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Abstract. In this work, we demonstrate the practicality of people tracking by

means of physical-layer fingerprints of RFID tags that they carry. We build a

portable low-cost USRP-based RFID fingerprinter and we show, over a set of

210 EPC C1G2 tags, that this fingerprinter enables reliable identification of in-

dividual tags from varying distances and across different tag placements (wallet,

shopping bag, etc.). We further investigate the use of this setup for clandestine

people tracking in an example Shopping Mall scenario and show that in this sce-

nario the mobility traces of people can be reconstructed with a high accuracy.
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1 Introduction

Radio Frequency IDentification (RFID) technology has raised a number of privacy

concerns in many different applications, especially when considering consumer pri-

vacy [17]. A person carrying several tags – attached to various objects like books, pass-

ports, medicines, medical devices, and clothes – can be subject to clandestine tracking

by any reader in the read range of those tags; it has been shown that the read range of

RFID tags can be extended up to 50 m [19]. Even if some objects are only temporarily

with a person (e.g., a shopping bag), they will enable tracking of a person’s behavior

for shorter periods (e.g., during a morning or during a visit to a shopping mall). Other

objects, such as wallets, personal bags, and medical devices will be frequently or perma-

nently carried by people, thus allowing people being tracked over wider time periods.

Solutions that prevent a (clandestine) reader to communicate with tags were pro-

posed on a logical level, and typically rely on the use of pseudonyms and access con-

trol mechanisms [1, 4, 8, 9, 20, 31]. Although effective on the logical level, these solu-

tions do not prevent physical-layer identification of RFID tags. A number of features

have been identified that allow physical-layer identification of RFID tags of differ-

ent manufacturers, but also of individual RFID tags from the same manufacturer and

model [6,21–23,27,28,34]. So far, physical-layer identification has been demonstrated

in laboratory conditions, using high-sampling oscilloscopes and low-noise peripherals.

This equipment can be costly and is rather impractical for real world tracking.

In this work, we present a low-cost, USRP-based RFID fingerprinter and show that

physical-layer fingerprinting of RFID tags is feasible even with this portable setup. For

tag identification, we use timing features that rely on the extraction of tags backscat-

ter frequencies [23, 34]. We tested our setup on a tag population composed of 210



EPC class-1 generation-2 (C1G2) RFID tags [11] of 12 different models and 3 man-

ufacturers. EPC C1G2 tags are the de facto standard passive UHF tags and the most

present in the current market. Our results show that this setup and features enable re-

liable identification of individual tags from varying distances and across different tag

placements (wallet, jacket, shopping bag, backpack). The used feature allows the ex-

traction of ⌊25.4⌋ RFID tag fingerprints independently of the population size (i.e., this

feature results in approx. 5.4 bits of entropy). Since people will typically carry several

tags, this will allow the creation of a large number of composite fingerprints, thus en-

abling, in a number of scenarios, highly precise people tracking (e.g., a set of 5 tags

provides approx. 22 bits of entropy).

We investigate the use of our setup for clandestine people tracking in an example

Shopping Mall scenario and show that in this scenario the mobility traces of people can

be reconstructed with a high accuracy.

Although solutions that prevent a (clandestine) reader to communicate with tags at

the physical layer exist (e.g., tag kill and sleep functions, Faraday cages, active jammers,

and “clipped” tags [18]), the provided privacy comes at the price of tag functionality

(e.g., the kill function permanently disables tags and therefore possible after-sales ser-

vices or long-term deployments) or requires additional efforts (e.g., user interaction or

extra hardware) that could make those solutions impractical and unattractive.

Therefore, the proposed setup and feature break people’s privacy by enabling the

tracking and mobility trace reconstruction of people carrying RFID tags. This privacy

breach occurs disregarding of the RFID tag content (e.g., serial number) and with no

need for interpreting the information transmitted by the RFID tags (which could be pro-

tected, e.g., encrypted, by logical-level mechanisms). People’s privacy could be further

compromised by means of side-channel information (e.g., a priori knowledge about tar-

get people) that builds the associations between tag fingerprints and objects to which

they are attached, and between composite fingerprints and people’s identities.

The rest of this paper is organized as follows. In Section 2, we define the people

tracking scenario and our problem statement. In Section 3, we introduce the consid-

ered RFID tag population and physical-layer identification technique. In Section 4, we

present our low-cost RFID fingerprinter, while in Section 5 we detail the performed ex-

periments and summarize the collected data. We present the evaluation results in terms

of tag distinguishability and fingerprint stability of our fingerprinter in Section 6, while

we discuss their implications on tag holders’ privacy in Section 7. We make an overview

of background and related work in Section 8 and conclude the paper in Section 9.

2 Scenario and Problem Statement

In our study, we consider a scenario in which an attacker aims at tracking people

carrying several passive UHF RFID tags over a limited period of time and within a

bounded area (e.g., a mall). We assume that the attacker has the ability to position sev-

eral physical-layer identification devices, i.e., fingerprinters, at strategic locations in the

considered area. A fingerprinter profiles a person by (i) collecting RF signals from the

set of tags assumed to be on a person, (ii) extracting the fingerprints for each tag in the

set based on specific RF signal characteristics, or features, and finally, (iii) creating a



profile, which is the collection of all tag fingerprints for the considered set of tags. The

created profiles are then used for people tracking, which can reveal information about

people’s behavior (e.g., people are likely to visit shop A after they have visited shop B).

A number of works considered the threat of RFID-based tracking real [1,8,9,17,20];

however, some reservations still remain as to whether tracking is practical or confined

only to laboratory environments. In this work we investigate how feasible and practical

is RFID-based tracking in real-world scenarios. We consider that tracking will be prac-

tical if people’s profiles (i.e., RFID fingerprints) can be reliably extracted in dynamic

settings (i.e., when tags are on people, in wallets, bags, pockets, and when people are

moving), if the fingerprinters can be built as compact, possibly low-cost devices, and

if the profiles allow people’s traces to be reconstructed with high accuracy. In the rest

of the paper we will show that with the proposed fingerprinter setup and with the used

features these three conditions are fulfilled.

3 RFID Tags, Signal Features and Tag Fingerprints

In our work, we evaluate the feasibility of people tracking by using our low-cost fin-

gerprinter (Section 4) on a tag population composed of 210 EPC class-1 generation-2

(C1G2) RFID tags [11] of 12 different models and 3 manufacturers. EPC C1G2 tags

are the de facto standard passive UHF tags and the most present in the current market.

Those tags are mainly conceived for item- and pallet-level barcode replacement, which

(especially for item-level tagging) makes them pervasive into everyday life.

3.1 EPC C1G2 Background

The communication between RFID readers and tags is half-duplex. A reader trans-

mits commands and data to a tag by modulating an RF signal. The tag replies using a

backscattered signal modulated by modifying the reflection coefficient of its antenna.

Readers use pulse-interval encoding (PIE) and phase-reversal amplitude shift keying

(PR-ASK) modulation to transmit data and commands to tags. Tags backscatter infor-

mation by modulating an RF signal using ASK and/or PSK modulation and either FM0

baseband or Miller modulation as data encoding. The frequency range of RF signals is

defined from 860 to 960MHz. Readers transmit data at a maximum rate between 40 and

160 kbps. The tag backscatter link frequency (BLF, i.e., the tag data rate) is selected by

the readers; the EPC C1G2 specification defines a BLF range between 40 and 640 kHz.

The communication sequence between a reader and a tag during the tag inventory-

ing process with no collisions is shown in Figure 1. The reader challenges the tag with

a set of commands to select a particular tag population (Select), to initiate an inventory

round (Query), and to request the transmission of the tag’s identification (EPC) number

(Ack). The tag replies first with an RN16 packet1 (after the reader’s Query) and then

with an EPC packet (after the reader’s Ack) containing the identification number.

1 RN16 packets are sent as a part of the anti-collision protocol used during tag inventorying.



Fig. 1. EPC tag inventory sequence. P, FS, and CW stand for preamble, frame-sync, and continu-

ous wave respectively.

3.2 Signal Features and Tag Fingerprints

Physical-layer device identification relies on random hardware impairments in the ana-

log circuitry components introduced at the manufacturing process. Those impairments

then manifest in the transmitted signals making them measurable.

To facilitate the adoption of RFID tags on a large-scale, tag manufacturers tend to

optimize both the tag manufacturing process and the size of tag embedded integrated

circuits in a effort to reduce the overall tag cost. Although the RFID tag market has been

growing in the past years, high-speed processes and low-complexity integrated circuits

may increase the possibility of finding tags’ internal components affected by hardware

impairments, as well as of finding impairments which create measurable and substantial

differences between tags.

In our study, we consider random hardware impairments in the tags’ local oscilla-

tor. According to the EPC C1G2 specification, the backscatter link frequency (BLF) at

which tags communicate is defined within a range between 40 and 640 kHz with a fre-

quency tolerance between ±4% and ±22% depending on the selected BLF. As shown

by Periaswamy et al. [23] and Zanetti et al. [34], the relatively large BLF tolerances

allowed by the EPC specification can represent a distinguishing factor between dif-

ferent tags of the same model and manufacturer. Additionally, it has been shown [34]

that the BLF is not affected by the tag-reader distance and mutual position; this can

allow tag distinguishability disregarding tags’ location and position. Therefore, the sig-

nal feature we consider for tag identification is the backscatter link frequency at which

each tag transmits data. We extract this signal feature from the fixed preamble of the

RN16 packets sent by tags during tag inventorying. This is done not to introduce any

data-dependent bias in our evaluation, since the RN16 preamble is fixed for all tags.

Tag fingerprints are built from N acquired RN16 preambles, i.e., a tag fingerprint is

a one-dimensional value corresponding to the average BLF over N RN16 preambles

collected for a certain tag.

4 Low-Cost RFID Fingerprinter

In our study, we build and deploy a compact and low-cost fingerprinter that challenges

tags to initiate an EPC C1G2 inventory round, collects tags’ responses, i.e., RN16 pack-

ets, and builds tag fingerprints based on the backscatter link frequency (BLF) that it



extracts from the RN16 preambles. Our fingerprinter is composed of a Universal Soft-

ware Radio Peripheral 2 (USRP2) platform and an RFX900 daughterboard by Ettus

Research [2], as well as of a host PC providing signal processing through the GNU Ra-

dio toolkit [3]. The block diagram of our low-cost fingerprinter is shown in Figure 6

(Appendix A).

Our fingerprinter consists of a transmitter, a receiver and a feature extraction mod-

ule. It uses a bistatic antenna configuration to minimize the leakage from the transmitter

to the receiver. The chosen antennas are circularly polarized, which allows our finger-

printer to power up (and then communicate with) a tag thus minimizing the impact of

the tag orientation. The transmitter outputs commands and data at the baseband fre-

quency according to the pulse-interval encoding (PIE) and phase-reversal amplitude

shift keying (PR-ASK) modulation (as defined in the EPC C1G2 specification [11]).

The carrier frequency that is used for upmixing the baseband signal is 866.7 MHz2 and,

after the final amplification stage, the nominal transmission power is 29.5 dBm (includ-

ing the antenna gain). The receiver is based on a direct-conversion I/Q demodulator3.

After quadrature downmixing, the tag backscatter baseband signal is first converted into

the digital domain with a nominal sampling rate of 10 MS/s (for each of the I and Q

channels) and 14-bit resolution, and then low-pass filtered. For each channel, the fea-

ture extraction module processes the baseband tag signal to extract the BLF from the

RN16 preambles. The extraction is a streaming-like process: the module continuously

monitors the incoming signal for RN16 packets. When one is detected, the length of the

preamble is measured and the BLF is computed and recorded.

5 Performed Experiments and Collected Data

We base our experiments on the interaction between a reader and a tag population that

is used for inventorying purposes as defined in the EPC C1G2 specification [11]. We

use our fingerprinter to challenge RFID tags (i.e., to initiate an inventory round), col-

lect tags’ replies (i.e., RN16 packets), and extract the specified signal feature (i.e., the

backscatter link frequency, BLF) to obtain tag fingerprints.

Our tag population is composed of 210 EPC C1G2 RFID tags of 12 different models

and 3manufacturers: Alien Technology ALN9540, ALN9562, ALN9640 and ALN9654,

Avery Dennison AD821, AD833, AD224 and AD824, and UPM Raflatac Dogbone (3

different integrated circuit models) and ShortDipole. The selected tag models present

different characteristics in terms of antenna size and material, embedded integrated cir-

cuit, and application. Table 5 (Appendix B) summarizes the considered models and

their main characteristics.

In order to increase the possibility of finding the largest distinguishing characteris-

tic, for all experiments we select the BLF which, according to the EPC C1G2 specifica-

2 The chosen carrier frequency corresponds to channel 6, band 2, of the ETSI EN 302 208 regu-

lations [12], which define 10 channels of 200 KHz@ 2W ERP between 865.6 and 867.6 MHz.
3 The phase of the tag backscatter signal is not predictable or controllable, as it varies with the

distance to the tag; the I/Q demodulator allows the reception of a backscatter signal regardless

of the distance to the tag.
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Fig. 2. Considered positions of the fingerprinter antennas and of the tags. In our experiments,

fingerprinter antennas (TX and RX) are fixed, while tag responses are acquired (a) from different

fixed locations (A-D, Table 1) and (b) when tags are moving (E-H, Table 2).

tion, presents the largest allowed frequency tolerance. The selected nominal BLF is thus

equal to 426 kHz and presents a maximal allowed frequency tolerance equal to ±22%.

5.1 Performed Experiments

For all the tags in our population, we use our fingerprinter to initiate an inventory round

and extract the BLF while tags are at a fixed location (on a stand). Figure 2(a) shows the

considered positions of the fingerprinter transmitting (TX) and receiving (RX) antennas

and of the tags (position A). Table 1 – configuration 3 summarizes the fingerprinter and

tag settings for this experiment.

For a subset of tags in our population placed on a stand, we use our fingerprinter to

extract the BLF under 16 different configurations of tag and antenna positions, acqui-

sition sampling rate, tag temperature, transmission power, and fingerprinter hardware.

The different configurations are summarized in Table 1 (configurations 1 to 16). The

considered positions of the fingerprinter TX and RX antennas and of the tags are shown

in Figure 2(a). In terms of tag position, we explore different tag distances to the finger-

printer antennas (up to 2.75 m), as well as different tag vertical and lateral positions.

We also explore 3 different transmission powers (from 17.5 to 23 dBm), 3 different

acquisition sampling rates (from 5 to 20 MS/s), and 5 different temperatures (from 10

to 50◦C). Additionally, we consider 3 different fingerprinter hardware configurations

(changing USRP2 platform, USRP daughterboard, antennas, and host PC) and swap

the position of the TX and RX antennas. Finally, we explore time effects by acquiring

RN16 preambles and extracting BLF one month after the beginning of this experiment.

For a subset of tags in our population, we use our fingerprinter to extract the BLF

while tags are carried by a person. For this experiment, we investigate 6 different con-

figurations of tag location (backpack, wallet, jacket, shopping bag), tag holder’s activ-

ity (standing, walking), and number of carried tags (from 1 to 5). The fingerprinter is

configured as detailed in Table 1 – configurations 17-22, while the different tag config-

urations are summarized in Table 2. The considered positions of the fingerprinter TX

and RX antennas and of the tags are shown in Figure 2(b).



Table 1. Varied parameters for the different configurations - tags placed on a stand.

Tag position Antennas TX Temp.2 Sampling Fingerprinter

Config. Fig. 2(a) (x,y,z)-axis position power1 rate hardware

[m] (TX,RX) [m] [dBm] [◦C] [MS/s] set3

1 A (0, 1.5, 1.0) (1.25, 0.75) 21 22 5 1

2 q q q q q 20 q

3 q q q q q 10 q

44 q q q q q q q

5 q q (0.75, 1.25) q q q q

6 B (-0.5, 1.5, 1.0) (1.25, 0.75) q q q q

7 C (0, 1.5, 0.5) q q q q q

8 D (0, 2.75, 1.0) q 23 q q q

9 A (0, 1.5, 1.0) q 17.5 q q q

10 q q q 23 q q q

11 q q q 21 q q 2

12 q q q q q q 3

13 q q q q 10 q 1

14 q q q q 30 q q

15 q q q q 40 q q

16 q q q q 50 q q

17-22 Tag on a person, see Table 2 q 23 22 q q

1 Power before the TX antenna. For fingerprinter sets 1 and 3, the TX antenna has a gain

of 8.5 dBi, while for set 2 this is equal to 6 dBi.
2 Temperature variations of ±2◦C.
3 Set 2: same host PC as set 1, but different USRP, USRP daughterboard and antennas.

Set 3: same USRP, USRP daughterboard and antennas as set 1, but different host PC.
4 Same as configuration 3, but fingerprints obtained from RN16 preambles collected 1

month after the RN16 preambles collected for configuration 3.

5.2 Collected Data

Using our fingerprinter, we performed the experiments described in Section 5.1. Table 3

summarizes the data that we collected, represented in a form of datasets.

Data collection was performed over one month, one tag at the time (unless other-

wise indicated, i.e., for data collection under configurations 21 and 22 – Table 2), 200

extracted BLFs in a row, in an indoor, RF noisy environment with activeWi-Fi and GSM

networks. The nominal environment temperature was approx. 22◦C. We increased the

tag temperature by means of a heat gun, while we lowered it by decreasing the overall

environment temperature. Temperatures were measured with an infrared thermometer4.

We note a ±2◦C variations for the given temperatures. We sped up the acquisition pro-

cess by adjusting the aforementioned EPC inventory sequence (Figure 1) in a way to

collect several RN16 packets in the same inventory round and by not requesting the

4 Temperature was measured on the tag front surface. Tags were heated up from the back surface

and, for each considered temperature, for at least 5 minutes before data acquisition.



Table 2. Varied parameters for the different configurations - tags on a person.

Configuration Tag location Tag holder’s # of tags during

Fig. 2(b) activity acquisition

17 E Backpack walking away from TX/RX antennas 1

18 F Wallet q q

19 G Jacket walking towards TX/RX antennas q

20 H Shopping bag q q

21 q q standing in front of TX/RX antennas 5

22 q q walking towards TX/RX antennas q

tag’s identification (EPC) number5. Giving the considered acquisition sequence, the

theoretical upper bound for BLF acquisition is approx. 1250 extracted BLFs per second

(we discuss the fingerprinter acquisition speed in Section 7.3).

6 Evaluation of Tag Distinguishability and Fingerprint Stability

In this section, we first review the metrics that we used to evaluate the tag distinguisha-

bility and the fingerprint stability. Then, we present the results for those evaluations

obtained by the proposed signal feature over the considered tag population.

6.1 Evaluation Metrics

To evaluate the tag distinguishability and the fingerprint stability, we compute the en-

tropy of the probability distribution of the tag fingerprints given the selected signal

feature. For each tag and configuration, fingerprints are built from N extracted BLFs.

Table 4 summarizes the computed entropies for the different analysis we performed.

We compute the entropy of the fingerprint probability distribution in order to show

how many bits of information are contained within that distribution. To compute the

entropy, we consider bins of width equal to the double of the average standard deviation

of the signal feature in the dataset and count the number of fingerprints that fall into the

different bins. We then apply the standard entropy formula [29].

Additionally, for each performed analysis, we define an entropy upper bound6 by

computing its theoretical maximum given the EPC C1G2 specification [11], i.e., the

maximum number of information bits that could be learned from the BLF feature con-

sidering the maximal allowed frequency tolerance as defined in the EPC specification

(±22% around the nominal BLF) and giving the bin width of the considered analysis.

6.2 Tag Distinguishability

In this section, we analyze the tag distinguishability of the proposed feature based on

the fingerprint probability distribution of two datasets: dataset 1, which contains 20,000

5 This procedure is also valid for multiple-tag acquisitions. For each tag, several RN16 pack-

ets are collected before moving to the next tag. This also provides the association between

extracted BLFs and tags
6 The entropy upper bound is computed by assuming the fingerprint distribution as uniform [13].



Table 3. Collected data.

Dataset Model # tags
# extracted BLFs Conf. Total # extracted

per tag (Table 1) BLFs per tag

1 ALN9640 100 200 3 200

21
ALN{9540, 9562, 96402, 9654} 40 200 3 200

AD{224, 821, 824, 833} q q q q

ShortDipole, Dogbone3 q q q q

3 ALN96402 10 200 3-22 4000

4 ALN9640 100 200 1,2 400

1 For each model, 10 tags are considered.
2 Tags randomly selected among the 100 used in datasets 1 and 4.
3 For Dogbone tags, 3 different integrated circuit models are considered.

extracted BLFs for 100 same-model (and same-manufacturer) tags, and dataset 2, which

contains 24,000 extracted BLFs for 120 tags of 12 different models.

Figure 3(a) and 3(b) show the computed fingerprints for the 100 same-model and

the 120 different-model tags respectively. Each fingerprint is obtained by averaging 5

extracted BLFs (N = 5), resulting in 40 fingerprints per tag. Tag distinguishability

depends only on the variations of the BLF within each tag and between different tags.

For both sets of tags, we can observe a certain degree of distinguishability. First, the

fingerprint variations within each tag are relatively small (average standard deviation

of approx. 120 and 196 Hz for the 100 same-model and the 120 different-model tags

respectively). Second, fingerprints of different tags are located in different frequency

areas. However, we note that (i) fingerprints of different tags also overlap (i.e., different

tags present a similar BLF), which reduces the possibility, or even prevent to distinguish

those tags, and (ii) that the overall frequency range is less than the maximal frequency

range allowed by the EPC C1G2 specification (between 332 and 520 kHz given the

±22% tolerance around the nominal BLF), which indicates that the actual fingerprint

entropy will not correspond to its potential upper bound. Additionally, we note that

different tag models could also be distinguished, in particular when considering tags

embedding Impinj Monza IC.

Figure 3(c) and 3(d) show the empirical fingerprint distributions for the 100 same-

model and the 120 different-model tags respectively. The entropy result based on the

empirical distribution of 120 different-model tags suggests that we could learn 6.78 bits

of information about a single UHF RFID tag. For the 100 same-model tags, this value

is equal to 6.32 bits. The difference between these two results simply lies in the larger

frequency range exploited by several models with respect to one single model. The

entropy upper bound considering the maximal allowed BLF tolerance is, for same-

model tags, equal to 9.45 bits and, for different-model tags, to 9.38 bits.

We evaluate the impact of the number N of extracted BLFs over which we average

to obtain the tag fingerprints by computing the entropy based on the empirical distribu-

tion of the 100 same-model tags obtained for different values of N . The results of the

analysis for N = 1, 2, 5, 10, 20 are 5.39, 5.81, 6.32, 6.67, and 6.97 bits respectively.
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Fig. 3. Fingerprints for (a) 100 same-model tags and (b) 120 tags of 12 different models. Finger-

print distribution for (c) 100 same-model tags and (d) 120 tags of 12 different models. For each

tag, 40 fingerprints are considered (N = 5).

6.3 Fingerprint Stability

In the previous section, we have analyzed the tag distinguishability under a fixed config-

uration of fingerprinter and tag settings. In this section, we evaluate the stability of the

proposed signal feature under different settings, i.e., we analyze the impact of different

settings on the tag distinguishability. More specifically, we evaluate:

1. The entropy of the proposed feature under 16 different configurations of tag po-

sition (with respect to the fingerprinter antennas) and location (on a stand, on a

person), antenna position, transmission power, fingerprinter hardware, and, when

tags are carried by a person, tag holder’s activity (walking, standing) and the num-

ber of carried tags (Table 1 – configurations 3-12 and 17-22, and Table 2).

2. The entropy of the proposed feature given different acquisition sampling rates (Ta-

ble 1 – configurations 1-3).

3. The effect of temperature on tag fingerprints (Table 1 – configurations 3, 13-16).

Figure 4(a) shows the fingerprints of the selected 10 tags under 16 different con-

figurations of fingerprinter and tag settings (N = 5, 40 fingerprints for each tag and
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Fig. 4. Fingerprint visualization for 10 randomly selected ALN9640 tags and different settings

(N = 5). For each tag in (a), the set of fingerprints on the left is composed of 40 fingerprints of

1 fixed configuration, while the set on the right of 640 fingerprints of 16 different configurations.

For each tag in (b), the set of fingerprints on the left is composed of 200 fingerprints of 5 different

temperatures, while the set on the right of 640 fingerprints of 16 different configurations.

configuration). For each tag, two sets of fingerprints are shown: 40 fingerprints (the

set on the left) obtained under one single configuration (Table 1 – configuration 3) and

640 fingerprints (the set on the right) obtained under 16 different configurations of fin-

gerprinter and tag settings (Table 1 – configurations 3-12 and 17-22). We observe an

increase on the BLF variation within each tag when comparing those two sets: the aver-

age standard deviation within each tag increases from approx. 120 to 150 Hz. Although

this increase (less than 30 Hz) seems relatively small when compared to the considered

frequency range (approx. 30 kHz for the 100 same-model tags), the entropy for the 100

same-model tag decreases from 6.32 (Section 6.2) to 5.39 bits7. Similarly, the entropy

upper bound decreases from 9.45 to 8.41 bits.

In order to evaluate the impact of the acquisition sampling rate, we compute the

entropy based on the empirical distribution of the 100 same-model tags obtained for

RN16 preambles acquired at different rates. The results of the analysis for 5, 10, and

20 MS/s are 6.19, 6.32, and 6.49 bits respectively.

Figure 4(b) shows the fingerprints of the selected 10 tags under 20 different con-

figurations (N = 5, 40 fingerprints for each tag and configuration). For each tag, two

sets of fingerprints are shown: 200 fingerprints (the set on the left) obtained under 5

different temperatures (Table 1 – configurations 3, 13-16) and 640 fingerprints (the set

on the right) obtained under 16 different configurations of fingerprinter and tag settings

(Table 1 – configurations 3-12 and 17-22). Differently from the previous results, tem-

perature seems to have a relatively large impact on the BLF variation within each tag,

especially when considering the limit temperatures in our analysis (10 and 50◦C). We

note that tags are not equally affected by temperature and that we could not observe

7 We compute this entropy over dataset 1 (100 tags, 1 configuration), but considering the stan-

dard deviation under the stability analysis of dataset 3 (10 tags, 16 configurations), i.e., 150 Hz.

This allows us to compare entropies and evaluate the effect of different configurations.



Table 4. Computed entropies (with 95% confidence interval) for the performed analysis.

Dataset

Sampling

N

Config. Standard Entropy Entropy

rate (Table 1) deviation (empirical dist.) (upper bound)

[MS/s] [Hz] [bits] [bits]

1 10 1 3 273.32 (270.14;275.99) 5.39 (5.38;5.42) 8.27 (8.25;8.29)

q q 2 q 192.63 (189.89;195.19) 5.81 (5.78;5.83) 8.77 (8.75;8.79)

q q 5 q 120.21 (117.05;123.31) 6.32 (6.29;6.35) 9.45 (9.42;9.49)

q q 10 q 83.45 (81.14;86.02) 6.67 (6.62;6.71) 9.97 (9.94;10.02)

q q 20 q 56.58 (54.06;58.99) 6.97 (6.91;7.02) 10.54 (10.48;10.60)

2 10 5 3 196.05 (180.38;211.80) 6.78 (6.75;6.80) 9.38 (9.35;9.41)

3 10 5 3-12,17-22 149.57 (140.42;159.72) 5.391 (5.37;5.42) 8.411 (8.41;8.41)

4 5 5 1 134.12 (129.78;138.40) 6.19 (6.14;6.24) 9.29 (9.24;9.34)

q 20 q 2 109.35 (106.44;112.65) 6.49 (6.45;6.52) 9.59 (9.55;9.63)

1 Computed for dataset 1 (100 tags) given the standard deviation of dataset 3 (10 tags).

any common trend (i.e., a relation between temperature and BLF variation) that would

facilitate the mitigation of the temperature effect on tag fingerprints.

7 Implications on Tag Holders’ Privacy

In this section, we first discuss the implications on people’s privacy given the obtained

results, in particular with respect to people tracking. Then, we discuss possible coun-

termeasures against clandestine tracking and fingerprinter requirements for practical

tracking.

7.1 People Tracking: Breaking Tag Holders’ Privacy

The results of our work show that we can learn 5.39 bits of information about a single

RFID tag by only observing the data rate at which it transmits8. This information can

be extracted independently of the tag position and location, fingerprinter hardware and

antennas position, transmission power, tag holder’s activity, and number of carried tags.

The relatively low distinguishability (per tag) can be improved when considering

sets of tags. Our fingerprinter extracts b = 5.39 bits of information for each tag, i.e,

when individually considered, a maximum of n = ⌊2b⌋ tags can be uniquely distin-

guished. As a consequence, a set S composed of T tags can be uniquely distinguished

among other ST =
(

n+T−1
T

)

= (n+T−1)!
T !(n−1)! sets. For example, a set composed of 5 tags

can be uniquely distinguished among other 1.2 million sets of 5 tags. Larger sets provide

more information (for T = 5, approx. 22 bits) and lead to a larger distinguishability of

people carrying several tags, even with relatively low distinguishability per tag.

8 The amount of information could be further increased by considering sets of tags composed

of different tag models and manufacturers, an higher acquisition sampling rate, and a larger

number of acquired signals over which the tag fingerprints are obtained.
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Fig. 5. (a) A possible shopping mall scenario and (b) the upper bound probability of reconstruct-

ing a tag holder’s trace as a function of the number of tags carried by that tag holder. Curve A

represents a population size of P = 3000, where pT = N (5, 1), the tag entropy b = 5.39, and
each tag holder has been profiled once, i.e., EH = 1. Curves B, C, D, and E are similar to A, but

they consider pT = N (2, 1), P = 5, 000, 000, b = 1, and EH = 10 respectively.

To show the impact of our technique on tag holders’ privacy, we evaluate the prob-

ability that the attacker can correctly reconstruct a customer’s path in a shopping mall.

Reconstructed paths, or traces, can be used to derive customers’ behavior and trend and,

ultimately, to optimize the location of shops and facilities in the mall.

We consider a scenario in which several fingerprinters are disseminated in a shop-

ping mall (Figure 5(a)). Tag holders, i.e., customers carrying tags, are subject to profil-

ing when passing near the fingerprinters. Each profile is composed of the profiling time

and location, and of the set of fingerprints obtained from the carried tags. A tag holder’s

trace is composed of all the profiles built by the disseminated fingerprinters that relate

to that tag holder over a period of interest. We note that the number of tags carried by

a customer may increase over time, i.e., the more he/she buys, the more tags he/she

carries. Considering this scenario, we evaluate the probability of entirely reconstructing

a tag holder’s trace given all profiles built over the period of interest. We define as P

the size of the customer population which has been profiled over the considered period.

The anonymity set kS,T represents how many tag holders within a population of

size P carry the same set S of T tags (fingerprints). kS,T depends on the population

size P , the distribution pT of the number of carried tags per customer within P , the

number of carried tag T , the distribution pS of the possible tag sets, and the tag entropy

b. An anonymity set kS,T = 2 means that each profile referring to a specific set S of

T tags could be potentially related to 2 different tag holders. It is possible to derive the

minimal population size in order to find at least 2 customers carrying the same set S

of T tags. For example, giving pT = N (5, 1), pS = U(1, ST ), and b = 5.39 bits, the

minimal population size necessary to find at least 2 customers carrying the same set S

of T tags is 149,480, 3.2 million, and 66 billion for T = 2, 5, 8 tags respectively.

For a tag holder carrying a set S of T tags and having an anonymity set of kS,T ,

the probability pR of reconstructing that tag holder’s trace is computed as (kS,T )
−E ,



where E is the total number of profiles referring to the considered set of tags S (i.e.,

all the profiles built for all the customers carrying that set S). Figure 5(b) shows the

upper bound probability9 pR of reconstructing a tag holder’s trace as a function of the

number of tags T carried by that tag holder (curve A) and for a different distribution

of the number of carried tags pT (curve B), population size P (curve C), tag entropy b

(curve D), and number of profiles built for each tag holder in the considered population

EH (curve E). Since pR is derived from the anonymity set, this is affected by the tag

entropy, the population size, the distribution of the number of carried tags within that

population, and the number of carried tags by the consider tag holder. In general, for

the same b, P , pT , and EH , increasing the number of carried tags T increases pR:

the more shopping, the less anonymity10. Differently, increasing the population size,

decreasing the tag entropy, or having a population with a smaller number of carried tags

per customer increases the anonymity set and therefore reduces pR. Additionally, pR is

also affected by the total number of profiles built for all the customers carrying the same

set of tags: the more profiles, the larger the number of possible profile combinations that

a certain tag holder’s trace could match, and therefore, the less pR. Finally, we note that

pR could be increased by considering information like spatial and temporal correlation

of profiles.

Therefore, our fingerprinter and selected signal feature allow, in fact, people profil-

ing and clandestine tracking. Temperature effects on tag fingerprints can be neglected

when tags maintain a similar temperature over the different profilings, for example, like

in a shopping mall where temperature control is used.

7.2 Countermeasures: How to Preserve Tag Holders’ Privacy

Countermeasures against physical-layer identification can be categorized into solutions

that prevent tag-reader communication or that prevent physical-layer identification.

Tag kill and sleep functions, Faraday cages, and active jammers [17] are solutions

that prevent any reader11 to communicate with a tag, thus eliminating any possible

physical-layer identification. Permanently killing tags will guarantee privacy, but at the

price of tag functionality. Sleep functions and active jammers will preserve long-term

tag functionality, but the required additional measures in order to guarantee privacy

(e.g., user interaction, tag access control, or extra hardware) could make those solutions

unattractive (especially given the deployment model of RFID tags, in particular when

considering item-level tagging). Faraday cages are the most simple and effective so-

lutions to guarantee privacy by temporarily preventing tag-reader communication, but,

although shielded wallets and shopping bags could be easily deployed, other RFID-

enabled devices (e.g., medical devices) may require additional efforts that could make

those solutions impractical.

9 The upper bound probability is computed by assuming pS as uniform.
10 Exceptions can occur depending on the size of the group of all customers carrying T tags and

the entropy b. As shown in Figure 5(b) - curve D, pR decreases when increasing T from 1 to 2,

since the small size of the group of all customers carrying 1 tag allows to reconstruct all traces,

while the bigger size of the group of all customers carrying 2 tags provides some anonymity.
11 Preventing only clandestine readers will not provide any benefit, since the communication

between a tag and a legitimate reader can be easily eavesdropped.



Solutions that prevent physical-layer identification aim at removing or reducing the

effect of the random hardware impairments in the analog circuitry components intro-

duced at the manufacturing process that make physical-layer identification possible.

Although very effective, those solutions require first the (possibly hard) task to identify

the components that make devices identifiable, and then to adjust the manufacturing

process accordingly, which may introduce additional costs that could make those solu-

tions unattractive. In addition, such solutions do not guarantee that a new discriminant

feature will never be exploited in future.

Achieving effective and practical countermeasures against unauthorized physical-

layer identifications remains an open issue that needs to be addressed.

7.3 RFID Fingerprinter Requirements

Besides tag distinguishability, requirements for a practical use of an RFID fingerprinter

for people tracking include acquisition speed, system cost, read range, and size.

Giving the acquisition sequence as detailed in Section 5.2 and the selected EPC

C1G2 settings (nominal BLF equal to 426 kHz and 4-subcarrier Miller encoding [11]),

the theoretical upper bound for the BLF acquisition speed is approx. 1250 BLFs per

second. Besides the well-known factors affecting the tag read rate like tag position, ori-

entation, surrounding material, etc., the communication and computation capabilities

of our fingerprinter also influence the actual acquisition speed. If for a sampling rate

of 5 MS/s the acquisition speed is close to the theoretical upper bound (approx. 1220

BLF/s), for higher sampling rates the larger amount of data to transmit and process re-

duces the actual acquisition speed. For 10 and 20 MS/s, the acquisition speed is reduced

to approx. 390 and 75 BLF/s respectively12. We note that, since tags share the same

medium, the EPC C1G2 specification provides a medium access control mechanism

to limit tag collisions, which, in fact, reduces the overall acquisition speed. Although

for 10 MS/s and 5 tags we find a relatively low acquisition speed equal to approx. 85

BLF/s, this was enough to acquire the necessary tag signals in all our experiments.

The system cost relates to the quality of the obtained fingerprints and the acquisition

speed. With our fingerprinter, we were able to obtain reliable fingerprints for people

tracking at a relatively low-cost: the overall cost of our fingerprinter (USRP2, USRP

daughterboard, host PC, and antennas) is less than USD3200.

During our experiments, we tested tag-reader distances of up to 2.75 m. Although

we did not evaluate larger distances (for this, an external amplifier increasing the fin-

gerprinter transmission power would have been necessary), given the exploited signal

feature and the obtained results, we can extend the tag distinguishability range to the

actual tag read range (which can reach up to 50 m [19]).

In terms of size, our fingerprinter fits in a briefcase: the USRP2 platform has sizes

21x17x5 cm, while a laptop can be used as host PC. We deployed planar antennas of

sizes 37x37x4 cm (smaller could be used), which can be easily hidden in wall panels.

12 Those values could be increased by tuning some of the EPC C1G2 settings (e.g., by increasing

the nominal BLF or using FM0 as data encoding scheme) and by optimizing the fingerprinter

blocks having the highest demand of computational power (e.g., the signal filtering processes).



8 Related Work

Physical-layer fingerprinting (identification) of UHF RFID tags has been investigated

in several works [21–23, 34]. Periaswamy et al. [22] studied physical-layer identifica-

tion of UHF RFID tags as a mechanism to detect counterfeit tags. The authors used the

tag minimum power response measured at multiple frequencies as discriminant feature.

The authors considered a set of 100 tags from 2 manufacturers and collected tag signals

with a middle/high-range acquisition setup in a clean environment (anechoic chamber).

The results showed that same-model tags can be distinguished, but fingerprint stabil-

ity was not considered. The same authors also proposed a method to enable ownership

transfer of UHF RFID tags based on the same discriminant feature [21]. Timing char-

acteristics (packet length) of the tag-to-reader communication are used by Periaswamy,

Thompson and Romero [23] to identify (classify) UHF RFID tag. The authors consid-

ered a set of 30 tags from 3 manufacturers and collected tag signals with a high-range

acquisition setup in a noisy environment (lab room). Results showed that tags can be

correctly classified, depending on the considered model, with an accuracy between ap-

prox. 32 and 98%. Fingerprint stability was not considered. Zanetti et al. [34] studied

physical-layer identification of UHF RFID tags using timing and spectral characteris-

tics of tag signals. The authors considered a set of 70 tags from 3 manufacturers and

collected tag signals with a high-range acquisition setup in a noisy environment (lab

room). The results showed the existence of stable physical-layer fingerprints for distin-

guishing UHF RFID tags. The authors also evaluated the implications of the proposed

fingerprinting techniques on users’ privacy and as cloning detection mechanism.

In comparison to the above works, our work is the first to evaluate the practicality

of UHF RFID fingerprinting for people tracking. More specifically, we deployed low-

cost fingerprinters to challenge tags, collect tags’ responses, and build fingerprints in a

tracking-like scenario, i.e., in which tags are carried by people moving into a bounded

area. In our study, we considered a larger tag population of 210 tags of 12 models and

3 manufacturers and a more complete fingerprint stability evaluation.

Besides the mentioned works on UHF RFID tags, physical-layer fingerprinting has

been explored on different platforms such as VHF [10, 30, 32], Bluetooth [15], IEEE

802.11 [5,14,16,33], IEEE 802.15.4 (ZigBee) [7,24], and GSM [25,26]. Physical-layer

identification has also been considered for inductive coupled HF RFID devices [6, 27,

28], especially for detecting cloned or counterfeit HF RFID smart cards and electronic

passports. The results showed that the proposed techniques enable identification of same

model and manufacturer HF RFID devices, but at a very close proximity.

9 Conclusion

In this work, we investigated the practicality of people tracking by means of physical-

layer fingerprints of RFID tags that they carry. We have constructed a compact USRP-

based RFID fingerprinter and have shown that using this fingerprinter people’s RFID

profiles (i.e., RFID fingerprints) can be reliably extracted in dynamic settings (i.e., when

tags are on people, in wallets, bags, pockets, and when people are moving). We have

further shown, in a representative mall scenario, that these profiles allow people’s traces



to be reconstructed with high accuracy. Effective and practical countermeasures against

unauthorized physical-layer fingerprinting remain an open problem.
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Appendix A: Low-Cost Fingerprinter Block Diagram

The block diagram of our low-cost fingerprinter is shown in Figure 6.

Appendix B: Considered Tag Models

In our study, we consider a tag population composed of 210 EPC C1G2 RFID tags of

12 different models and 3 manufacturers. Table 5 summarizes the considered models

and their main characteristics.



Table 5. Considered tag models and their main characteristics.

Model Manufacturer IC
IC Antenna Antenna Application

characteristics size [mm] material (tagging)

ALN9540
Alien

Alien Higgs-2 96-bit EPC num. 94.8 x 8.1 Cu
Cartoon,

Technology pallet

ALN9562 q q q 70 x 19 q q

ALN9640 q Alien Higgs-3
96/480-bit EPC num.

94.8 x 8.1 q q

512-bit user memory

ALN9654 q q q 93 x 19 q q

AD821
Avery

Impinj Monza1 96-bit EPC num. 72 x 30 Al
Item, carton,

Dennison pallet

AD833 q Impinj Monza3 q 38 x 93.5 q q

AD224 q

NXP U-Code 96/240-bit EPC num
95 x 7.4 q q

Gen2 XM 512-bit user memory

AD824 q q q 30 x 50 q Item

Dogbone
UPM

Impinj Monza2 96-bit EPC num. 93 x 23 Al
Item, carton,

Raflatac pallet

Dogbone q Impinj Monza4
128/480-bit EPC num.

86 x 24 q q

512-bit user memory

Dogbone q

NXP U-Code 96/240-bit EPC num
93 x 23 q q

Gen2 XM 512-bit user memory

ShortDipole q q q 92 x 11 q q
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Fig. 6. Block diagram of our low-cost fingerprinter.


