
P3CA: Private Anomaly Detection Across ISP
Networks

Shishir Nagaraja1, Virajith Jalaparti2, Matthew Caesar2, and Nikita Borisov2

1 IIIT Delhi {nagaraja@iiitd.ac.in}
2 University of Illinois at Urbana-Champaign
{jalapar1,caesar,nikita}@illinois.edu

Abstract. Detection of malicious traffic in the Internet would be much
easier if ISP networks shared their traffic traces. Unfortunately, state-of-
the-art anomaly detection algorithms require detailed traffic information
which is considered extremely private by operators. To address this, we
propose an algorithm that allows ISPs to cooperatively detect anomalies
without requiring them to reveal private traffic information. We leverage
secure multiparty computation to design a privacy-preserving variant of
principal component analysis (PCA) that limits information propagation
across domains. PCA is a well-proven technique for isolating anomalies
on network traffic and we target a design that retains its scalability and
accuracy. To validate our approach, we evaluate an implementation of
our design against traces from the Abilene Internet2 IP backbone net-
work as well as synthetic traces, show that it performs efficiently to sup-
port an online anomaly detection system and and conclude that privacy-
preserving anomaly detection shows promise as a key element of a wider
network anomaly detection framework. In the presence of increasingly se-
rious threats from modern networked malware, our work provides a first
step towards enabling larger-scale cooperation across ISPs in the presence
of privacy concerns.

1 Introduction

A serious threat to Internet users is the increasingly advanced set of attacks
employed by malware to remotely compromise their resources. Compromised ma-
chines are used to propagate spam, worms and viruses and participate in DoS
attacks. The tremendous scale and complexity of network traffic makes detection
of malicious behavior in network traffic an extremely hard problem.

The seriousness of this problem has led network operators to pursue in-network
solutions to detect and localize malicious traffic. Modern ISPs run monitoring
systems to localize malicious traffic, and some offer “scrubbing” services to cus-
tomers to remove malicious traffic before delivery to the customer [31]. While

This research was supported in part by the National Science Foundation grants:
CNS 08–31488 and CNS 10–53781 and the IBM X10 innovation award.

several approaches have been proposed for detecting malicious traffic, the use of
principal component analysis (PCA) stands out. An array of techniques based on
PCA have been recently proposed [17, 25, 27] to detect statistical anomalies in vol-
ume or other characteristics of traffic flowing across networks. These schemes rely
on monitoring protocols employed at routers to sample traffic (e.g., NetFlow [8]
and SNMP counters), aggregate these observations across routers and perform
anomaly detection on the aggregate. PCA enables scaling to large datasets by
reducing the dimensionality of the traffic and has been shown in the literature to
perform well on a variety of workloads and topologies to detect malicious traffic,
performance problems, and other forms of outages and hard-to-detect failures.

Performance of these techniques improves with increasing number of vantage
(monitoring) points. In addition to providing visibility into a larger number of
inter-host paths, additional vantage points increase the likelihood that a given
malicious traffic flow is “exposed” due to different statistical mixes of traffic ap-
pearing on each observed link. For example, it has been shown that if neighboring
ISPs were to cooperate by sharing traffic measurements, anomaly detection could
be done with much higher accuracy and anomalies that cannot be detected by
each of the ISPs individually could be detected [30]. However, anomaly detection
today is unfortunately constrained to operate within a single ISP network as ISPs
are highly reluctant to reveal the topology and traffic information necessary for
these algorithms to run since they are extremely confidential business information.

Contributions: In our work, we leverage work in secure multiparty computa-
tion (SMC) and propose Privacy-Preserving PCA (P3CA), a mechanism which
supports cooperation among ISPs, allowing them to perform anomaly detection
jointly with other ISPs without requiring them to reveal their private information.
P3CA retains the desirable properties of PCA, including its accuracy and robust-
ness. One challenge with using SMC-based approaches is scalability, as we target
designing a system that can handle collaborations across the large workloads of
several core ISP networks (millions of flows, hundreds of routers, tens of collab-
orating ISPs). To address this, we develop efficient algorithms that scale linearly
with the number of observations per ISP. We also support incremental anomaly
detection to speed up processing by updating the previously computed principal
components when new data is obtained. Unlike previous work on preventing in-
formation leakage in data mining algorithms [13, 23], we target algorithms in the
context of anomaly detection in large-scale networks. In addition, unlike some
schemes [13], P3CA does not publish the dominant principal components (i.e.,
their plain text values) allowing privacy of the network traffic and topology to be
retained. At the end of P3CA, each of the participating ISP finds the anomalies
in its own network and these are not revealed to the others. Our evaluation re-
sults show that P3CA (and its incremental version) perform quite efficiently at
the scale of large networks. We note that P3CA extends PCA for multiple ISPs
and thus, like PCA, can be used only to find the anomalies in a network and not
the end hosts responsible for these. Further mechanisms (e.g., [28]) are required
to perform root cause analysis and are out of the scope of this paper.

2

2 System Overview

The Internet is made up of a set of Internet Service Providers (ISPs) connected
by peering links. Each ISP is a network owned and operated by a single adminis-
trative entity (e.g., a campus/enterprise network). To discover routes across ISPs,
the Border Gateway Protocol (BGP) [3] is run across peering links. BGP routing
advertisements carry information such as the reachable destination prefix and do
not reveal the details of the ISP’s internals such as topology, traffic (for e.g., set of
communicating IP addresses, the load on the ISP’s links) as they are considered
highly private. Revealing such information can make an ISP subject to directed
attacks along with revealing confidential information. ISPs also have economic
reasons to hide this information as it may reveal shortcomings of their own de-
ployments to competitors. For example, in one recently publicized case, a tier-1
ISP published information about their internal failure patterns in a technical pa-
per and a second ISP re-published that information in their marketing literature
to convince customers to use the second ISP’s own services [4]. Therefore, to en-
able PCA-based anomaly detection across ISPs, we must ensure the privacy of
data regarding internal traffic information.

To address this problem, we design for the target architecture shown in Fig-
ure 1. Each ISP runs a Secure Exchange Point (SEP) that collects information
about its traffic and coordinates with SEPs located in other collaborating ISPs
to diagnose anomalies together. To simplify deployment, the SEP runs on a sepa-
rate server infrastructure and communicates with routers using existing protocols
(SNMP and NetFlow to learn traffic information and the IGP to learn topology
information). SEPs may be configured into arbitrary topologies following the trust
relationships between ISPs (the inter-SEP connections may traverse multiple in-
termediate ISPs, if the two collaborators are not directly adjacent). ISPs often
already run dedicated infrastructures to detect anomalies and our design can be
incorporated into such existing deployments to reduce need for new infrastructure.

Fig. 1: P3CA system architecture.

2.1 Threat model

Adversarial model: In our work, we assume that adversaries are semi-honest
(also referred to as honest but curious), as defined in [14]. In this model, all

3

participants correctly follow the protocol but may observe and record arbitrary
information from protocol message exchanges. We believe this model is appropri-
ate for inter-ISP collaborations. ISPs enter into contracts that require them to
follow the protocol as well as perform periodic audits to verify its correct opera-
tion. However, any private data that is revealed directly to another ISP (for e.g.,
through accidental misconfiguration) is difficult to contain. Thus, our goal is to
limit the amount of private data that can be obtained by any ISP following the
protocol.
Privacy goals: Our aim is to develop an privacy preserving scheme where sev-
eral ISPs can jointly perform PCA on their private traffic observation datasets
and detect anomalies in their networks while revealing no further information. In
particular, there are three main sources of information about ISPs and we aim to
reduce the amount of information revealed about each of them:

1. Topology: Each ISP consists of a set of routers and links organized into a
graph. We would like to avoid revealing any information about this graph,
including its size and topology.

2. Workload: Each ISP forwards data traffic between its routers. We would like
to avoid revealing information about the set of inter-communicating hosts,
packet headers and the volume of traffic.

3. Monitoring infrastructure: Each ISP runs a monitoring infrastructure to mon-
itor and collect information about traffic for anomaly detection. We would like
to avoid revealing information about the structure, size and visibility of this
infrastructure, including the number of vantage points and their placement
within the network.

2.2 Protocol overview

We build upon several key features of previous work [20, 21] and provide P3CA, a
protocol the allows ISPs to detect anomalies in their networks by computing the
principal components of their aggregated data in a privacy preserving manner. In
our model, p ISPs collaborate to jointly perform PCA over a distributed traffic
matrix Y . Y is a t×l non-symmetric dense matrix with l = m ·p, the total number
of vantage points at p ISPs, each running (up to) m vantage points internally. Y
can be represented as Y =

[
Y1|Y2| . . . |Yp

]
where each Yi (i = 1 . . . p) is an t×m

matrix supplied (i.e., owned) by ISP i and ‘|’ indicates column-wise concatenation.
Each column of matrix Yi corresponds to the traffic values collected by ISP i from
a specific vantage point and each row corresponds to the traffic values collected
over one time interval from all vantage points. The specific mechanism by which
Y is measured may be selected independently by the participants.

Given a t× l matrix Y distributed across p ISPs as described above, we wish
to privately compute the principal components of Y . The SEPs of the collaborat-
ing ISPs execute the following protocol to find the principal components of the
combined traffic matrix Y :

1. All ISPs jointly select two special parties, the Coordinator and the Keyholder.
The Coordinator collects encrypted data from all ISPs and all data is en-

4

crypted with the Keyholder’s public key using the Paillier homomorphic en-
cryption scheme [24] (described in Appendix A.1). The Coordinator uses the
Keyholder to perform computations on the encrypted data after blinding it.
In this way, neither the Coordinator nor the Keyholder are trusted with the
plaintext content of actual traffic data. We note that the Coordinator and the
Keyholder are unique for the entire protocol and are elected before each exe-
cution of the protocol. To minimize the threat of a compromised Coordinator,
the computation may be repeated by multiple Coordinators, with simple vot-
ing to resolve conflicts. Likewise, the Keyholder key may be replaced by one
generated in a distributed fashion by all the ISPs; queries to the Keyholder
could then be replaced by distributed encryption [12].

2. All ISPs execute the semi-centralized procedure P3CA (Algorithm 1) to obtain
the encrypted set of n principal components {Enc(xi)}ni=1 of the matrix Y .
n is chosen apriori and is typically between 5-8 [20, 21].

3. Each ISP i now uses these encrypted principal components to verify if its
traffic matrix Yi has any anomalies. This is done by calculating the resid-
ual traffic matrix Enc(Ri) = (I − Enc(P)Enc(P)T)Yi where Enc(P) =
[Enc(x1)|Enc(x2)| . . . |Enc(xn)]. Enc(Ri) is blinded by multiplying with a
random rotation matrix R (an orthogonal matrix) and a random number r
similar to the procedure described in Section 3.3, decrypted with the help of
the Keyholder and unblinded by multiplying it with RT (the inverse of R) and
dividing by r. ISP i then uses statistical methods like Q-statistic [18] over Ri
to detect the anomalies in its own network.

3 The P3CA Algorithm

In this section we present the Privacy Preserving PCA (P3CA) algorithm, which
enables multiple cooperating ISPs to calculate the principal components of their
combined traffic matrix without revealing their private values to others. We start
by describing the core P3CA algorithm (Section 3.1). We then describe three sub-
routines used in P3CA (Sections 3.2–3.4). We further give extensions to P3CA
to support incremental computation by leveraging previously-computed results to
speed up processing of incoming updates to the traffic matrix (Section 3.5).

3.1 P3CA Overview

P3CA computes the principal components of the traffic matrix Y distributed
across p parties (ISPs), with each party holding one or more columns of data.
This translates to the computation of the top n eigenvectors of the corresponding
covariance matrix Y Y T such that none of the participants learn any information
about the principal components of the matrix. However, calculating the entire
covariance matrix is fairly expensive, requiring O(l2t) operations. To reduce com-
putation overhead, P3CA uses a modified version of the power method (original
method described in Appendix A.2), reducing computational costs to O(lt), and

5

reducing communication costs from O(t2) to O(t). Algorithm 3 (pseudo-code given
in Appendix) provides a centralized version of our scheme for plaintext input.

Algorithm 1 presents P3CA, a semi-centralized privacy preserving version of
Algorithm 3 in which a set of p collaborating ISPs privately compute the top n
principal components of the t × l traffic matrix Y . For this, we introduce secure
linear algebra primitives later in this section which are used as building blocks.
These include efficient privacy preserving matrix-vector multiplication: MULR
and MULC (Section 3.2), privacy preserving vector normalization: VECNORM
(Section 3.3) and privacy preserving number comparison: INTCMP (Section 3.4).

Input: P is the set of ISPs contributing data including the Coordinator but
excluding the Keyholder and |P | = p. ISP i has its traffic matrix Yi

Output: Top n-eigenpairs of Y Y T namely encrypted principal component
matrix P = (Enc(x1), Enc(x2), . . . , Enc(xn)) and corresponding
eigenvalues λ1, . . . , λn are known to all ISPs

Notation:
1. A⇒ B : M denotes a network communication of M from party A to party B;
2. A⇐⇒ B : r = f(·) indicates that parties A and B compute f(·) in a multi-step
protocol ending with party A holding the result r.
3. In F () [[text]], text is the corresponding plain text equivalent of F ().
4. ⊕ and ⊗ denotes addition and multiplication on ciphertext as illustrated in
Appendix A.1
foreach Eigenpair (λq,xq) for q = 1, . . . , n to be calculated do

Coordinator: v = random vector() ; S ← t× t zeros matrix; δ ← Enc(1),
λq ← 0 ;
while INTCMP(Enc(δ),Enc(τ |λq|)) is TRUE [[While δ ≥ τ |λq|]] do

Coordinator ⇐⇒ Keyholder: Enc(v̂) = VECNORM (v) [[v̂ = v
||v||]];

∀i ∈ P Party i: Enc(v′i) = MULR(Y Ti∗ ,Enc(v̂i)) [[v′ = Y T v̂]];
∀i ∈ P Party i⇐⇒ Coordinator:
w = MULC (Enc(Y), [Enc(v′)1|Enc(v′)2| . . . |Enc(v′)p]) [[w = Y v′]];
Coordinator: Enc(v) = w − S ⊗ Enc(v̂) [[v = w − Sv̂]];

Coordinator ⇐⇒ Keyholder: Enc(λq) = MULC (Enc(v̂T),Enc(v))
[[λq = v̂Y v]];
Coordinator: Enc(δ) = v − Enc(v̂λq) [[δ = v − v̂λq]];

end
Coordinator: generates a random value a;
Coordinator ⇒ Keyholder: Enc(a′) = a⊗ Enc(λ) [[a′ = a+ λ]];
Keyholder ⇒ Coordinator: a′ (decryption);
Coordinator: λq = a′ − a, Enc(xq)=Enc(v) [[xq = v]] ;

S = S + λq ∗ (v̂T v̂) [[S = S + λq(v̂
T v̂)]] ;

end
Algorithm 1: P3CA: Privacy Preserving PCA

Handling fixed point computation and negative numbers: The inputs
in our traffic matrix Y are floating point numbers. To perform real arithmetic
over a finite field, we represent floating point numbers as fixed point numbers
by multiplying them by a fixed base. By ensuring that the modulus N is large

6

enough, we can obtain the necessary precision our application requires. Further, N
of the field used for encryption is chosen to prevent overflow: for a core router with
10Gbps bandwidth (235 values) and 5 minute time bins (27 values), a 42-bit key is
sufficient. We use 1024-bit keys in our implementation because this is necessary to
achieve an acceptable security level in Paillier encryption. In our experiments (see
Section 4), we use a base of 106. Negative numbers are represented by subtracting
them from the modulus; so −x is represented as N − x.
Security: The security of the P3CA algorithm results from the security of the
individual steps, as described in the following sections. Further, we use existing
methods to ensure that malicious inputs to P3CA do not affect the accuracy of
our method. The details of this are discussed in Appendix B.

3.2 Private matrix-vector multiplication

The P3CA algorithm performs computations, iteratively, on the combined traffic
matrix Y containing different columns belonging to different ISPs. All ISPs are
collectively required to first compute the product Y Y TEnc(v) where v holds the
current estimate of a principal component of Y . Since the matrix is distributed
across multiple ISPs , we require a scheme to securely multiply a matrix with a
vector, without leaking information about the contents of either the matrix or the
vector. We implement this step in a distributed fashion, with all the ISPs partic-
ipating. Private matrix-vector computation algorithms proposed in the past [19]
are designed for a two-party model and would be computationally inefficient due
to the fact that they require the entire matrix Y to be encrypted and assembled
at the Coordinator.

In P3CA, the matrix Y is column-wise distributed among the p ISPs . Cor-
respondingly, Y T is distributed row-wise. We, thus, perform the computation
Y Y TEnc(v) in two steps; first we compute v′ = Y Tv and then v = Y v′ These
steps are computed using the MULR and MULC primitives (described below)
which satisfy the following privacy goals:
Privacy goals: Given the vector Enc(v) and matrix Y , the MULR and MULC
protocols should ensure the privacy of the length (||v||) and direction of the vector
v and the length and direction of the columns of Y .
Matrix-vector multiplication with row ownership (MULR): Given the
l × t matrix Y T , we would like to calculate v′ = Y Tv. Each party owns one or
more rows Y Ti∗ of Y T and has access to Enc(v). This means that each party can
locally compute a part of Enc(v′) without having to exchange the values of Y Ti,∗
with others. To compute Y Tv, the ISP which owns the row Y Ti∗ of the matrix Y T

(corresponds to owning column i on matrix Y) computes encrypted value of the
ith element of v′ i.e. v′i, using Enc(v′i) = ((Enc(v1)⊗Y Ti1)⊕ . . .⊕ (Enc(vt)⊗Y Tit))
(Notation ⊕ and ⊗ given in Appendix A.1).
Matrix-vector multiplication with column ownership (MULC): Now
the second step of computing v = Y v′ uses the result of MULR. The party
which owns the ith column of matrix Y i.e. Y∗i also has access to Enc(v′i), the
ciphertext of the ith element of v′ from MULR. The party owning column i in Y

7

computes Enc(Y ′ji) = Enc(vi) ⊗ Yji for j = 1 . . . t, and forwards Enc(Y ′ji) to the
Coordinator. This step requires O(t) exponentiations and O(t) communication.
The Coordinator then computes the encrypted jth element (for j = 1 . . . t) of
the new estimate of v, i.e. Enc(vj) using Enc(vj) = Enc(Y ′j1) ⊕ . . . ⊕ Enc(Y ′jl)
which finally gives the ciphertext of the result of Y Y Tv. This step requires O(l)
multiplications and O(t) communication.
Security: Note that each party transmits values encrypted under the Keyholder’s
public key, and no party involved in this protocol has a copy of the secret key. The
Paillier encryption scheme is known to be CPA-secure [24]; thus these protocols
reveal no information about the vector or matrix in the honest-but-curious setting.

3.3 Private vector normalization

In P3CA computation, we have a vector v which is an estimate of the princi-
pal component of the traffic matrix Y . Part of the P3CA computation involves
normalizing v, which is done to speed up the convergence of the power method
in practice. Since different parts of v contain information from different ISPs,
we need some way to normalize the vector in a privacy-preserving way. We now
describe a technique to perform this efficiently.

Given an input vector v, the normalization of v is simply another vector v̂
in the same direction as v but of unit length (or norm). The Coordinator holds
the encryption of vector v, i.e. Enc(v) (as a result of MULC described above) to
be normalized while the Keyholder holds the corresponding decryption key. At
the end of the private vector normalization protocol VECNORM, the Coordinator
holds the encryption of the normalized vector Enc(v̂) whilst neither of them gains
any information about the input vector.
Privacy goals: Given input vector v, the VECNORM protocol ensures that
both length ||v|| of the vector and its direction are not revealed.
Vector normalization (VECNORM): In order to secure vector normal-
ization, the Coordinator rotates the encrypted input vector Enc(v) to hide its
direction and multiplies the result with an random integer to hide the length of
the vector. It then sends this modified vector to the Keyholder who decrypts it,
normalizes it and returns the result. The Coordinator then derives the normaliza-
tion of the input vector, Enc(v̂), using the Keyholder’s result. The protocol can
be summarized as follows:

1. Blinding direction: In this step, the Coordinator generates a t × t transfor-
mation matrix R that maps a given vector v to a randomly chosen vector
w on a c-dimensional sphere, Sc, of radius ||v||. Here c + 1 ≤ t is a security
parameter chosen such that the security of the scheme is the same as that of
the finite field used by the cryptosystem; i.e., |Sc| ≥ N . For i = 1 . . . (c + 1),
the Coordinator generates an orthogonal rotation matrix Ri using 3 parame-
ters: (θi, pi, qi), where (pi, qi) are selected from 1, . . . , t(t− 1)/2 uniformly at
random without replacement and θi is chosen uniformly at random from −π
to π. Ri can be represented as:

8

Ri =

266666666666664

col. pi col. qi

↓ ↓
1 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 0

row pi → 0 . . . cos(θi) . . . − sin(θi) . . . 0

.

.

.
. . .

.

.

.
row qi → . . . sin(θi) . . . cos(θi) . . . 0

0 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 1

377777777777775
The Coordinator then multiplies all the Ri’s to obtain a single transformation
matrix R using R = Rc+1∗Rc∗. . .∗R1. and applies the rotation transformation
R on Enc(v) to get Enc(vrot) = Enc(v)⊗R.

2. Blinding length: the Coordinator generates a random blinding factor r and
computes Enc(v′rot) = Enc(vrot) ⊗ r to blind the length ||v|| of the vector
v. Note that both blinding and rotation are required so that no information
about v is leaked.

3. The Coordinator sends Enc(v′rot) to the Keyholder. The Keyholder then de-
crypts Enc(v′rot) to obtain v′rot , computes v̂′rot = v′

rot

||v′
rot ||

and sends Enc(v̂′rot)
to the Coordinator.

4. The Coordinator obtains the normalization of v by applying the inverse of the
earlier transformation: Enc(v̂) = Enc(v̂′rot)⊗RT to obtain the normalization
of v. RT is the inverse of R as it is an orthogonal matrix.

Security: The two blinding steps serve to hide the value of the original vector.
Due to the fixed-point representation of the vector values, this hiding is imper-
fect, as we select a random discretized rotation matrix, rather than a random
rotation matrix in general. We have tried to estimate how much uncertainty the
Keyholder has about the original vector, given the blinded one. In other words,
we computed the conditional entropy H(O|B), where O and B are random vari-
ables that represent the original and blinded vector, respectively. To do this, we
performed an exhaustive search of the state space, enumerating all possibilities
for random choices of rotation matrices and the blinding factor. Of course, we
were only able to do this for very small parameter sizes: 2-dimensional vectors
and 3- and 4-bit fixed-point representation. Even in this situation, we found that
there was between 4 and 5.5 bits of uncertainty, depending on the fixed-point size
(out of a total 6–8 bits). Extrapolating from this (albeit limited) data set, we
expect that for larger fixed-point sizes, it is possible to introduce 10–15 bits of
uncertainty per vector.

This estimate is an information-theoretic upper bound on the success of a pos-
sible attack; a computationally bounded adversary would not be able to perform
such a brute-force state exploration. A successful attack would have to exploit
some algebraic structure of the integers used to represent the fixed-point num-
bers; we leave the exploration of such attacks to future work and recommend that
conservative parameters (i.e., large fixed-point bases with randomized lower bits)
be used in practice.

9

3.4 Private number comparison

P3CA uses an iterative process (the while loop in Algorithm 1) to determine each
eigenvector of Y Y T . In particular, an initial estimate vi of the eigenvector xi is
chosen, it is checked to see if δi = Y vi − λivi is within a threshold, τ times the
correct eigenvalue λi and if not the loop is repeated. Since the contents of Y and
hence δi are private, we need some way to securely compare ||δi|| and τλi without
revealing their contents. Since the L2 norm is difficult to compute for encrypted
vectors, we approximate it by using the L∞ norm. To see if ||δi||∞ is less than
τλi, the Coordinator executes the INTCMP protocol to see if |(δi)j | > τλi for
any j; if so, the power method is continued for another round.

Given encrypted real numbers Enc(a) and Enc(b), INTCMP allows the holder
of these encryptions to learn if a > b using the Keyholder. The Coordinator learns
if a > b and nothing more while the Keyholder learns nothing. The protocol can
be summarized as follows:

1. The Coordinator knows Enc(a) and Enc(b). It picks a random r1 while en-
suring that ar1, br1 < 21024.

2. The Coordinator sends Enc((a − b) ∗ r1) to the Keyholder. The Keyholder
returns “>” if the decrypted value is > 0, “≤” otherwise.

Note that to compute whether |a| > b, we must first run INTCMP to see
if a < 0 and then compute a > b or (−a) > b depending on the answer. To
ensure privacy from the Keyholder, the Coordinator should randomly swap a and
b during the INTCMP protocol.
Security: As in the previous protocol, blinding does not provide perfect hiding;
in particular, if the Keyholder can estimate the maximum values for a − b, and
r1, he can learn some information when the values are in fact close to the limit.
However, we can pick r1 from a very large range (e.g., [1, 2500]), thus reducing the
chance that we will pick values close to the maximum. Note that the semi-honest
model is essential for security in this step, as otherwise the Coordinator could
decrypt an arbitrary number by performing a binary search with INTCMP [26].

3.5 Incremental Private PCA Computation

So far, the P3CA algorithm we discussed requires the entire set of inputs from all
the parties to be available before finding the principal components of the input
dataset (Y). However in the context of ISPs jointly computing PCA, an anomaly
detection system needs to function as new traffic data arrives. To further reduce
computation overhead, we describe how to modify our approach to enable the
result to be incrementally updated rather than performing the entire computation
from scratch when new information arrives. This allows principal components to
be incrementally derived for a long stream of incoming network traffic, thereby
speeding up their computation.

Several techniques have been proposed in the image processing literature to
address this requirement. Our scheme for incremental private PCA computation is

10

based on the popular and rigorously analyzed CCIPCA [32] (Candid Covariance-
free Incremental PCA) algorithm, which provides an iterative method for updat-
ing the principal components when new data arrives. In Algorithm 2, we extend
CCIPCA to privately compute the principal components of the traffic matrix of p
cooperating ISPs. Consider the traffic matrix Y for time intervals 1, . . . , t−1 con-
taining rows u1, . . . ,ut−1 (recall each ui is distributed across ISPs). Now suppose
a new traffic vector ut is generated for time interval t. The new eigenpair for this
modified traffic matrix (with ut included) is estimated as: xt = 1

t

∑t−1
i=1 uiu

T
i xi.

The idea is to update Y with a covariance matrix estimate using the new dis-
tributed vector ut and xi−1 is set as xi which is the eigenvector estimate ob-
tained using the P3CA method. Note that the entire covariance matrix is not
recalculated from scratch.

Input: Eigenpairs (λ1,x1) . . . (λn,xn)) over traffic vectors u1 . . .ut−1, and ui,t;
P be the set of collaborating ISPs

Output: Top n-eigenpairs of traffic vectors u1 . . .ut namely
(λ1,x1), . . . , (λk,xn) are known to all ISPs

foreach eigenvector required i = 1, 2, . . . , n do
foreach p ∈ P do

uip,t = up,t;

Party p⇒ party q ∈ P \ p: Enc(uip,t);
Enc(ap) = (Enc(uip,t)⊗ Enc(ui1,t), . . . , Enc(uip,t)⊗ Enc(ui|P |,t));
Enc(bp) = (t−1−l)

t
∗ (λixi) + Enc(ap)⊗ 1+l

n
λixi
||λixi||

;

// except ap all other inputs are plaintext and known to all ISPs
end
Party p⇒ party q ∈ P \ p: Enc(bp);
up,t = up,t−1 − up,t−1 ⊗VECNORM (b)p ;
//Remove any component in the direction of the new eigenvector to ensure
orthogonality of eigenvectors

end
Algorithm 2: Incremental P3CA extensions

4 Evaluation

Our design enables ISPs to collaborate to detect anomalies. However, our design
also comes at some cost. First, it incurs additional computation overhead since
it requires encryption and multi-round exchanges between nodes. Second, the use
of fixed point operations in our design can lead to a loss of precision resulting in
the calculation of principal components that are potentially different compared
to those calculated by PCA. To quantify the affect of these, we evaluate the
computational overhead of our design (Section 4.1) and compare the detection
probability using PCA with that using our algorithm (Section 4.2).

To measure these costs, we constructed an implementation of our design. Our
design is implemented in roughly 1000 lines of C++. We use the GMP library

11

for large numbers (bignums), OpenMP library for parallelization and the libpail-
lier library for the Paillier cryptosystem [1]. All encryptions use a 1024-bit key.
To evaluate performance over realistic workloads, we leveraged traces from the
Abilene Internet2 IP backbone [2]. In particular, we used NetFlow traces to de-
termine traffic volumes between source/destination IP addresses, and used OSPF
and BGP traces to map the flows onto the underlying physical topology.

4.1 Scalability

To evaluate the computational overhead of P3CA, we measured the amount of
time it takes for our implementation to finish running on its input data set. To
characterize performance, we would ideally like to run our design on varying net-
work topology sizes. However, due to the privacy of traffic information, acquiring
traces from a number of different-sized ISPs represents a substantial challenge.
Hence, to study scalability for different network sizes, we extrapolated a traf-
fic model from the Abilene dataset and used that to construct synthetic traces
for larger networks. Extrapolation of traffic traces is itself a challenging research
problem and beyond the scope of this paper. We use a fairly simple extrapolation
procedure: we generate a random network topology, randomly select flows con-
tained in the Abilene data set, and map their ingress/egress to random pairs of
routers contained in the generated topology. We then take this graph and divide
it up into a set of ten constituent ISPs. We do this by picking ten random points
in the graph, and performing breadth-first search to select nearby regions to form
the ISP (repeating this process until ten connected ISPs are created).

Table 1a shows run time of a single run of our algorithm as a function of topol-
ogy size, where we vary (i) the total number of monitored links in all ISPs (l), and
(ii) the total number of time bins (each lasting 10 minutes) used for traffic history
when computing principal components (t). These experiments were performed on
an 3.07GHz Intel Core i7 processor with 6GB memory. As a comparison, we note
that large networks only monitor a subset of links (e.g.,the tier-1 ISP network
used for PCA in [21] had l = 41, as monitoring a subset of core links is suffi-
cient to observe most traffic in the network) and t is often set to small values
to speed reaction and adapt to recent changes. Table 1b shows the run time for
incrementally refreshing current PCA results with new traffic observations using
Algorithm 2.

We find that P3CA requires only a few minutes to run, even for relatively
large numbers of monitored links. P3CA requires only around 10 minutes to pro-
cess data for 320 minutes, making it an efficient online algorithm for anomaly
detection. Further, the advantages of using incremental P3CA are clearly evident
(as seen in Table 1b): incremental updates are processed within 6 seconds even
for large networks with a total of 320 links for a data spanning 320 minutes.
This makes incremental P3CA as efficient as PCA on raw data. To investigate
the source of computational bottlenecks, we instrumented our code with timing
functions to collect the microbenchmarks shown in Table 2a. Our design can be
trivially parallelized across a cluster of machines or CPU cores to further re-
duce overhead, as shown in Table 2b. While the Coordinator requires additional

12

computation, this additional work may be distributed across several machines to
accelerate computation and improve resilience.

l t Party i (secs) Coordinator (secs)

20 2 0.525 2.183
40 4 1.376 6.472
80 8 3.529 14.134

160 16 52.999 194.175
320 32 194.126 637.649

(a) P3CA

l t time (secs)

20 2 3.56
40 4 3.72
80 8 4.03

160 16 4.66
320 32 5.91

(b) Incremental P3CA

Table 1: Performance and scalability of original and incremental P3CA with increasing
of links l and # of bins t for 5 eigenpairs on 4 processors;

Percent of time Operation

39.6% multiplying cipher and plain texts
36.6% adding cipher texts
18.2% decryption

16.5% private vector normalization
82.5% private matrix-vector multiplication

and subtractions

(a) Microbenchmarks. The first three and the last two
rows represent two different breakdown of operations.

l t r Party i (secs) Coordinator (secs)

320 32 8 194.1 637.6 (10m 37s)
640 64 8 6649.6 20823.4 (5h 47m)
320 32 32 48.5 151.4 (2m 31s)
640 64 32 1662.4 5205.8 (1h 27m)
320 32 64 24.2 75.7
640 64 64 881.2 2602.9 (43m 22s)

(b) Performance of P3CA with increasing
numbers of processors r for l links, t bins

Table 2: Microbenchmarks and evaluation of parallelization of P3CA for 5 eigenvectors

4.2 Precision

The performance of PCA algorithms in general has been widely evaluated in
previous work. Our approach performs essentially the same computation as PCA,
but might potentially lose some precision due to the use of fixed point numbers.
We note that some implementations of PCA intentionally round to filter minor
traffic fluctuations. To evaluate how the precision of our algorithm affects the
results, we must use a more realistic topology and traffic information. We use
the real Abilene dataset and topology here (but do not investigate sensitivity to
network size), and run PCA and P3CA to detect traffic volume anomalies. To
investigate sensitivity to anomaly type, we also inject synthetic anomalies with
different characteristics. To do this, we randomly choose time bins, and insert a
constant amount of extra traffic on a randomly chosen subset of 1 to 5 links.

We ran the experiment 100 times with different random seeds, for two different
kinds of injected anomalies: small corresponds to the case in which the volume of
the injected anomalies is twice the volume of the background traffic on the link,
and large corresponds to the case in which the anomalies have a volume which is
ten times larger than the background traffic in the link. We use the Q-statistic
test [18] for detecting abnormal variations in the traffic at a 99.9% confidence
level. Figure 2 plots the CDF of the anomaly detection percentage of PCA and

13

P3CA. The cumulative fraction is over the multiple runs we performed. We find
that in every run, P3CA and PCA computed nearly the same result (detected the
same set of anomalies).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

F
ra

ct
io

n

Percentage of Anomalies Detected

PCA(small)
P3CA(small)

PCA(large)
P3CA(large)

Fig. 2: Comparison in precision between PCA and P3CA

5 Related Work

To our knowledge, our work is the first attempt to perform scalable privacy-
preserving traffic anomaly detection. Our work builds upon two key areas of pre-
vious results:
Anomaly detection in ISP networks: Given the increasing severity of DoS,
scanning, and other malicious traffic, traffic anomaly detection in large networks
is gaining increased attention. Lakhina et. al. [20, 21] showed that PCA has much
potential in uncovering anomalies by leveraging traffic matrices constructed using
summarizations of traffic feature distributions. While there are alternatives to
PCA (for e.g., [35]), PCA-based approaches remain a state-of-the-art technique
due to its robustness to noise and high efficiency on limited data. Extensions to
PCA make it robust to attacks such as variance-injection [33], and enable PCA
to be used for other goals, such as diagnosing network disruptions [17].

Further, accuracy of anomaly detection is improved with more visibility of
traffic. If ISPs cooperated to share data, accuracy of anomaly detection could
be substantially improved. Soule et. al. [30] show that by jointly analyzing the
data of peering ISPs more anomalies were detected, especially those anomalies
that transited the two ISPs they studied. However, traditional anomaly detection
requires sharing of detailed traffic traces, which are considered highly private
by network providers. Our work extends PCA to multiple parties, preserving the
privacy of participants’ data. By extending PCA, our approach computes the same
result as this well-proven technique, retains the desirable properties mentioned
above and enables more widespread cooperation of ISPs to counter the increasing
threat of malicious traffic.

14

Secure multiparty computation: Secure multiparty computation (SMC) tech-
niques allow a collection of participants to compute a public function F without
revealing their private inputs to F . Generic SMC techniques date back to Yao [34]
and Goldreich et. al. [15] and have been well studied in cryptography literature [6,
16]. Recent years have seen some improvements in efficiency [11, 7]. However from
the viewpoint of the systems designer, the generic schemes are only of theoretical
interest. For the scale of computation required for mining anomalies in Internet
traffic, privacy and security must be added with manageable costs. Developing a
practical, scalable way of computing PCA in a privacy-preserving way is the main
focus of our work.

P4P [13] presents a generic scheme for private computation of statistical func-
tions that can be represented as an iterated matrix-vector product. When used
to compute PCA, the privacy goal of P4P and several other schemes is to reveal
no more information apart from the principal components themselves. However,
given the eigenvectors and eigenvalues of a matrix it is possible to reconstruct the
matrix itself. When used by ISPs, this scheme would reveal the eigenvectors of
Y TY but not Y Y T for traffic matrix Y . In the context of the concrete problem of
anomaly detection, this does not constitute privacy preservation at all since Y TY
can be reconstituted to a close approximation from its eigenvectors and eigenval-
ues (end result of the P4P scheme section 6 of [13]). Y TY can then be used to
infer Y (the input distributed matrix) which is supposed to be private. This can
be done as follows: suppose Yij (traffic volume) is a real number between 1 and
N . Yij is the dot product of columns Y∗i and Y∗j . When the elements of column
Y∗i and Y∗j are close to N then Y TYij will be close to maximal. Similarly, close to
minimal values in Y∗i and Y∗j leads to a close to minimal Y TYij . Therefore Y TYij
can be used to construct Y to a close approximation. In contrast with P4P, our
scheme presents an advancement in that we only reveal the variance of a projected
traffic data point Y∗j , namely ||PRi||2 where P the eigenvector matrix of Y Y T

itself is never revealed.

6 Conclusions

The increasingly distributed nature of malicious attacks renders their identifica-
tion and localization a difficult task. The ability to identify traffic anomalies across
multiple ISPs could be a significant step forward towards this goal. P3CA repre-
sents an important step, by allowing a set of ISPs to collectively identify anoma-
lous traffic while limiting information propagation across them. P3CA scales to
large and high-bandwidth networks addressing the need for refreshing current
results with fresh traffic observations, yet retains the accuracy and precision of
PCA-based approaches. We envision our work as an important step towards en-
abling larger-scale cooperation across ISPs to counter the increasingly serious
threats posed by modern networked malware.

References

1. http://acsc.cs.utexas.edu/libpaillier/.

15

2. http://www.internet2.edu/network/.
3. A Border Gateway Protocol 4 (BGP-4). RFC 4271.
4. Private communication, employee of tier-1 ISP. 2006.
5. G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the kth-ranked

element. In Eurocyrpt, 2004.
6. D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In

CRYPTO, 1989.
7. Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and

secure multi-party computations over small fields. In CRYPTO, 2006.
8. B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954, October

2004.
9. C. Croux, P. Filzmoser, and M. Oliveira. Algorithms for projection-pursuit robust

principal component analysis. In Chemometrics and Intelligent Laboratory Systems,
2007.

10. C. Croux and G. Haesbroeck. Principal component analysis based on robust esti-
mators of the covariance or correlation matrix: Influence functions and efficiencies.
In BIOMETRIKA, 2000.

11. I. Damgard, Y. Ishai, M. Kroigaard, J. Nielsen, and A. Smith. Scalable multiparty
computation with nearly optimal work and resilience. In CRYPTO, 2008.

12. I. Damgard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Public Key Cryptography. Springer,
2001.

13. Y. Duan, N. Youdao, J. Canny, and J. Zhan. P4P: Practical large-scale privacy-
preserving distributed computation robust against malicious users.

14. O. Goldreich. Secure multi-party computation. Theory of Cryptography Library,
1999. http://philby.ucsb.edu/cryptolib/BOOKS.

15. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In ACM
Symposium on Theory of Computing, 1987.

16. S. Goldwasser and L. Levin. Fair computation of general functions in presence of
immoral majority. In CRYPTO, 1991.

17. Y. Huang, N. Feamster, A. Lakhina, and J. Xu. Diagnosing network disruptions
with network-wide analysis. In SIGMETRICS, 2007.

18. J. Edward Jackson and Govind S. Mudholkar. Control procedures for residuals
associated with principal component analysis. Technometrics, 21:341–349, August
1979.

19. E. Kiltz, P. Mohassel, E. Weinreb, and M. Franklin. Secure linear algebra using
linearly recurrent sequences. In TCC, 2007.

20. A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies.
In ACM SIGCOMM, pages 219–230, 2004.

21. A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distri-
butions. In ACM SIGCOMM, pages 217–228, 2005.

22. R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly restarted
arnoldi iteration. In SIAM J. Matrix Anal. Appl., 1996.

23. Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving
data mining. 2008. http://eprint.iacr.org/.

24. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, pages 223–238, 1999.

25. H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sensitivity of pca for traffic anomaly
detection. In SIGMETRICS, June 2007.

26. R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, 1978.

16

27. B. Rubenstein, B. Nelson, L. Huang, A. Joseph, S. Lau, S. Rao, N. Taft, and D. Ty-
gar. Antidote: Understanding and defending against poisoning of anomaly detectors.
In IMC, November 2009.

28. Fernando Silveira and Christophe Diot. Urca: pulling out anomalies by their root
causes. In INFOCOM, March 2010.

29. Gerard L. G. Sleijpen and Henk A. Van der Vorst. A jacobi–davidson iteration
method for linear eigenvalue problems. In SIAM Rev., 2000.

30. A. Soule, H. Ringberg, F. Silveira, J. Rexford, and C. Diot. Detectability of traffic
anomalies in two adjacent networks. 2007.

31. R. Vasudevan, Z. Mao, O. Spatscheck, and J. Van der Merwe. Reval: A tool for
real-time evaluation of DDoS mitigation strategies. In USENIX ATC, 2006.

32. J. Weng, Y. Zhang, and W. Hwang. Candid covariance-free incremental principal
component analysis. In IEEE Trans. on Pattern Analysis and Machine Intelligence,
2003.

33. W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Detecting large-scale system
problems by mining console logs. In SOSP, 2009.

34. A. Yao. Protocols for secure computations (extended abstract). In FOCS, 1982.
35. Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan. Network animography. In IMC,

2005.

A Appendix: Background

In this section, we describe two existing techniques we build upon in our design:
homomorphic encryption and the power method.

A.1 Homomorphic Encryption

A homomorphic cryptosystem allows operations to be performed on plaintext by
performing a corresponding operation on its ciphertext. In our scheme participants
only have access to the encrypted data of others. They can perform computations
over it without knowing its unencrypted value hence protecting the privacy of the
party supplying the data. To protect privacy, we use the Paillier encryption [24] to
perform computation on encrypted values. We now briefly describe the operation
of the Paillier cryptosystem. The original cryptosystem is defined over scalars,
but we present its natural extension to encrypted vectors. (They can be readily
extended to handle matrices).

Given a public key (N, g) produced by a key-generation algorithm, a random
number r ∈ ZN and a k-dimensional vector u = (u1, . . . , uk) ∈ ZkN , its encryption,
Enc(u), is given by: Enc(u) = (gu1rN mod N2, . . . , gukrN mod N2)

Suppose we are given two vectors u = (u1, . . . , uk) and v = (v1, . . . , vk) in ZkN .
The Paillier encryption scheme provides us the two following properties which we
use to perform various arithmetic operations on ciphertexts in P3CA:

1. We can compute the encrypted value of the sum of u and v by multiplying
their corresponding ciphertexts: Enc(u+ v) = Enc(u) ⊕ Enc(v) = (Enc(u1) ∗
Enc(v1) mod N2, . . . , Enc(uk) ∗ Enc(vk) mod N2)

2. We can compute of the encrypted value of the product u and v by multiply
the ciphertext of u i.e. Enc(u) and the plain text value of v: Enc(u ∗ v) =
Enc(u)⊗ v = (Enc(u1)v1 mod N2, . . . , Enc(uk)vk mod N2)

17

A.2 The Power Method

To use principal component analysis, we are required to find the n largest prin-
cipal components of the traffic matrix Y . This translates to finding the n largest
eigenpairs of its covariance matrix COV = Y Y T . The power method [29] is one of
the appropriate candidate techniques when n is much smaller than the rank (sum
total of traffic observations) of the covariance matrix. Indeed, previous studies [20,
21] indicate that five to eight principal components capture most of the variance
within ISP traffic. Based on this, we believe that the power-method is the most
appropriate technique for PCA, which we briefly describe below. To calculate the
principal components of Y , we replace Y by COV in the following.

The power method first computes the dominant eigenvector, x1, of a matrix
Y by simply choosing a random vector v1

0 ∈ Rl and iteratively multiplying v1
0 by

powers of Y until the resulting vector converges to x1. This is ensured as long as
the starting vector v0 has a non-zero component along x1. A single iteration is
given by:

v1
j =

Y v1
j−1

||Y v1
j−1||

; j = j + 1 (1)

This process is repeated until j = s, the smallest value for which ||Y v1
j − v1

jλ1|| ≤

τ |λ1|. The corresponding eigenvalue is computed using λ1 = v1s
T
Y v1s

v1s
T v1s

.
To obtain the next largest eigenvector the power method uses a well known

deflation technique [22]. Once the ith eigenpair (xi, λi) (xi is the ith eigenvector
and λi is the ith eigenvalue) is computed, a transformation is applied on the
matrix Y to move λi to the center of the eigenspectrum. To compute the i+ 1th

largest eigenvector the power method applies the following transformation on Yi,
where Yi is the matrix used for computing the ith dominant eigenvector of Y :
Yi+1 = Yi − λi xix

T
i

xT
i xi

with Y1 = Y .
This process is repeated until n eigenpairs have been found. The parameter

n need not be decided beforehand. Instead, n is simply specified in terms of the
smallest eigenvalue of the eigenpair we are interested in. Upon uncovering eigen-
pair (λi, xi), if λi ≤ ε, the eigenpair is discarded and the algorithm terminates. ε
can be interpreted as the accuracy required for representing column vectors of Y
as a linear combination of its eigenvectors.

B Handling malicious inputs

PCA is an excellent example of how machine learning techniques can assist in
anomaly detection. However in its basic form it is fairly vulnerable in that a small
fraction of false inputs can significantly change the final result. To address this
problem, Croux published a series of papers [10, 9] showing that PCA could be
made more robust by centering input data over the median instead of the mean.
In ANTIDOTE [27], Rubenstein et al. study the malice resistance modifications
proposed by Croux in the context of anomaly detection in AS networks. They
show that the modifications are of significant help in defending against malicious

18

Input: t× l matrix Y ; τ , the convergence parameter
Output: Top n-eigenpairs of Y Y T namely (λ1,x1), . . . , (λn,xn)
foreach Eigenpair (λq≤n,xq≤n) to be calculated do

δ ← 1; v ← random vector(); S ← t× t zeros; λq ← 0;
while δ ≥ τ |λq| do

v̂ = v
||v|| ;

v′ = Y T v̂;
w = Y v′ ;
v = w − Sv̂;

λq = v̂T v;
δ = v − v̂λq;

end
xq = v;

S = S + λq(v̂
T v̂);

end

Algorithm 3: Algorithm for computing principal components of a matrix

inputs that could, for instance, enable a participant to hide the presence of a
DDoS attack.

P3CA readily supports the modifications proposed by Croux and verified by
Rubenstein et al. In particular, along with the primitives we discussed above, we
need a privacy-preserving method of computing the median over the entire dataset
and centering the data over the median. This requirement is met by the scheme of
Aggarwal et al. [5] which computes the median of a distributed dataset among N
parties in the honest-but-curious threat model. Its complexity is O(N(logM)2)
where logM is the number of bits needed to describe each (unencrypted) scalar
input.

19

