈V

gn+1−i+ı̃) = e(g,Wgn+1
k).

Thus, we have ∏
ı̃∈U

∏
i∈V

gn+1−i+ı̃ = Wgn+1
k,

∏
ı̃∈U1

∏
i∈V

gn+1−i+ı̃ ·
∏

ı̃∈U2

∏
i∈V

gn+1−i+ı̃ = Wgn+1
k,

(
∏

ı̃∈U1

∏
i∈V

gn+1−i+ı̃) · gn+1
|U2|

∏
ı̃∈U2

∏
i∈V,i 6=ı̃

gn+1−i+ı̃ = Wgn+1
k,

∏
ı̃∈U1

∏
i∈V

gn+1−i+ı̃ ·
∏

ı̃∈U2

∏
i∈V,i 6=ı̃

gn+1−i+ı̃ = Wgn+1
k−|U2|.

We obtain

gn+1 = (W−1 ·
∏

ı̃∈U1

∏
i∈V

gn+1−i+ı̃ ·
∏

ı̃∈U2

∏
i∈V,i6=ı̃

gn+1−i+ı̃)1/(k−|U2|),

where k − |U2| 6= 0 due to |U2| 6= k.
For any ı̃ ∈ U1 and any i ∈ V , gn+1−i+ı̃ 6= gn+1, due to U1 ∩ V = φ. Also,

for any ı̃ ∈ U2 and any i ∈ V satisfying i 6= ı̃, gn+1−i+ı̃ 6= gn+1. Therefore,
we can compute gn+1 given g1, . . . , gn, gn+2, . . . , g2n, which contradicts n-DHE
assumption. ut

2.4 Modified BBS+ Signatures

We utilize an extension from BB signature scheme [6], called BBS+ signatures.
The extension is informally introduced in [7] and the concrete construction is
shown in [15, 1]. This scheme allows us to sign a set of messages. Our system
requires that the accumulator is signed. In the BBS+ signature, the messages to
be signed are set in exponents (elements of Zp), whereas the accumulator is the
product of gi’s from G. Thus, we modify the BBS+ signature to be able to sign
on gi’s, as follows.

mBBS+Setup: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g, g0, h1, . . ., hL ∈R G. Select γ ∈R Zp and compute g1 =
gγ1

, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

.
mBBS+KeyGen: Select X ∈R Zp and compute Y = hX . The secret key is X

and the public key is (p,G, T , e, g, g0, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hL, Y).
mBBS+Sign: Given messages m1, . . . ,mn,mn+2, . . . ,m2n ∈ {0, 1}, M1, . . .,

ML ∈ Zp, select w, r ∈R Zp and compute

A = (
j 6=n+1∏
1≤j≤2n

g
mj

j

∏
1≤j≤L

h
Mj

j gr
0g)1/(X+w).

The signature is (A,w, r).

5

mBBS+Verify: Given messages m1, . . . ,mn,mn+2, . . . ,m2n,M1, . . . ,ML and
the signature (A,w, r), check

e(A, Y gw) = e(
j 6=n+1∏
1≤j≤2n

g
mj

j

∏
1≤j≤L

h
Mj

j gr
0g, g).

The modified BBS+ signature is unforgeable against adaptively chosen mes-
sage attack under the q-SDH assumption. It is shown in a similar way to [2], as
follows.

BB signatures. Since the security is proved using the security of the underlying
BB signatures [6], we briefly show the scheme.

BBSetup: Select bilinear groups G, T with a prime order p and a bilinear map
e. Select g ∈R G.

BBKeyGen: Select X ∈R Zp and compute Y = gX . The secret key is X and
the public key is (p,G, T , e, g, Y).

BBSign: Given message m ∈ Zp, compute B = g1/(X+m). The signature is B.
BBVerify: Given message m and the signature B, check e(B, Y gm) = e(g, g).

BB signatures are existentially unforgeable against weak chosen message attack
under the q-SDH assumption [6]. In this attack, the adversary must choose mes-
sages queried for the signing oracle, before the public key is given.

Theorem 2. mBBS+ signature is unforgeable against adaptively chosen mes-
sage attack under the q-SDH assumption.

Proof. This proof is derived from [2].
Assume that A breaks the unforgeability of mBBS+ signatures, and we con-

struct the following simulator B breaking BB signatures that are secure under
the q-SDH assumption.

B chooses random messages w1, . . . , wq−1 for BB signatures, and is given the
corresponding BB signatures Bi = g1/(X+wi) with the public key (p,G, T , e, g, Y).
Then, B selects w∗, k∗, a∗ ∈R Zp, and compute g0 = ((Y gw∗

)k∗
g−1)1/a∗

=
g((X+w∗)k∗−1)/a∗

. Also, B selects γ, µ1, . . . , µL ∈R Zp, and compute g1 = gγ1

0 ,
. . . , gn = gγn

0 , gn+2 = gγn+2

0 , . . . , g2n = gγ2n

0 , and h1 = gµ1
0 , . . . , hL = gµL

0 . B sets
the public key of mBBS+ signatures (p,G, T , e, g, g0, g1, . . . , gn, gn+2, . . . , g2n,
h1, . . . , hL, Y), and runs A. Out of q signing queries from A, B randomly se-
lects a query, which called ∗ query. For messages (m1,i, . . . ,mn,i, mn+2,i, . . .,
m2n,i,M1,i, . . . ,ML,i) of the i-th query, define

ti =
j 6=n+1∑
1≤j≤2n

mj,iγ
j +

∑
1≤j≤L

Mj,iµj .

6

To the queries except ∗, B responds using the BB signature (Bi, wi) as follows.
B selects ri ∈R Zp, and compute ai = ri + ti and the following Ai.

Ai = B
(1− ai+(wi−w∗)aik∗

a∗)

i g
ai
a∗ k∗

= B
(1− ai

a∗)

i g
−(wi−w∗)aik∗+aik∗(X+wi)

(X+wi)a∗

= B
(1− ai

a∗)

i (g
ai
a∗ k∗

)
−wi+w∗+X+wi

X+wi

= Big
−ai+aik∗(X+w∗)

a∗(X+wi)

= Big
ai

(X+wi)

0 = (ggai
0)

1
X+wi

B returns (Ai, wi, ri).
To the ∗ query, B sets r∗ = a∗ − ti, computes A∗ = gk∗

= (gga∗

0)1/(X+w∗)

and returns (A∗, w∗, r∗).
Finally, A outputs the forged signature (A′, w′, r′) on message (m′

1, . . . ,m
′
n,

m′
n+2, . . . ,m′

2n, M ′
1, . . . ,M

′
L). There are three cases. Define

a′ = r′ +
j 6=n+1∑
1≤j≤2n

m′
jγ

j +
∑

1≤j≤L

M ′
jµj .

– Case I [w′ /∈ {w1, . . . , wq, w
∗}]: B computes the following B′.

B′ = (A′g
−k∗
a∗ a′

)
a∗

a∗−a′−k∗a′(w′−w∗)

= ((gg
(X+w∗)k∗a′−a′

a∗)
1

X+w′ g
−k∗
a∗ a′

)
a∗

a∗−a′−k∗a′(w′−w∗)

= (g
a∗+(X+w∗)k∗a′−a′−k∗a′(X+w′)

a∗(X+w′))
a∗

a∗−a′−k∗a′(w′−w∗)

= (g
a∗−a′−k∗a′(w′−w∗)

a∗(X+w′))
a∗

a∗−a′−k∗a′(w′−w∗) = g
1

X+w′

This means that a BB signature for a new message w′ is forged, which
contradicts q-SDH assumption.

– Case II [(w′ = wi and A′ = Ai for some i) or (w′ = w∗ and A′ = A∗)]:
Consider w′ = wi and A′ = Ai (The other case is similar). From A′X+w′

=
Ai

X+wi , gga′

0 = ggai
0 holds and we obtain a′ = ai. Thus, letting ∆r = r′−ri,

∆mj = m′
j − mj,i, and ∆Mj = M ′

j − Mj,i,

∆r +
j 6=n+1∑
1≤j≤2n

∆mjγ
j +

∑
1≤j≤L

∆Mjµj = 0.

Some ∆mj is not 0 or some ∆Mj is not 0. If ∆Mj 6= 0, the above equation
means that we can compute µj in case that µj = logg0

hj is unknown. This
contradict the DL assumption and then the q-SDH assumption.
If ∆mj 6= 0, we can compute γj mod p and thus γ, given g0, g

γ
0 , . . . , gγn

0 , gγn+2

0 ,
. . . , gγ2n

0 . This means that, given g, gγ , . . . , gγ2n

, we can compute (c, g1/(γ+c))
for any c ∈ Zp, which contradicts the q-SDH assumption, where q = 2n.

7

– Case III [w′ ∈ {w1, . . . , wq, w
∗} and A′ /∈ {A1, . . . , Aq, A

∗}]: With the prob-
ability 1/q, w′ = w∗. Then, from

A′ = (gga′

0)1/(X+w∗) = g(a∗+a′(X+w∗)k∗−a′)/(a∗(X+w∗)),

compute the following B′.

B′ = (A′g
−k∗a′

a∗)
a∗

a∗−a′

= (g
a∗−a′

a∗(X+w∗))
a∗

a∗−a′

= g
1

X+w∗

This means that a BB signature for a new message w∗ is forged, which
contradicts q-SDH assumption. ut
The security proof assumes that valid gj ’s are signed, instead of any element

from G. Thus, for proving the knowledge of this signature, we have to ensure the
correctness of gj ’s by other technique, the following F-secure BB signatures.

2.5 F -secure BB Signatures

We also adopt another variant of BB signature scheme, called F -secure signa-
ture [4].

FBBSetup: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g, g̃ ∈R G.

FBBKeyGen: Select X̃, X̂ ∈R Zp and compute Ỹ = gX̃ , Ŷ = gX̂ . The secret
key is (X̃, X̂) and the public key is (p,G, T , e, g, g̃, Ỹ , Ŷ).

FBBSign: Given message M ∈ Zp, select µ ∈R Zp − { X̃−M
X̂

} and compute

S = g1/(X̃+M+X̂µ), T = Ŷ µ, U = g̃µ. The signature is (S, T, U).
FBBVerify: Given the signature (S, T, U) on message M , check e(S, Ỹ gMT) =

e(g, g) and e(g̃, T) = e(U, Ŷ).

Define bijection F as F (M) = (gM , g̃M) for message M . The F -security means
that no adversary cannot output (F (M), σ) where σ is the signature on mes-
sage M s.t. he has never previously obtained the signature after his adaptive
chosen message attacks. The security is proved under the q-HSDH and q-TDH
assumptions [4].

2.6 Proving Relations on Representations

We adopt zero-knowledge proofs of knowledge (PKs) on representations, which
are the generalization of the Schnorr identification protocol [11]. Concretely we
utilize a PK proving the knowledge of a representation of C ∈ G to the bases
g1, g2, . . . , gt ∈ G, i.e., x1, . . . , xt s.t. C = gx1

1 · · · gxt
t . This can be also constructed

on group T . The PK can be extended to proving multiple representations with
equal parts.

Since we use only prime-order groups, we can extract the proved secret knowl-
edge given two accepting protocol views whose commitments are the same and
whose challenges are different.

8

3 Proposed System

3.1 Construction Idea

As in [10], we categorize finite-set attributes and string attributes. In the finite-
set attributes, the values are binary or from a pre-defined finite set, for example,
gender, degree, nationality, etc. On the other hand, name and identification
number are the string attributes.

Our proposal is based on the pairing-based anonymous credential system
using the BBS+ signatures, which is described in [12] for example. In the under-
lying system, the certificate is a BBS+ signature [7], where each attribute type
is expressed as an exponent on a base assigned to the attribute type, such as
g

Mj

j , and all parts of g
Mj

j have to be signed. Namely, the certificate is (A,w, r)
s.t.

A = (
∏

1≤j≤L′

h
Mj

j hL′+1
xgr

0g)1/(X+w),

where x is a secret identity that only the user with the certificate knows. Then,
proving the knowledge of the signature needs the cost depending on the number
of attribute types.

To express the finite-set attributes (For the string type, we still use the
exponent), we use a pairing-based accumulator in [12]. Let all attribute values
in all finite-set attribute types be numbered. The j-th attribute value is assigned
to an input value gj ’s in the accumulator. The multiple inputs (i.e., attribute
values) are accumulated into a single value. When V is the set of indexes of the
attribute values for a user, they are accumulated to accV =

∏
j∈V gn+1−j . We

consider that the accumulated value is signed by an extended BBS+ signature,

A = (accV ·
∏

1≤j≤L

h
Mj

j hL+1
xgr

0g)1/(X+w),

where the original representation h
Mj

j is still used for the string type.
However, in the PK of the extended BBS+ signature, accV is committed

for secrecy. That is, the validity of the committed value (i.e., it is the form of
accV) is unknown to the verifier. The PK for representations only proves the
form of A = (R ·

∏
1≤j≤L h

Mj

j hL+1
xgr

0g)1/(X+w), for some R ∈ G. However, the
security proof of the modified BBS+ signatures assumes that the message is the
product of gj ’s, i.e.,

∏j 6=n+1
1≤j≤2n g

mj

j . For example, we can show the following forge
by manipulating the value of accV :

accV =
j 6=n+1∏
1≤j≤2n

g
mj

j · (
∏

1≤j≤L

h
−Mj

j)h−x
L+1 · g

−r
0 g−1Y gw, A = g.

It is unknown whether this forge is meaningful or not. However, we cannot prove
the security of our protocols, if the validity of accV is unknown and the modified
BBS+ signature is forgeable. Thus, we add another signature on accV by signing
the exponent

∑
j∈V γn+1−j . This approach is also used in [12] to ensure the gj in

9

the membership certificate. They use a weakly secure BB signature [6], based on
interactive HSDH assumption [3] or HSDHE assumption [12]. We consider that
it is a rather strong assumption. This is why we use the F -secure BB signature [4]
derived from fully secure BB signature, based on the better assumptions (HSDH
assumption and TDH assumption).

AND relation. For AND relation (a1 ∧ · · · ∧ ak), it is needed to prove that a
specified set of attributes (a1, . . . , ak) are all embedded into the user’s certificate.
Using AccVerify in the extended accumulator, we can prove that multiple values
are accumulated to the accumulator in the certificate with constant complexity.
By the similar way to [12], we can obtain the PK of AccVerify with constant
complexity.

OR relation. For OR relation (a1 ∨ · · · ∨ ak), it is needed to prove that one (de-
noted as ã) of a specified set of attributes (a1, . . . , ak) is embedded into the user’s
certificate. Similarly to AND relation, using AccVerify, a signer can prove that
a value ã is accumulated to the accumulator in the certificate. Furthermore, the
verifier prepares another accumulator acc′ from specified attributes a1, . . . , ak.
Then, the signer proves that the same value ã is accumulated to the additional
accumulator acc′.

3.2 Proposed Construction

Setup. The inputs of this algorithm are `, n, and L, where ` is the security
parameter, n is the maximum number of finite-set attribute values, and L is the
maximum number of string attribute types. The outputs are issuer’s public key
ipk and issuer’s secret key isk.

1. Select bilinear groups G, T with the same order p with length ` and the
bilinear map e.

2. Select g, g0, g̃, ĝ, h1, . . . , hL+1 ∈R G. Select X, X̃, X̂, X̃ ′, X̂ ′, γ ∈R Z∗
p , com-

pute Y = gX , Ỹ = gX̃ , Ŷ = gX̂ , Ỹ ′ = gX̃′ and Ŷ ′ = gX̂′ . Compute
g1 = gγ1

, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, and z = (g, g)γn+1
.

Select hash function H : {0, 1}∗ → Zp.

3. For every gj = gγj

with 1 ≤ j ≤ n, select µj ∈R Zp −{ X̃′−γj

X̂′ } and compute
the F -secure BB signature on gj as follows:

S̃j = g1/(X̃′+γj+µjX̂′), T̃j = Ŷ µj , Ũj = g̃µj , F̃j = g̃γj

.

4. Output the issuer public key ipk = (p,G, T , e,H, g, g̃, ĝ, g0, g1, . . . , gn, gn+2,
. . . , g2n, h1, . . . , hL+1, z, (S̃1, T̃1, Ũ1, F̃1), . . . , (S̃n, T̃n, Ũn, F̃n), Y, Ỹ , Ŷ , Ỹ ′, Ŷ ′),
and the issuer secret key isk = (X, X̃, X̂, X̃ ′, X̂ ′, γ).

10

Issuing Certificate. This is an interactive protocol between the issuer Issuer
and user User. The common inputs of this protocol consist of ipk, and (SA,
FA) that are sets of string attribute values and finite-set attribute values of the
user, respectively. Each string attribute value of the j-th attribute type in SA is
represented by an element Mj from Z∗

p (If the user does not have any attribute
value in the attribute type, we assign an attribute value implying not applicable).
Each finite-set attribute value is represented by an index in {1, . . . , n}. Thus, set
SA consists of attribute values and set FA consists of indexes of attribute values
(sets TSA and TFA shown later are similar). The input of Issuer is isk. The
output of User is the certificate cert.

1. [User] Select x, r′ ∈R Z∗
p . Compute A′ = hL+1

xgr′

0 . Send A′ to Issuer. In
addition, prove the validity of A′ using PK for representations, i.e., prove
the knowledge of x, r′ s.t. A′ = hL+1

xgr′

0 .
2. [Issuer] Given the user’s attributes (SA, FA), compute the accumulator

of the finite-set attributes as acc =
∏

a∈FA gn+1−a. Select w, r′′ ∈R Z∗
p .

Compute the modified BBS+ signature as follows:

A = (acc(
∏

1≤j≤L

h
Mj

j)A′gr′′

0 g)1/(X+w) = (acc(
∏

1≤j≤L

h
Mj

j)hx
L+1g

r′+r′′

0 g)1/(X+w).

In addition, select µ ∈R Zp − { X̃−
P

a∈FA γn+1−a

X̂
} and compute an F -secure

BB signature ensuring acc as follows:

S = g1/(X̃+
P

a∈FA γn+1−a+µX̂), T = Ŷ µ, U = g̃µ, F = g̃
P

a∈FA γn+1−a

.

Return (A, S, T, U, F,w, r′′) to User.
3. [User] Compute r = r′ + r′′, verify:

e(A, Y gw) ?= e(acc(
∏

1≤j≤L

h
Mj

j)hx
L+1g

r
0g, g)

∧ e(S, Ỹ · acc · T) ?= e(g, g) ∧ e(g̃, T) ?= e(U, Ŷ) ∧ e(g̃, acc) ?= e(F, g).

Output cert = (A,S, T, U, F, x, w, r).

Attribute Proofs. This is an interactive protocol between the user and the
verifier. The common inputs are ipk, and (TSA, TFA) are subsets of string
attributes and finite-set attributes respectively, which are referenced in proofs,
and user’s secret inputs are cert and (SA, FA).

Proving AND Relation. For TFA = {a1, . . . , ak} with aj ∈ {1, . . . , n}, the prover
shows his possession of the certificate which includes all of the attributes, i.e.,
a1 ∧ a2 ∧ . . . ∧ ak.

1. The prover computes the witness that a1, . . . , ak are included in the accu-
mulator of FA as: W =

∏
1≤j≤k(

∏a6=aj

a∈FA gn+1−a+aj). Set D =
∏

1≤j≤k gaj .

11

2. The prover selects ρA, ρS , ρT , ρU , ρF , ρa, ρW ∈R Z∗
p , and compute commit-

ments CA = AĝρA , CS = SĝρS , CT = T ĝρT , CU = UĝρU , CF = F ĝρF ,
Ca = acc · ĝρa , and CW = WĝρW .

3. The prover selects ρw, ρ′ ∈R Z∗
p , sets α = wρA, ζ = ρSρa and ξ = ρSρT . The

prover computes auxiliary commitments Cw = gwĝρw and CρS
= gρS ĝρ′

.
Then, the prover sets ρα = ρwρA, ρζ = ρ′ρa, and ρξ = ρ′ρT .

4. The prover sends the commitments (CA, CS , CT , CU , CF , Ca, CW , Cw, CρS
)

to the verifier.
5. By using the proof of knowledge (PK) for representations, the prover proves

the knowledge of x,w, r, ρA, ρS , ρT , ρU , ρF , ρa, ρW , ρw, ρ′, α, ζ, ξ, ρα, ρζ , ρξ, and
Mj for Mj /∈ TSA s.t.

Cw = gwĝρw , 1 = CρA
w g−αĝ−ρα , (1)

e(CA, Y)e(Ca(
∏

1≤j≤L,Mj∈TSA

h
Mj

j)g, g)−1 = (
∏

1≤j≤L,Mj /∈TSA

e(hj , g)Mj)

·e(hL+1, g)xe(g0, g)re(ĝ, Y)ρAe(ĝ, g)αe(CA, g)−we(ĝ, g)−ρa , (2)

CρS = gρS ĝρ′
, 1 = Cρa

ρS
g−ζ ĝ−ρζ , 1 = CρT

ρS
g−ξ ĝ−ρξ , (3)

e(CS , Ỹ CaCT)e(g, g)−1 = e(ĝ, Ỹ CaCT)ρS e(CS , ĝ)ρa+ρT e(ĝ, ĝ)−ζ−ξ, (4)
e(g̃, CT)e(CU , Ŷ)−1 = e(g̃, ĝ)ρT e(ĝ, Ŷ)−ρU , (5)
e(g̃, Ca)e(CF , g)−1 = e(g̃, ĝ)ρae(ĝ, g)−ρF , (6)
e(D,Ca)e(g, CW)−1z−k = e(D, ĝ)ρae(g, ĝ)−ρW . (7)

Proving OR Relation. For TFA = {a1, . . . , ak}, the prover shows his possession
of the certificate which includes one of the attributes, i.e., a1 ∨ a2 ∨ . . . ∨ ak.
Assume that ã is the proved attribute.

Before the protocol, the prover and the verifier prepare another accumulator
acc′ =

∏
aj∈TFA gn+1−aj . This protocol is obtained by modifying that of the

AND relation, as follows.

1. Similarly, the prover computes W =
∏a6=ã

a∈FA gn+1−a+ã for acc. Furthermore,
the prover computes the new witness W ′ =

∏aj 6=ã
aj∈TFA gn+1−aj+ã for acc′.

2. In addition to step 2 in AND relation, the prover selects ρg, ρW ′ , ρS̃ , ρT̃ , ρŨ ,
ρF̃ ∈R Z∗

p, and compute the new commitment Cg = gãĝρg , CW ′ = W ′ĝρW ′ ,
CS̃ = S̃ãĝρS̃ , CT̃ = T̃ãĝρT̃ , CŨ = ŨãĝρŨ , and CF̃ = F̃ãĝρF̃ .

3. In addition to step 3 in AND relation, the prover selects ρ̃, ρ̃′ ∈R Z∗
p , sets δ =

ρgρa, ζ̃ = ρS̃ρg and ξ̃ = ρS̃ρT̃ . The prover computes auxiliary commitments
Cρg = gρg ĝρ̃ and CρS̃

= gρS̃ ĝρ̃′ . Then, the prover sets ρδ = ρ̃ρa, ρζ̃ = ρ̃′ρg,
and ρξ̃ = ρ̃′ρT̃ .

4. The prover sends the commitments (CA, CS , CT , CU , CF , Cg, Ca, CW , CW ′ ,
CS̃ , CT̃ , CŨ , CF̃ , Cw, CρS

, Cρg , CρS̃
) to the verifier.

12

5. Similarly to the AND relation, the prover conducts the PK, where the equa-
tion (7) is replaced by

Cρg = gρg ĝρ̃, 1 = Cρg

ρag−δ ĝ−ρδ , (8)

e(Cg, Ca)e(g, CW)−1z−1 = e(Cg, ĝ)ρae(ĝ, Ca)ρge(ĝ, ĝ)−δe(g, ĝ)−ρW , (9)

and the following equations are added:

CρS̃
= gρS̃ ĝρ̃′

, 1 = Cρg
ρS̃

g−ζ̃ ĝ−ρζ̃ , 1 = C
ρT̃
ρS̃

g−ξ̃ ĝ−ρξ̃ , (10)

e(CS̃ , Ỹ ′CgCT̃)e(g, g)−1 = e(ĝ, Ỹ ′CgCT̃)ρS̃ e(CS̃ , ĝ)ρg+ρT̃ e(ĝ, ĝ)−ζ̃−ξ̃,(11)

e(g̃, CT̃)e(CŨ , Ŷ ′)−1 = e(g̃, ĝ)ρT̃ e(ĝ, Ŷ ′)−ρŨ , (12)
e(g̃, Cg)e(CF̃ , g)−1 = e(g̃, ĝ)ρge(ĝ, g)−ρF̃ , (13)
e(Cg, acc′)e(g, CW ′)−1z−1 = e(ĝ, acc′)ρge(g, ĝ)−ρW ′ . (14)

4 Security

Here, we show the proposed protocols are the PKs for AND and OR relations
on the finite-set attributes. The security on the string attributes can be proved
in the similar way to the underlying protocols.

Theorem 3. The protocol of AND relation is a proof of knowledge of a modified
BBS+ signature (A,w, r) on secret x, the string type of attributes M1, . . . ,ML,
and the finite-set type of attributes indicated by accumulator acc, s.t. all at-
tributes in TFA are accumulated to acc.

Proof. From the PK, we have an extractor of knowledge satisfying the equa-
tions. Using the equations (1), we obtain 1 = (gwĝρw)ρAg−αĝ−ρα , and thus
1 = gwρA−αĝρwρA−ρα . Since the discrete log of ĝ to base g is unknown under the
DL assumption (due to q-SDH assumption), this means α = wρA. By substitut-
ing this to equation (2), we have

e(CA, Y)e(Ca(
∏

1≤j≤L,Mj∈TSA

h
Mj

j)g, g)−1 = (
∏

1≤j≤L,Mj /∈TSA

e(hj , g)Mj)e(hL+1, g)x

·e(g0, g)re(ĝ, Y)ρAe(ĝ, g)wρAe(CA, g)−we(ĝ, g)−ρa

e(CA, Y)e(ĝ−ρA , Y)e(ĝ−ρA , gw)e(CA, gw) = e(Ca(
∏

1≤j≤L

h
Mj

j)g, g)e(hL+1
x, g)

·e(gr
0, g)e(ĝ−ρa , g)

e(CAĝ−ρA , Y gw) = e(Caĝ−ρa(
∏

1≤j≤L

h
Mj

j)hL+1
xgr

0g, g)

Thus, we can extract A = CAĝ−ρA and acc = Caĝ−ρa s.t.

e(A, Y gw) = e(acc(
∏

1≤j≤L

h
Mj

j)hL+1
xgr

0g, g).

13

Similarly, using equations (3), we have ζ = ρSρa and ξ = ρSρT . By substi-
tuting them to equation (4), we have

e(CS , Ỹ CaCT)e(g, g)−1 = e(ĝ, Ỹ CaCT)ρS e(CS , ĝ)ρa+ρT e(ĝ, ĝ)−ρS ·ρa−ρS ·ρT

e(CS , Ỹ CaCT)e(ĝ−ρS , Ỹ CaCT)e(CS , ĝ−ρa−ρT)e(ĝ−ρS , ĝ−ρa−ρT) = e(g, g)
e(CS ĝ−ρS , Ỹ Caĝ−ρaCT ĝ−ρT) = e(g, g)

Thus, for the extracted acc = Caĝ−ρa , we can extract S = CS ĝ−ρS and T =
CT ĝ−ρT s.t. e(S, Ỹ · acc · T) = e(g, g). Similarly, using equations (5), (6), we
obtain U = CF ĝ−ρF and F = CF ĝ−ρF s.t. e(g̃, T) = e(U, Ŷ) and e(g̃, acc) =
e(F, g). Since F -secure BB signatures w.r.t. the public key Ỹ , Ŷ is issued on
only accumulators, it means acc =

∏
a∈FA gn+1−a for FA of a user (otherwise,

the signature is forgeable).
On the other hand, using equation (7), we can similarly extract W = CW ĝ−ρW

s.t. e(D, acc)e(g,W)−1 = zk for D =
∏

1≤j≤k gaj . From the security of the ex-
tended accumulator, all values a1, . . . , ak are accumulated into acc. ut

Theorem 4. The protocol of OR relation is a proof of knowledge of a modified
BBS+ signature (A,w, r) on secret x, the string type of attributes M1, . . . ,ML,
and the finite-set type of attributes indicated by accumulator acc, s.t. one of
attributes in TFA is accumulated to acc.

Proof. From the PK, we have an extractor of knowledge satisfying the equations.
Similarly to AND relation, we can extract a modified BBS+ signature (A,w, r)
as the certificate including acc =

∏
a∈FA gn+1−a.

Similarly to the extraction of F -secure BB signature in the AND relation,
using equations (10) – (13), we can extract the F -secure BB signature (S̃, T̃ , Ũ)
on R = Cg ĝ

−ρg and F̃ s.t. e(S̃, Ỹ ′RT̃) = e(g, g), e(g̃, T̃) = e(Ũ , Ŷ ′) and e(g̃, R) =
e(F̃ , g). Since F -secure BB signatures w.r.t. the public key Ỹ ′, Ŷ ′ is issued on
only gj ’s, it means R ∈ {g1, . . . , gn} (otherwise, the signature is forgeable), and
we can set R = gã.

Using equations (8), we can obtain δ = ρaρg. By substituting this into equa-
tion (9), we can extract W = CW ĝ−ρW s.t. e(gã, acc)e(g,W)−1 = z for the
extracted gã. This means that attribute ã is accumulated into acc. Using equa-
tion (14), we can extract W ′ = CW ′ ĝ−ρW ′ s.t. e(gã, acc′)e(g,W ′)−1 = z for gã.
This means that attribute ã is also accumulated into acc′, that is, attribute ã is
one of attributes a1, . . . , ak. ut

5 Efficiency

We compare the efficiency between our system and the conventional pairing-
based system using the BBS+ signatures. Similarly to the conventional RSA-
based systems described in [10], we can construct the conventional PKs for AND
and OR relations, which are described in Appendix A.

We introduce the following parameters.

14

Relation Conventional system Our system

AND O(L + L̃) O(L)

OR O(L + L̃ + k) O(L)
Table 1. Asymptotic computational complexity of proof.

Relation Conventional system Our system

AND (L + L̃ + 5)E(T) + 8E(G) (L + 15)E(T) + 24E(G)

OR (L + L̃ + 5)E(T) + (5k + 8)E(G) (L + 26)E(T) + 47E(G)

Table 2. Concrete number of exponentiations in proof generation (E(T): exponentia-
tions on T , E(G): exponentiations on G).

– L: the total number of string attribute types
– L̃: the total number of finite-set attribute types (e.g., gender, profession)
– n: the total number of finite-set attribute values (e.g., male, female, student,

teacher)
– k: the number of attributes referenced in a proof.

In the following comparisons, we consider the computational complexity based
on the number of exponentiations and pairings. Namely, we ignore the number
of multiplications, since the cost is much smaller than the others’ costs.

Table 1 shows the comparison of asymptotic computational complexity for
the proof generation and verification. In the both cases of AND and OR relations,
we can see that the complexity in finite-set attributes becomes constant. This is
because our scheme uses the accumulator verification with constant complexity.
The demerit of our system is the length of public key. Our system needs O(n+L)
size, while the conventional system needs O(L̃+L), where n is much larger than
L̃.

Next, compare the concrete computational costs. We suppose that mobile
devices such as smartphones manage the proof generation, and thus we concen-
trate in the computation complexity of the proof generation. Table 2 shows the
comparison of the concrete costs. Using the pre-computation of pairings, we can
omit any pairing computation with adding some slight exponentiations. In this
table, we shows the number of the exponentiations needed for the proof gener-
ation after the omission. Note that the exponentiation cost on T is larger than
that on G. The results of this table mean that our system has constant but extra
costs. Using an example of eID as in [10], we demonstrate that our scheme is
effective in spite of the extra costs. Table 3 shows the example of attributes in
eID. Generally, the number of string attribute types, L, is much less than the
number of finite-set attribute types, L̃. In the conventional system, if a user may
own multiple attribute values from an attribute type, we have to prepare bases
for the possible multiple values, namely L̃ increases by the number of possible
multiple values. For example, a user can have multiple profession attributes such

15

as student and technician in a company, and a user may own 5 or more language
ability. As the results, L̃ becomes relatively large. Therefore, from Table2, in the
general case that L̃ amounts to about 30–40 and L ≤ 5, proving AND relation
in our system has more efficiency.

String Finite-set Example Values

1) name 3) day of issuance 1–31
2) identity number 4) month of issuance 1–12

5) year of issuance 2000–2011
6) day of expiration 1–31
7) month of expiration 1–12
8) year of expiration 2000–2011
9) gender male,female
10) day of birth 1–31
11) month of birth 1–12
12) year of birth 1930–2005
13) marital status single,marriage
14-16) nationality 193 recognized states
17) hometown 200 allocated cities
18) city living 200 allocated cities
19) residence status citizen,immigrant,...
20) religion Moslem,Christian,...
21) blood type A,B,O,AB
22-27) profession student,teacher,...
28-30) academic degree B.S.,M.S,Ph.D.,...
31-35) major science,economic,...
36-45) language 100 allocated lang.
46-48) social benefit status none, unemployed, ...
49-51) eye and hair color 6 hair colors, 8 eye colors
52-54) minority status blind, deaf, ...
...

Table 3. Example of string and finite-set attributes.

In case of OR relation, since the efficiency of the conventional system is
influenced by parameter k, our system is more efficient. In [10], an example of
OR relation is shown:

minority ∈ {blind, deaf, ...} ∨ social benefit ∈ {unemployed, social benefit}

profession ∈ {student, teacher, civil servant} ∨ type = kids card

This example considers that countries grant subsidies for access to cultural insti-
tutions to particular groups such children, students, handicapped persons, etc.
In this case, k = 10 in addition to L ≥ 5 and L̃ = 40, and then our system is
more efficient than the conventional one.

16

Finally, we discuss the concrete values of the public key size. We assume that
an element of G is represented by 256 bits to obtain 256-bit ECC security. We
set L + L̃ = 50 and n = 1, 000 to n = 10, 000. In the conventional system, the
public key size is less than 2KBytes. In our system, it becomes about 200KBytes
to 2MBytes. In the current mobile environments, the data size is sufficiently
practical, since the public key is not changed after it is distributed.

6 Conclusion

In this paper, for a pairing-based anonymous credential system, we have showed
how to prove AND and OR relations on his attributes with constant complexity
in the number of finite-set attributes. The compensation is the increase of the
public key size, although the public key is not changed after it is distributed.

Our future works include the evaluation based on the implementation, and
the application to authentications in the mobile environments.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (21300004)
from Japan Society for the Promotion of Science (JSPS). We would like to thank
the anonymous reviewers.

References

1. M.H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-TAA,” Security in
Communication Networks: 5th International Conference, SCN 2006, LNCS 4116,
pp.111–125, Springer–Verlag, 2006.

2. M.H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-TAA.” Cryptology
ePrint Archive: Report 2008/136, 2008. This is the extended version of [1].

3. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya, “Non-interactive
anonymous credentials.” Cryptology ePrint Archive: Report 2007/384, 2007.

4. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya, “P-signatures and non-
interactive anonymous credentials,” Proc. 5th Theory of Cryptography Conference
(TCC 2008), LNCS 4948, pp.356–374, Springer–Verlag, 2008.

5. P. Bichsel, J. Camenisch, T. Groß, and V. Shoup, “Anonymous credentials on a
standard java card,” Proc. ACM Conference on Computer and Communications
Security 2009 (ACM-CCS’09), pp.600–610, 2009.

6. D. Boneh and X. Boyen, “Short signatures without random oracles,” Advances in
Cryptology — EUROCRYPT 2004, LNCS 3027, pp.56–73, Springer–Verlag, 2004.

7. D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” Advances in
Cryptology — CRYPTO 2004, LNCS 3152, pp.41–55, Springer–Verlag, 2004.

8. D. Boneh and H. Shacham, “Group signatures with verifier-local revocation,” Proc.
11th ACM Conference on Computer and Communications Security (ACM-CCS
’04), pp.168–177, 2004.

9. X. Boyen and B. Waters, “Full-domain subgroup hiding and constant-size group
signatures,” Proc. 10th International Conference on Theory and Practice of Public-
Key Cryptography (PKC 2007), LNCS 4450, pp.1–15, Springer–Verlag, 2007.

17

10. J. Camenisch and T. Groß, “Efficient attributes for anonymous credentials,”
Proc. ACM Conference on Computer and Communications Security 2008 (ACM-
CCS’08), pp.345–356, 2008.

11. J. Camenisch, A. Kiayias, and M. Yung, “On the portability of generalized schnorr
proofs,” Advances in Cryptology - EUROCRYPT 2009, LNCS 5479, pp.425–442,
Springer–Verlag, 2009.

12. J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based on bilinear
maps and efficient revocation for anonymous credentials,” Proc. 12th International
Conference on Practice and Theory in Public Key Cryptography (PKC 2009),
LNCS 5443, pp.481–500, Springer–Verlag, 2009.

13. J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to effi-
cient revocation of anonymous credentials,” Advances in Cryptology — CRYPTO
2002, LNCS 2442, pp.61–76, Springer–Verlag, 2002.

14. R. Cramer, Damg̊ard, and B. Schoenmakers, “Proofs of partial knowledge and sim-
plified design of witness hiding protocols,” Advances in Cryptology — CRYPTO
’94, LNCS 839, pp.174–187, Springer–Verlag, 1994.

15. J. Furukawa and H. Imai, “An efficient group signature scheme from bilinear maps,”
Proc. 10th Australasian Conference on Information Security and Privacy (ACISP
2005), LNCS 3574, pp.455–467, Springer–Verlag, 2005.

A Proving AND and OR Relations in Conventional
System

For the reference, we describe proving AND and OR relations in the conventional
system.

Certificate. Let L′ be the total number of attribute types. Then, the certificate
is as follows.

A = ((
∏

1≤j≤L′

h
Mj

j)hx
L′+1g

r
0g)1/(X+w).

Proving AND relation. Let TA be the set of attributes referenced in the proof.
Similarly to the proposed system, compute CA, Cw. Then, prove the knowledge
of x,w, r, ρA, ρw, α, ρα and Mj for Mj /∈ TA s.t.

Cw = gwĝρw , 1 = CρA
w g−αĝ−ρα ,

e(CA, Y)e((
∏

1≤j≤L′,Mj∈TA

h
Mj

j)g, g)−1 = (
∏

1≤j≤L′,Mj /∈TA

e(hj , g)Mj)e(hL′+1, g)x

·e(g0, g)re(ĝ, Y)ρAe(ĝ, g)αe(CA, g)−w.

Proving OR relation. Let TA= {M ′
j1

, . . . ,M ′
jk
} be the set of attributes ref-

erenced in the proof, where ji means the ji-th attribute types. Let STA be

18

the set of ji. Similarly to the proposed system, compute CA, Cw, and addition-
ally Cj = gMj ĝρj for ρj ∈R Z∗

p with j ∈ STA. Then, prove the knowledge of
x, w, r, ρA, ρw, α, ρα, all Mj , and ρj′ for j′ ∈ STA s.t.

Cw = gwĝρw , 1 = CρA
w g−αĝ−ρα ,

e(CA, Y)e(g, g)−1 = (
∏

1≤j≤L′,j∈STA

e(hj , g)Mj)(
∏

1≤j≤L′,j /∈STA

e(hj , g)Mj)

·e(hL′+1, g)xe(g0, g)re(ĝ, Y)ρAe(ĝ, g)αe(CA, g)−w,

Cj = gMj ĝρj (for j ∈ STA),

Additionally, prove

Cj1/gM ′
j1 = ĝρj1 ∨ · · · ∨ Cjk

/gM ′
jk = ĝρjk .

This PK for OR relation on representations is described in [14].

19

