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Abstract. Private matching solutions allow two parties to find common
data elements over their own datasets without revealing any additional
private information. We propose a new concept involving an intermedi-
ate entity in the private matching process: we consider the problem of
broker-based private matching where end-entities do not interact with
each other but communicate through a third entity, namely the Bro-
ker, which only discovers the number of matching elements. Although
introducing this third entity enables a complete decoupling between end-
entities (which may even not know each other), this advantage comes at
the cost of higher exposure in terms of privacy and security. After defin-
ing the security requirements dedicated to this new concept, we propose
a complete solution which combines searchable encryption techniques to-
gether with counting Bloom filters to preserve the privacy of end-entities
and provide the proof of the matching correctness, respectively.

1 Introduction

Imagine that a company has an opening for a new position. The posting for
new position consists mainly of requirements in terms of education, professional
experience and skills. So the company has many selection criteria and is looking
for the best suited candidate. Since the company does not want to take care of
all the recruitment process itself, it delegates the search phase to a recruitment
agency, which is more capable in terms of publishing the posting for new position
on a large scale. Candidates are characterized first by their resume and they
apply through the recruiting agency if they think they are fit for the job. The
recruitment agency upon receiving a resume, looks at the matching ratio between
the candidate characteristics and the posting’s criteria and calls the best suited
candidates for an interview at the company. The best suited candidates are
either all candidates above a certain matching ratio threshold, or the top ten
candidates for example. In order to prevent resume fraud, candidates should be
able to prove the correctness of their resume, with diplomas from a university
or validation of experience from a governmental agency.

This interesting scenario raises many security issues. First of all, both com-
pany and candidates’ privacy should be preserved. The company does indeed
not want that competitors learn about the posting, especially if it concerns an
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important position because that would give a hint about the company’s strat-
egy. So the posting and more specifically the criteria expressed by the company
should remain secret from other companies, including the recruitment agency.
Candidates’ privacy should also be preserved, to enforce equal opportunities
among candidates. Therefore resumes should be confidential and anonymous to
prevent the recruiting agency from discriminating between candidates on a non-
professional basis. The problem is therefore to be able to compute the matching
ratio between the posting’s criteria and the candidates’ resumes while both are
encrypted. Furthermore it is important that candidates cannot forge their re-
sume to obtain a higher matching ratio. This problem is especially hard since
resumes cannot be checked directly in the case where they are encrypted: privacy
and verification present conflicting requirements.

At first glance this problem has a flavor of private matching or private set
intersection, whereby two parties want to learn only shared attributes without
learning any information about the remaining ones. There is yet an important
difference in the presented scenario which makes the problem more complex:
the parties owning the private data (the company and the candidates) do not
directly interact with each other, but they forward their secret data to a third
party. This third party has to take a decision on the matching ratio without
having any control or knowledge on the private data it received, and it should
not be able to learn anything about the private data of either party in the
process: it should just be able to securely compute the matching ratio (it should
not even be able to tell which of the encrypted data matched or not). This paper
therefore tackles with a new requirement for parties not to interact directly to
achieve the matching result thus calling for a non-interactive solution.

In this paper, we analyze the requirements for the non-interactive and private
computation of matching ratio and present a complete solution to address this
issue. The solution is based on a searchable encryption scheme introduced by
Boneh et al. in [3] used in a new mode of operation to allow the company to
issue a unique query for all potential (and unknown) candidates. The solution
further makes use of counting Bloom filters introduced by Fan et al. in [11],
but in a radically new approach: those counting Bloom filters are not used as
usual to prove the belonging of an element to a set but to compute the matching
ratio without leaking privacy and to provide evidence of the correctness of the
matching ratio computation. This solution presents the following advantages:
– it addresses the non-interactive scenario as it does not require the parties

owning the private data to interact with each other (such as setting up keys
prior to the matching process for example) or even to know each other,

– it allows a third party to compute the matching ratio and to get evidence of
its correctness,

– it preserves the privacy of data, because the third party processes encrypted
data blindly (in the sense that it handles encrypted data and does not learn
any information about it),

– it is efficient, because the third party, which has to process a lot of data from
several users, only needs to perform few and non-costly operations for the
computation of each matching ratio.
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The rest of the paper is structured as follows. Section 2 motivates the need
for a broker-based private matching protocol comparing it with the classical
two-party mechanisms, defines the security requirements and describes the un-
derlying mechanisms. In section 3, the overall protocol and its security primitives
are described in detail. The security and performance of the proposed protocol
are evaluated in section 4. Finally, section 5 discusses relevant related work.

2 Problem Statement

2.1 Private matching: introducing a third party

The classical private matching scheme is a two-party protocol that enables both
parties P1 and P2 to discover common data elements over their own datasets
without revealing any additional private information. Assuming that P1 and P2

respectively own datasets X1 and X2, at the end of the private matching protocol
P1 and P2 only learn X1 ∩X2.

In this paper, we propose a complete decoupling between these two parties
in order to perform the same operation when the two parties do not interact
and are even not aware of each other. The new protocol involves a third party,
the Broker, which is in charge of computing the cardinality of the matching
set without discovering any of its elements. Private and correct evaluation of
the cardinality of the matching set by a third party has many applications, in
particular for ranking, or finding friends in social networks or simply in dat-
ing sites, and compelling new applications are envisioned in the broad field of
cloud computing. All these applications require a third party to take decisions
while remaining oblivious to the matched information. This new broker-based
private matching protocol consists of three entities, namely the Query Issuer,
the Subject and the Broker, where the latter’s main role is to discover the
cardinality of the matching set originating from the other two entities’ datasets.
Each entity’s role in the new protocol is formally defined as follows:
– the Query Issuer QI issues a query Qi = 〈qi,1, ..., qi,n〉 consisting of n

selection criteria which are elements of D, the global dataset. In the recruit-
ment example, the company is the Query Issuer and an example of selection
criterion could be “Degree = MSc”.

– Subjects Sl (1 ≤ l ≤ c), answers a query Qi with a matching proof mpi,l
based on its profile. Each Subject is indeed characterized by a profile P l =〈
pl1, ..., p

l
m

〉
composed of m attributes which are elements of the same dataset

D. These attributes are evaluated with respect to the query defined by the
Query Issuer. In the aforementioned scenario, Subjects correspond to the
candidates in the recruitment process.

– the additional party, namely the Broker B, first publishes the query of QI
to Subjects and collects their answers. The Broker then selects the best
suited Subjects: B computes a matching ratio ρi,l between a query Qi and
the Subject’s answer mpi,l defined as the cardinality of the matching set
between the selection criteria and the attributes over the cardinality of the
selection criteria. In the example, the Broker is the recruiting agency.



4 A. Shikfa, M. Önen and R. Molva

In summary, the major difference between classical private matching and the
broker-based private matching protocol is the fact that there is no direct inter-
action between the Query Issuer QI and Subjects Sl. All messages go through
the Broker B, which is an active entity in the protocol and not a simple relay:
the query Qi of QI is sent to B which then publishes it to {Sl}1≤l≤c; each
Subject Sl sends its answer mpi,l to B which decides which Subjects correspond
to the query the best. Therefore, QI should be able to send a query without
even knowing the Subjects {Sl}1≤l≤c: there is a complete decoupling between
these two entities, and B is in charge of gathering the necessary data and taking
the appropriate decision. Finally QI should be able to send a query with any
selection criteria and is not limited to a set that it owns.

2.2 Security requirements
The introduction of a third party in the private matching protocol requires to
revisit all security requirements defined for the two-party protocol.

First of all, we assume that the Query Issuer is interested in getting the best
suited Subjects; therefore QI is assumed to be honest. On the contrary, Subjects
are considered to be potentially malicious, because it is in their interest to exhibit
a high matching ratio in order to be selected by the Broker. Therefore Subjects
might attempt to cheat on their attributes or more generally in the answer they
send to B in order to lure B into computing a matching ratio higher than their
real matching ratio. However we consider that nodes are selfish and that they
do not collude with each other.

Concerning the Broker B, we assume it to be honest but curious: B correctly
executes the protocol and computes the matching ratio according to the data
it receives, and finally sends to QI the truly best suited Subjects according to
the matching ratio rankings. Yet, B is curious in the sense that it is interested
in unveiling information from the private data it receives, whether being the
selection criteria of the query of QI or the attributes of Subjects.

There are thus two main attacks to be considered:
– attacks by the Broker in an attempt to break the privacy of the other two

entities: B tries to discover and reveal the content of the query of QI, or to
discover the attributes of one or many Subjects,

– attacks by Subjects aiming at illegitimately increasing their matching ratio
with a given query.

This leads to the following two security requirements:
– Preserving the privacy of the end entities QI and Sl: queries issued

by QI and answers of Subjects are confidential and therefore encrypted. The
Broker should be able to compute the matching ratio using these two en-
crypted values without discovering any information about either the criteria
of QI or the Subject’s attributes: the protocol should be semantically secure.
Furthermore, as for classical private matching protocol, since the query is
forwarded by B to Subjects, these entities should not be able to derive in-
formation about non-matching criteria. These privacy properties can also
be formally defined by comparing the real situation in our protocol with an
ideal situation where the protocol is run by a trusted external entity, but we
do not add this formalization in this article for the sake of clarity.
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– Guaranteeing the correctness of the matching ratio: the answer mpi,l
of a Subject Sl should enable the Broker to correctly compute the matching
ratio between the query Qi and the attributes of Sl. This requirement is very
different from the privacy one, but the latter hardens the task of verifying the
correctness of the matching ratio. Indeed, a simple solution to this provably
correct matching ratio computation would consist in the Subjects sending
their attributes to the Broker, but this solution blatantly exposes the pri-
vacy of the Subjects. The challenge for the Broker is to be able to compute
the matching ratio corresponding to a set of attributes while verifying their
correctness without having access to their content.

2.3 Security primitives

Based on the security requirements of the broker-based private matching proto-
col, we define the following security primitives:
– SQE (Secure Query Encoding): in order to ensure the confidentiality of the

query Qi, this primitive, used by the Query Issuer QI, securely encodes Qi
and returns Q′i. QI can express its queries on any selection criteria in the
global dataset D, hence SQE should be a public function in that it should not
require any secret information on input. Furthermore, this function should
be randomized to prevent dictionary attacks.

– SLU (Secure Look-up): A Subject Sl uses this primitive to look-up its at-
tributes against an encoded query, and outputs the corresponding answer
mpi,l. This function should be public but requires secret information (cre-
dentials) to be processed.

– SMRC (Secure Matching Ratio Computation): on input of a Q′i and a corre-
sponding mpi,l, this primitive first verifies the correctness of mpi,l:
1. if mpi,l is invalid (Sl attempted to cheat), the process breaks;
2. otherwise, the primitive outputs the correct matching ratio ρi,l.

In the next section, these three primitives are formally described based on a
combination of different cryptographic mechanisms: searchable encryption and
counting Bloom filters.

3 Solution
We now present our solution by first introducing the underlying mechanisms and
further by formally describing the overall protocol divided into two phases.

3.1 Overview

In order to allow the correct execution of the new protocol, Subjects first need to
retrieve their credentials (private information corresponding to their profile) from
a certain authority that approves their validity. Therefore, a trusted authority
is initially available during a setup phase. This authority does not play any role
during the execution of the matching protocol, namely the runtime phase.

In this second phase, the broker-based private matching protocol actually
takes place, and it features four main steps:
1. Query: The Query Issuer QI issues a query Qi. It encodes this query using

the SQE primitive and sends the result Q′i to the Broker. Based on the query
Qi, QI also constructs a counting Bloom filter CBFi, called a matching
reference and sends it to the Broker along with the encoded query.
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2. Publish: The Broker publishes the encoded query Q′i to all Subjects. The
matching reference is not forwarded.

3. Look-up: Each subject Sl looks-up its credentials in the encoded query Q′i to
determine which conditions Sl matches. Based on these matched conditions,
Sl constructs another counting Bloom filter CBFi,l, called a matching proof.
This matching proof mpi,l is sent to the Broker.

4. Verify: The Broker compares the matching reference and the matching proof
to assess first whether the matching proof is valid or not, and then to compute
the matching ratio ρi,l. Finally, the Broker informs QI about the Subjects
best suited to its query Qi.

QI B Sl

1.QUERY
Q
i 1.Q'i

1.CBFi

2.Q'i

2.PUBLISH
3.LOOK-UP

3.CBFi,l

4.VERIFYMatching 
Reference

Credentials

Matching 
Proof

Encoded 
Query

4.ρi,l

Fig. 1. High level description of the protocol

The protocol is summarized in figure 1. A major advantage of our solution is
that it enables some computation on encrypted data to preserve end-entities pri-
vacy: the Broker is able to compute the matching ratio based on two encrypted
data structures, the matching reference and the matching proof. This compu-
tation on encrypted data is achieved thanks to an extension of a searchable
encryption mechanism that allows a third node to verify whether an encrypted
keyword is included in a database or not. This mechanism is also combined
with counting Bloom filters in order to prove the correctness of the computation
of the matching ratio. Before formally describing the new protocol, these two
mechanisms are briefly presented in the next section.

3.2 Background-Tools
Searchable encryption Searchable encryption is a general concept which en-
ables a third entity to store an encrypted list destined to a certain party and to
look-up encrypted keywords on behalf of this party without learning additional
information both on the keyword and the encrypted list.

One of the main searchable encryption approaches was proposed by Boneh
et al. in [3] and it uses three main operations:
– SE-Encrypt: a public encryption function used to encrypt the list that is

stored by the third party. This function requires the knowledge of the public
key of the destination.

– SE-Trapdoor: a private function which gives the capability of looking-up a
specific keyword, called a trapdoor. This function requires the private key of
the recipient and hence can only be computed by the recipient.

– SE-Test: on input of a trapdoor and an encrypted keyword, the third party
uses this operation to verify whether the private keyword is included in the
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list or not. Hence, this function returns 1 if the trapdoor corresponds to the
encrypted keyword and 0 otherwise.
Due to its non-interactivity this searchable encryption proposal looks appro-

priate for the new broker-based private matching scenario, where the SE-Test

operation can be implemented by the Broker while Query Issuers may encrypt
some keywords with SE-Encrypt and the Subjects run the SE-Trapdoor. Unfor-
tunately, the use of this mechanism is not straightforward because:
– As opposed to the SE-Test operation, the Broker should only be able to

compute the global matching ratio and not individual matching attributes;
– The Query Issuer does not know the Subjects in advance, hence it does not

have knowledge of their public keys and cannot use SE-Encrypt easily.
To circumvent these two main constraints, we propose to introduce a Trusted

Third Party which alleviates the requirement of the knowledge of the (unknown)
recipient’s public key in our scheme (see section 3.3).

Bloom filters A Bloom filter is a probabilistic data structure which was first
introduced by Burton Bloom ([5]). The classical use of Bloom filters is to test
whether an element is a member of a set in a space-efficient way. We focus on
an extension of Bloom filters called counting Bloom filters that were proposed
by Fan et al. in [11] to support the dynamic deletion of an element.

A counting Bloom filter CBF is an array of φ positions (also called
buckets) used to represent a set X with the aid of u hash functions {h1, .., hu}
mapping an element of X to one of the φ array positions. Counting Bloom filters
implement the following three functions:
– Insert(x,CBF ): on input of an element x, the digest of this element is

computed using each of the u hash functions. The values of the filter CBF
at these positions are incremented by 1.

– Query(x,CBF ): this function verifies with a certain probability whether x
is an element of the filter or not.

– Delete(x,CBF ): this operation consists of decrementing the value at each
of the u positions resulting from the hash functions evaluated over x, by 1.
In the sequel of this article, we denote by CBF(x1, ..., xn) the counting Bloom

filter obtained by inserting the elements xi for 1 ≤ i ≤ n.
The weight wCBF of a counting Bloom filter CBF is defined as the sum of

the values of all positions: wCBF =
∑

0≤i≤φ−1 CBF [i]. An important property
of counting Bloom filters is that the weight wCBF of a counting Bloom filter
CBF is linearly dependent on the number of elements inserted in it:

wCBF(x1,...,xn) = n · u.

Hence, counting Bloom filters are useful for our broker-based private match-
ing as they enable computing the cardinality of a set without revealing the
elements of the set (see section 3.3).

3.3 Construction

As mentioned in section 3.1, the solution features two phases: a setup phase
where Subjects retrieve their credentials, and a runtime phase where the private
matching protocol is executed.
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Setup phase Contrary to QI which can choose any selection criteria in Qi, Sl
should answer Q′i correctly based on their profile. Since the correctness of pri-
vate matching operations depends on the correctness of these profiles, the latter
should be certified, and we refer to the certified attributes as credentials. These
credentials are retrieved during a setup phase which features a fourth entity,
called the Authority A. This Authority is required to define general parame-
ters of the system and to provide Subjects with their matching credentials.

The general parameters are generated according to a security parameter
which impacts the size of the groups that are used, as well as the size of keys.
In particular, the Authority generates a private and public key pair skA/pkA.
In the recruitment example, universities delivering a diploma or governmental
agencies can be considered as authorities.

In addition to the three security primitives defined in section 2.3, we define
a fourth one, SCE (Secure Credential Extraction), which is used by A to provide
Sl with the credentials corresponding to its profile (this primitive is similar to
the private key extraction primitive in Identity-Based Encryption). On input of
a Subject’s profile, SCE returns a set of credentials. These credentials are used
as matching capabilities and correspond to trapdoors in searchable encryption.

To be more precise, Subjects Sl first contact the Authority A and show their
profile P l =

〈
pl1, ...p

l
m

〉
. A verifies the validity of P l (this verification step is

out of the scope of this paper), and then provides Sl with the corresponding
credentials T l which are computed using the SE-Trapdoor function applied over
the Subject’s attributes and the secret key of A. Hence, at the end of the setup
phase, each Sl receives the following set of credentials:

T l =
〈
tl1, ..., t

l
m

〉
= 〈SE-Trapdoor(pl1, skA), ..., SE-Trapdoor(plm, skA)〉.

Runtime phase As described in section 3.1, the runtime phase consists of four
main steps that we describe formally in the following:

1. Query: During this step, QI expresses a query Qi by choosing a set of
selection criteria and performs a secure encoding of the query using the SQE

primitive. The output of this primitive are the encoded query Q′i and the
matching reference mri: SQE(Qi, pkA) = (Q′i,mri).

As previously introduced, the SQE primitive should be a randomized public
cryptographic function, such as SE-Encrypt. However, SE-Encrypt requires
the public key of the recipient and this key is unknown to QI, hence we
propose a new configuration where the public key of A is used instead.
Therefore, the encoded query is computed as follows:

Q′i =
〈
q′i,1, ..., q

′
i,n

〉
= 〈SE-Encrypt(qi,1, pkA), ..., SE-Encrypt(qi,n, pkA)〉.

On the other hand, the matching reference should help the Broker to compute
the matching ratio correctly. To this extent, during the execution of the
SE-Encrypt algorithm, QI also retrieves some intermediate values which
can only be computed by itself or by the nodes that own the corresponding
trapdoors. Indeed, the SE-Encrypt primitive makes use of a cryptographic
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hash function H at the last step of the computation3. For 1 ≤ j ≤ n, we
denote the preimage of q′i,j by xi,j :

q′i,j = SE-Encrypt(qi,j , pkA) = H(xi,j).
Thanks to the inherent security of the hash functions with pseudorandom
inputs, a malicious user cannot compute xi,j based on the knowledge of q′i,j .
Hence, QI constructs the matching reference mri as a counting Bloom filter
CBFi, in which it inserts the elements xi,j for 1 ≤ j ≤ n:

mri = CBFi = CBF(xi,1, ..., xi,n).
At the end of this first step, QI sends mri and Q′i to the Broker.

2. Publish: The Broker forwards the encoded query Q′i to all Subjects but
keeps the matching reference mri.

3. Look-up: On input of an encoded query Q′i and a set of credentials T l, the
SLU primitive returns a matching proof mpi,l:

SLU(Q′i, T
l) = mpi,l.

By using the SE-Test function, Subjects can indeed detect selection criteria
corresponding to their profile: for 1 ≤ j ≤ n, 1 ≤ k ≤ m SE-Test(q′i,j , t

l
k)

returns 1 for matching elements and 0 for the others. Moreover, the Subject
can compute the corresponding preimage xi,j for matching criteria. Hence
Sl can construct a counting Bloom filter CBFi,l in which it includes all the
preimages that it managed to compute and which is used as matching proof
mpi,l = CBFi,l and sent to the Broker.

4. Verify: On input of a matching reference mri and a matching proof mpi,l
the primitive SMRC returns a matching ratio ρi,l.
The Broker first compares the counting Bloom filters CBFi and CBFi,l to
assess the validity of the latter. To this extent, the Broker checks whether:

– ∀0 ≤ i1 ≤ φ − 1, CBFi,l[i1] ≺ CBFi[i1] denoted as CBFi,l ≺ CBFi,
otherwise it means that CBFi,l was not constructed only with (a subset
of) xi,1, ...xi,n,

– the weight wCBFi,l of CBFi,l is a multiple of u, because each inserted
element leads to an increase of the weight by u.

If one of the verifications fails, the protocol aborts (the Subject attempted
to cheat), otherwise the Broker accepts the answer of Sl as being valid and
computes the matching ratio as follows:

SMRC(mri,mpi,l) =
wCBFi,l
wCBFi

.

The protocol is consistent in that:

Proposition 1. If CBFi,l is generated as specified in the protocol, then the
matching ratio between the query and the attributes of a Subject corresponds
to the output of SMRC:

ρi,l = SMRC(mri,mpi,l).

3 See [3] for the detailed construction of PEKS. We roughly have xi,j = ê(H1(qi,j), r ·
pkA), and q′i,j = 〈rP,H(xi,j)〉, where ê is a bilinear map, r a random scalar, and P
a point on an elliptic curve.
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This proposition is a direct consequence of the fact that the weight of a
counting Bloom filter is linearly dependent with the number of its elements.

This concludes the presentation of our solution, and we now evaluate its
security and performance.

4 Evaluation

The security of the new broker-based private matching protocol is analyzed based
on the attacker model and the security requirements defined in section 2.2. We
assume that the communication channels between QI and B and between B and
Sl are secured, hence eavesdroppers cannot access the messages exchanged in
the protocol in clear. They thus have less information than any of the entities
running the protocol, and we do not further take them into account.

4.1 Privacy
Privacy is the most important requirement in classical private matching. In this
section, we assume that entities are curious and try to discover information that
they should not access. We first show that our solution preserves the privacy
of end-entities and we further prove that the introduction of a third party (the
Broker) does not threaten the Query Issuer’s and Subjects’ privacy.

First, the privacy of the QI is preserved with respect to Sl. Indeed, in [3],
Boneh et al. proved that their construction is semantically secure against a
chosen keyword attack in the random oracle model, assuming that the Bilinear
Diffie-Hellman problem is hard. It is thus unfeasible for an entity to discover
the value of an encoded selection criteria unless it knows the corresponding
trapdoor, in other words Sl can only discover the matching selection criteria.
Furthermore, since only the Authority A knows the private key skA, nodes
cannot forge trapdoors. Recovering the private key skA amounts to a discrete
logarithm computation which is assumed to be hard.

Second, we prove that the introduction of B does not threaten the privacy of
end-entities. On one hand, as an intermediate node, B receives the same encoded
queries that Sl receives, but B has no trapdoors and thus cannot discover the
value of the encoded queries. Furthermore, B cannot link successive queries even
if they correspond to the same selection criteria because the encoding mecha-
nism is inherently randomized. On the other hand, in addition to the queries, B
receives matching reference and matching proofs from QI and Sl respectively.
As proven in the following theorem, the knowledge of a counting Bloom filter
does not enable the Broker to recover the elements xi,j inserted in it.

Theorem 1. Let x1, ..., xn be n elements randomly chosen from a group G of
order q. Let CBF be a counting Bloom filter of size φ in which the n elements
x1, ..., xn were inserted using u hash functions h1, ..., hu. Then, there are more
than q

φu possible sets of elements of Gn leading to the same counting Bloom
filter:

|{(x′1, ..., x′n) ∈ Gn|CBF(x′1, ..., x
′
n) = CBF(x1, ..., xn)}| > q

φu
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The proof is given in section 7.1. This result is a lower bound on the set
of preimages but the actual result can be multiplied by a factor of up to u!
depending on the outputs of the hash functions, and is multiplied even further if
more elements are inserted. Note that this result does not even take into account
the complexity required to find the corresponding set of preimages.

From the perspective of an attacker, being able to solve the equations would
lead to an advantage as it reduces the size of the space of possibilities from q
down to q

φu . However, careful setting of the parameters q, φ and u, makes the

size of this set large enough to prevent brute force guessing (see section 7.3).
In summary, the counting Bloom filter cannot be reversed to obtain the

entries that were inserted in it, which guarantees the privacy of the Query Issuer
and Subjects. We now focus on the security of the matching ratio computation.

4.2 Correctness of the matching ratio

Concerning the security of the matching ratio computation, we consider now a
malicious Sl trying to convince B that its matching ratio is higher than its actual
value, and we show that the probability of success of such an attack is negligible.

To be more precise, we assume that Sl does not know the matching reference
mri, thus the only information known by Sl on CBFi are the global parameters:
the hash functions used h1,...,hu and the size φ. Sl also knows Q′i and therefore
the number n of elements xi,j inserted in CBFi.

The goal of the malicious Sl is to claim a matching ratio ρclaimi,l higher than

the actual ratio ρi,l. To this extent, Sl needs to claim a corresponding counting
Bloom filter CBF claimi,l . For Sl to be successful, CBF claimi,l has to verify the
following conditions:

1. it should be considered valid by B, as required by the last step of the protocol
described in section 3.3, which implies that:
– CBF claimi,l ≺ CBFi,
– the weight wCBF claimi,l

of CBF claimi,l is a multiple of u,

2. it should lead to ρclaimi,l > ρi,l, hence the weight of CBF claimi,l needs to verify
wCBF claimi,l

> wCBFi .

The probability of success of Sl is exponentially decreasing in the malicious
ratio increment ρclaimi,l − ρi,l, as shown in the following theorem.

Theorem 2. Let Q′i be an encoded query concerning n selection criteria. Let
CBFi be the corresponding matching reference.

The probability of success Padv[ρi,l → ρclaimi,l ] of an adversary Sl in generating

an array CBF claimi,l which is accepted by B and results in an increase of the

matching ratio from ρi,l to ρclaimi,l is upper bounded by:

Padv[ρi,l → ρclaimi,l ] ≤
(

1− e−
(1−ρi,l)n·u

φ

)(ρclaimi,l −ρi,l)n·u
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The proof is given in section 7.2. The formula of Padv[ρi,l → ρclaimi,l ] shows
that the probability of success of an adversary decreases exponentially with the
malicious ratio increase (ρclaimi,l −ρi,l) and, decreases also depending on the value
of the legitimate matching ratio ρi,l.

It is possible to go further and bound Padv[ρi,l → ρclaimi,l ] independently of

ρi,l and ρclaimi,l , by observing that:

– the function x 7→ αx decreases with x for 0 < α < 1,

– 0 <

(
1− e−

(1−ρi,l)n·u
φ

)
<
(

1− e−
n·u
φ

)
< 1,

– u < (ρclaimi,l − ρi,l)n · u.

Hence, the probability of success of the adversary is bounded by Padv:

Padv =
(

1− e−
n·u
φ

)u
.

The security of the scheme hence depends on the general parameters of the
counting Bloom filter and we now show how to optimize these settings.

First of all, we assume that the maximum number of selection criteria in a
query is bounded and known in advance; we designate it as nmax. For all queries,
the probability of success of the adversary is thus bounded by

Padv ≤
(

1− e−
nmaxu

φ

)u
.

If we fix φ, then the function pmax : u 7→
(

1− e−
nmaxu

φ

)u
is C∞ on [1,+∞[,

and it reaches its minimum in u0 = φ
nmax

ln(2) and pmax(u0) = 2−u0 . Therefore,
for a fixed nmax, increasing u and φ exponentially increases the security, but
increasing φ linearly impacts on the performance of the scheme. We propose the
following strategy to optimize the trade-off between security and performance:

1. Set nmax the maximum number of criteria per query,
2. Choose a security parameter u: Padv is then bounded by 2−u,

3. Set the size φ of the counting Bloom filter as φ =
⌈
nmaxu
ln(2)

⌉
.

This strategy prioritizes security over performance: it defines the desired
security level (Padv ≤ 2−u) and then sets the minimal size φ to achieve this
security level. Note that u does not need to be very large, because Padv is an
upper bound and is obtained with very restrictive conditions:

– n = nmax, which means that QI uses nmax selection criteria,
– Sl has a legitimate matching ratio of 0 (ρi,l = 0).

With these conditions, Sl has a probability less than 2−u of success in making B
believe that its matching ratio is 1/nmax instead of 0. In many cases, this would
not be of any use to the attacker, because the attacker needs to claim the highest
matching ratio among the Subjects in order to take advantage of its attack. The
attacker does not even know the matching ratio of the other Subjects, so the
only way for the malicious Sl to be sure to benefit from its attack is to claim a
matching ratio of 1, and the probability of Sl succeeding falls down to 2−u·nmax .
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4.3 Performance evaluation

Following the analysis of the trade-off between security and performance in the
previous section, we now evaluate the overall communication and computational
overhead resulting from the proposed protocol.

Communication overhead We consider that the cost originating from the
setup phase is negligible given that it takes place offline. We only evaluate the
communication overhead during the runtime phase.

The size of encoded queries is linear in the number of selection criteria that
it includes. Each encoded criterion is the output of the SE-Encrypt primitive
and thus has size 2q bits, where q is the size of the group used in the searchable
encryption scheme.

Concerning the size of counting Bloom filters, they are arrays containing φ
buckets. According to [11], we choose β = 4 bits for the size of each bucket
to keep a negligible probability of overflow, thus the communication overhead
incurred by the matching reference or the matching proof is 4φ bits.

Computational overhead The primitives of searchable encryption rely on el-
liptic curve operations which cost is of the same order of magnitude as classical
asymmetric cryptography [18]. The most costly operation is the pairing compu-
tation: our mechanism requires one pairing computation per encoding and one
per SE-Test evaluation, the cost is thus linear in the number of selection criteria
used in the queries. In comparison, the cost of generating the counting Bloom
filters which amounts to n · u hash computations is negligible.

The aforementioned computations are performed by the end-entities, but the
Broker only carries on simple operations to compute the matching ratio:
– B verifies that the matching proof is smaller than the matching reference

which requires φ integers inequality checks,
– B computes the weight of the matching proof and reference (a sum of φ

integers) and performs a division.

The overhead on B is thus very small which shows that our scheme is scalable
and efficient to disseminate a query to multiple Subjects.

5 Related work

Several previously studied problems in the literature show similarities with broker-
based private matching. We list them in two main categories and show how they
differ from our problem.

5.1 Private matching and private set intersection

Private matching came up as a generalization of private equality tests. A first
approach introduced a Trusted Third Party (TTP) as proposed in [2] and [15]. In
theses proposals, the TTP is completely trusted, computes X1 ∩X2 and sends
the result back to P1 and P2. This solution is not satisfying from a privacy
perspective as it is fully dependent on the honesty of the TTP which has full
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access to the parties’ sets. This three-party protocol is thus very different from
our broker-based private matching solution.

In [1], Agrawal et al. propose a protocol performing private matching without
a TTP, building on a previous work by Huberman et al. [14] by using a pair of
commutative encryption schemes. Building on this work, Li et al. formalize in [17]
the security requirements of private matching and identify the issue of spoofing,
which consists in one of the entities claiming elements that it does not own. The
issue of spoofing is similar to Subjects cheating in their matching proof (however
this issue is not relevant for the Query Issuer). To solve this issue, Li et al. further
introduce a Trusted Third Party which provides Data Ownership Certificates
(similar to the Authority providing credentials) and propose a modified version
of the Agrawal protocol.

A different approach was investigated by Freedman et al. in [12]: they propose
a solution derived from secret sharing protocols based on Oblivious Polynomial
Evaluation. They also study some variants of private matching, among which
the private cardinality matching, which is very close to our matching ratio com-
putation. The solution for the latter is only proposed for semi-honest parties but
the case of malicious entities is not considered. Kissner and Song [16] proposed
multi-party protocols that apply to several set operations (including set intersec-
tion) and that are secure in the presence of honest-but-curious adversaries. They
also propose a construction secure in the presence of malicious adversaries based
on zero-knowledge proofs. For the same problem, Dachman-Sold et al. propose
a more efficient solution in [10].

In [8], Camenisch and Zaverucha introduce the notion of certified sets: a
trusted third party provides credentials to users prior to the private set intersec-
tion protocol. This trusted third party plays the same role as A in our solution.

Finally, we note the recent work of De Cristofario and Tsudik, who propose
in [9] more efficient protocols to various flavors of private set intersection.

All these protocols cannot readily be applied to our scenario, because they
are interactive protocols between two entities (a client and a server) that in-
teract directly (possibly in several rounds), and there is no clear translation of
this two-party setting to our problem. The presence of an active Broker indeed
introduces different privacy threats while enabling a decoupling between Query
Issuer and Subjects. Furthermore, one of the entities in our scenario, namely the
Query Issuer, can express queries on any selection criteria and is not limited to
a predefined set contrary to P1 limited to X1 in classical private matching.

5.2 Oblivious keyword search

Oblivious Keyword Search is a generalization of Oblivious Transfer [21, 4, 7, 13]
where the client receives all messages related to a given private keyword instead
of requesting a message at a particular position. It was proposed by Ogata
and Kurosawa in [20] who showed the relationships between both notions and
presented two efficient methods to achieve oblivious keyword search.

Oblivious Keyword Search is relevant to our problem because it can be used
to construct private set intersection protocols [12], and more importantly they
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can be combined with Public Encryption with Keyword Search (PEKS) to offer
additional properties as presented in [6]. The latter scheme, that we refer to as
PEOKS, enhances PEKS by introducing the notion of committed blind anony-
mous identity-based encryption, which allow Subjects Sl to privately request
trapdoors for attributes without revealing the attributes to the Authority A: Sl
commit to their attributes which allows A to request proofs of statement from
users later on. Furthermore, the trapdoors are unique to each subject (even for
the same attribute), making the scheme robust and secure against colluding
attackers. Those properties make PEOKS more suitable to our scenario than
PEKS but it is also more difficult to expose briefly and could stray the focus
from our contributions and in particular the main novelty of our scheme, which
is the introduction of counting Bloom filters and their use in an original way.
We keep the advanced version of our scheme based on PEOKS for the extended
version of the article.

6 Conclusion

In this paper, we have presented a new private matching protocol which involves
an intermediate node that performs some of the matching operations on behalf of
the end-entities. Contrary to classical private matching settings, where the client
and the server interact directly in the process, in our new scenario the Query Is-
suer and the Subjects do not interact at all, and do not even need to know each
others’ identity. The new protocol is based on the combination of searchable
encryption mechanisms and counting Bloom filters used in a radically differ-
ent mindset and allows a third entity, namely the Broker, to correctly compute
the matching ratio based on encrypted information only. While introducing this
third entity allows a decoupling between the end-entities, it raises new privacy
and security issues. We have proved that the proposed protocol preserves the
privacy of end-entities thanks to the semantic security of the underlying search-
able encryption mechanisms. The security against malicious Subjects cheating
on the matching ratio has been analyzed and proved by bounding the probability
of the success of the malicious Subject. Finally we have identified an interesting
trade-off between security and performance, and we have computed the optimal
parameters for an efficient execution of the protocol under a certain security
level.

As future work, we plan to implement this mechanism with a PEOKS scheme
to mitigate the impact of colluding attackers. We also envision to introduce
multiple authorities to reduce the importance and the capabilities of A.
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7 Appendix: proofs and example

7.1 Proof of theorem 1

Theorem. Let x1, ..., xn be n elements randomly chosen from a group G of order
q. Let CBF be a counting Bloom filter of size φ in which the n elements x1, ..., xn
were inserted using u hash functions h1, ..., hu. Then, there are more than q

φu

possible sets of elements of Gn leading to the same counting Bloom filter:

|{(x′1, ..., x′n) ∈ Gn|CBF(x′1, ..., x
′
n) = CBF(x1, ..., xn)}| > q

φu

Proof. Let us examine the simplest case of n = 1 and CBF = CBF(x1). In
that case the positions h1(x1); ...;hu(x1) are incremented in CBF . The security
argument is based on two main observations:

– The first observation is that the hash functions h1, ..., hu are not invertible,
even though they are not necessarily cryptographic hash functions. Indeed,
these functions map elements of G (a group of order q) to a small set (the
integers smaller than φ). Therefore, if the hash functions have a uniformly
distributed output then each output has q

φ preimages. If we combine the
u equations corresponding to the u hash functions, the number of inputs
simultaneously verifying u conditions on their digests is q

φu .
– The second observation is that there is an information loss in the construction

of this structure: the order of the hash functions is lost once the element is
inserted in the counting Bloom filter, and it is impossible to know which
hash function resulted in the incrementation of a given position in the filter.
This second fact further increases the size of the potential preimages by a
factor of up to u!: it is possible to set many sets of equations for the same
counting Bloom filter.

As a result, the set of possible preimages corresponding to a counting Bloom
filter containing a single element is at least q

φu . This set is even larger when
considering several elements.

7.2 Proof of theorem 2

Theorem. Let Q′i be an encoded query concerning n selection criteria. Let CBFi
be the corresponding matching reference.

The probability of success Padv[ρi,l → ρclaimi,l ] of an adversary Sl in generating

an array CBF claimi,l which is accepted by B and results in an increase of the

matching ratio from ρi,l to ρclaimi,l is upperly bounded by:

Padv[ρi,l → ρclaimi,l ] ≤
(

1− e−
(1−ρi,l)n·u

φ

)(ρclaimi,l −ρi,l)n·u
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Proof. We first observe that Sl cannot know whether the first property (that
is CBF claimi,l ≺ CBFi) is met or not as Sl does not know CBFi. Sl can only
make guesses based on the general parameters of CBFi. We thus first establish a
probabilistic model of counting Bloom filters in order to evaluate the probability
of having the three aforementioned properties validated without the knowledge
of CBFi.

We consider a counting Bloom filter CBF of length φ containing n unknown
elements which were inserted using u hash functions. Given that the probability
distribution of the values in CBFi follows a binomial distribution at each posi-
tion, the probability P ′(i2) that the value CBF [i1] at position i1 is greater than
a given i2 can be computed as follows: ∀0 ≤ i1 ≤ φ− 1,∀1 ≤ i2 ≤ n · u,

P ′(i2) = P[CBF [i1] ≥ i2] = 1−
i2−1∑
i3=0

(
n · u
i3

)(
1− 1

φ

)n·u−i3 ( 1

φ

)i3
.

Based on this result, we then prove by induction4 that the probability P ′(i2)
decreases faster than a geometric series of ratio P ′(1), or to be more precise that,
for 1 ≤ i2 ≤ n · u,

P ′(i2) ≤ (P ′(1))i2 (1)

assuming that n · u ≤ φ− 1.
We then consider ARR to be an array of size φ (the matching proof). The

probability P[ARR ≺ CBF ] that ARR is smaller than CBF can be computed
as follows:

P[ARR ≺ CBF ] =

φ−1∏
i1=0

P ′(ARR[i1]).

Following the result in inequation 1, this probability can be upperly bounded
as follows:

P[ARR ≺ CBF ] ≤
φ−1∏
i1=0

P ′(1)ARR[i1]

Finally, based on the approximation of the Taylor series development of P ′(1)
we obtain the following upper bound:

P[ARR ≺ CBF ] ≤
(

1− e−
n·u
φ

)wARR
(2)

The last step of the demonstration consists in applying this important re-
sult to the matching reference CBFi and the matching proof CBFi,l where the
parameters CBF and ARR are replaced by the challenging reference counting
Bloom filter CBFi and the malicious matching proof CBFi,l, respectively. How-
ever, this modification is not straightforward because while CBF was assumed
to contain n random elements, a malicious Subject Sl knows some of the ele-
ments, that are the ones corresponding to the selection criteria that Sl matches.

4 The (long) details of this proof are not included due to page constraints
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Thus, the following modifications have to be performed to evaluate the proba-
bility Padv[ρi,l → ρclaimi,l ] of success of a Subject in increasing its matching ratio

from ρi,l to ρclaimi,l :

– We first define by CBF chali = CBFi − CBFi,l the challenging reference
counting Bloom filter, that is the part of the counting Bloom filter unknown
to Sl. The weight of CBF chali is wCBF chali

= n(1− ρi,l) · u
– Moreover, CBFmali,l = CBF claimi,l − CBFi,l defines the part of the match-

ing proof which is malicious which weight is denoted by wCBFmali,l
which is

computed as follows: wCBFmali,l
= wCBF claimi,l

− wCBFi,l = (ρclaimi,l − ρi,l)n · u

We therefore obtain the following inequality:

P[CBFmali,l ≺ CBF chali ] ≤ (1− e
n(1−ρi,l)·u

φ )(ρ
claim
i,l −ρi,l)n·u (3)

which corresponds to Padv[ρi,l → ρclaimi,l ] if ρclaimi,l − ρi,l is a multiple of 1
n (if

wCBFmali,l
is a multiple of u) to satisfy the second of the aforementioned conditions

(otherwise the claimed counting Bloom filter would be rejected).

7.3 Typical figures

To illustrate the performance of the global solution more concretely, we provide
some figures of a typical scenario.

First of all, the maximum number of selection criteria that can be used in
each query should be reasonably small as it directly leads to an increase in the
communication and computation complexity. We therefore set this maximum
number to nmax = 20.

The level of security in groups over elliptic curves depends on a security
parameter called the MOV degree [19]: by carefully choosing the elliptic curve
it is possible to adjust the trade-off between key size and computation time,
while maintaining a given level of security. We choose a curve with a small MOV
degree of 2 and a group of order q of 512 bits length to have a security equivalent
to 1024 bits RSA.

The size of an encoded query is then less than 2q·nmax ≈ 20 Kbits. To put this
size into perspective, note that in the case where there is no privacy protection
(where queries and replies are sent in clear) and where each selection criteria is
stored in a string with 16 8bits-characters, the size of queries is approximately 2.5
Kbits. The size of encoded queries is therefore 8 times larger than their queries
in clear, but this is a deliberate choice to optimize the computation performance.
If the communication overhead is considered as more important, it is possible to
use curves with a higher MOV degree of 6: in that case it is possible to consider
groups of smaller order and the overhead would be reduced to 2.5 times.

Concerning the parameters of counting Bloom filters, in addition to nmax,
we need to define φ and u.
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First of all, u is used as a security parameter, since the probability of success
of an adversary can be bounded by 2−u. As explained in section 4.2, it is not
necessary to choose a very high value for u as it does not lead to revealing a
secret but only to being able to cheat on the matching ratio. By choosing u = 10
for example, the probability of success of an attacker would still be bounded by
10−3 in the most favorable case. Other probabilities of success are presented in
table 1. This table shows that the probability of success for significant attacks
is very low (for reference the typical security margin for symmetric encryption
is 2−80 ≈ 10−24). It is of course possible to choose a higher value for u to make
sure that even in the most favorable case the attacker would not succeed with
probability more than 2−80 but u impacts first on the construction of counting
Bloom filter (each element requires the computation of u hash values) and second
and more importantly on the size of counting Bloom filters. We therefore believe
that choosing a smaller value for u (as we did) is a better trade-off.

Table 1. Probability Padv[ρi,l → ρclaimi,l ] of an adversary Sl with legitimate matching

ratio ρi,l to successfully claim a matching ratio of ρclaimi,l with an encoded query Q′i
containing n selection criteria. The general parameters used for the counting Bloom
filter are nmax = 20, u = 10, and φ = 289.

H
HHHHn
Padv 0→ 1

n
0→ 2

n
0→ 1

2
0→ 1 1

2
→ 1

n
+ 1

2
1
2
→ 1 1− 1

n
→ 1

6 5.10−8 3.10−15 1.10−22 2.10−44 9.10−11 7.10−31 2.10−15

10 5.10−6 2.10−11 2.10−27 4.10−54 1.10−8 1.10−40 2.10−15

20 1.10−3 9.10−7 7.10−31 5.10−61 5.10−6 4.10−54 2.10−15

The number of positions φ of the counting Bloom filter according to the

strategy explained in section 4.2 should be φ =
⌈
nmax·u
ln(2)

⌉
which is equal to 289

when nmax = 20 and u = 10. We choose to allocate 4 bits for each position in
the counting Bloom filter, thus the total size of the filter is slightly more than
1 Kbit while the probability of a bucket overflow to happen would be less than
2.10−12. The size of the counting Bloom filters is therefore really negligible in
comparison with the size of the queries, thus the use of counting Bloom filters
really offers a decisive advantage from a performance perspective on top of the
advantage from a privacy point of view.

On this matter, we mentioned in section 4.1 that the size of the set of pos-
sible preimages that lead to a counting Bloom filter is around q

φu ≈ 2448. This
proves that a brute-force attack to break the privacy-preserving properties of
the computation assurance solution is out of reach of current computing power.


