
Privacy-Implications of Performance-Based
Peer Selection by Onion-Routers:

A Real-World Case Study using I2P

Michael Herrmann and Christian Grothoff

Technische Universität München, Munich, Germany
{herrmann,grothoff}@net.in.tum.de

Abstract. I2P is one of the most widely used anonymizing Peer-to-Peer
networks on the Internet today. Like Tor, it uses onion routing to build
tunnels between peers as the basis for providing anonymous communica-
tion channels. Unlike Tor, I2P integrates a range of anonymously hosted
services directly with the platform. This paper presents a new attack on
the I2P Peer-to-Peer network, with the goal of determining the identity
of peers that are anonymously hosting HTTP services (Eepsite) in the
network.
Key design choices made by I2P developers, in particular performance-
based peer selection, enable a sophisticated adversary with modest re-
sources to break key security assumptions. Our attack first obtains an
estimate of the victim’s view of the network. Then, the adversary selec-
tively targets a small number of peers used by the victim with a denial-
of-service attack while giving the victim the opportunity to replace those
peers with other peers that are controlled by the adversary. Finally, the
adversary performs some simple measurements to determine the identity
of the peer hosting the service.
This paper provides the necessary background on I2P, gives details on
the attack — including experimental data from measurements against
the actual I2P network — and discusses possible solutions.

1 Introduction

Onion routing [13] is an established technique to provide sender- or receiver-
anonymity for low-latency network applications. Both Tor [2] and I2P [15] pro-
vide anonymity to their users via an open network of onion routers run by
volunteers. However, there are significant differences in the details of how these
networks implement the basic technique. For many of the differences, the existing
related work does not provide a clear answer as to which approach is better.

In this paper, we report on our exploitations of some of the design choices
in I2P to deanonymize I2P services, specifically I2P Eepsites.1 An Eepsite is a
website hosted anonymously within the I2P network and accessed via HTTP
tunneled through the I2P network, which also acts as an anonymizing SOCKS
1 Our basic technique could be applied to other kinds of I2P services as well.

proxy. Our attack requires a modest amount of resources; the only special re-
quirement, to run I2P peers in several different /16 peers, can also be met by any
Internet user, for example by using cloud based services. While this requirement
may put us outside of the I2P attacker model, our other requirements — par-
ticipation in the I2P network and a modest amount of bandwidth — are easily
within common attacker models for anonymizing P2P networks, including I2P
and Tor. We have implemented and tested the attack on the extant I2P network
in early 2011, making our attacker a credible real-world adversary.

Our attack is primarily based on exploiting I2P’s performance-based selec-
tion of peers for tunnel construction, I2P’s usage of unidirectional tunnels and
the fact that Eepsites are located at a static location in the network. Using
a combination of peers that participate as monitors in the network and other
peers that selectively reduce the performance of certain other peers, our attack
deduces with high degree of certainty the identity of the peer hosting the tar-
geted Eepsite. In contrast to previous deanonymization attacks (such as [9, 3]),
our attack does not rely on congestion-induced changes to latency. In fact, the
denial-of-service component of the attack focuses on peers that are not known
to participate in the Eepsite’s active tunnels at the time.

We have evaluated our technique not merely in simulation or a testbed but
against the real I2P network. This paper presents experimental results obtained
in early 2011 using I2P version 0.8.3, modified for our attack.

The main contributions of this paper are as follows:

– An independent characterization of the I2P protocol
– A novel attack on anonymity based on the heuristic performance-based peer

selection for uni-directional tunnels
– Experimental evaluation of the attack
– Recommendations for improving the I2P design to thwart the attack

The rest of the paper is structured as follows. Section 2 provides a de-
tailed overview of the I2P network. Section 3 describes our attack and Section 4
presents the experimental results. Finally, Section 5 discusses possible solutions
and relates our attack to previous work on deanonymization for similar systems.

2 Background: I2P

I2P is a multi-application framework
for anonymous P2P networking written
in Java. On top of the native Internet
protocol, I2P specifies the use of two
different peer-to-peer transport proto-
cols. The first is called NIO-based TCP
(NTCP), where NIO refers to the Java
New I/O library. The second is called
Secure Semireliable UDP (SSU), pro-
viding UDP-based message transfer.

HTTP

JVM

TCP/IP

Browser

I2P Router

SSUNTCP

Syndie
(Forum)

...I2PSnark
(Filesharing)

I2PHex
(Filesharing)

I2P Architecture

The core of the I2P framework is the I2P router, which implements key com-
ponents of the I2P protocol. Tasks of the I2P router include: maintaining peer
statistics, performing encryption/decryption and building tunnels. I2P applica-
tions rely on the anonymizing tunnels provided by the I2P router for privacy
protection; consequently, the I2P router is central to the security of all I2P ap-
plications and the analysis presented in this paper.

Many Internet applications can be implemented on top of the I2P router.
An application provided by a particular I2P peer is referred to as a service. For
example, I2P includes services to host HTTP servers, to provide IRC-based com-
munication and to perform POP/SMTP-based email transfer. Most I2P services
are controlled and used via a web browser interface.

2.1 Peer and Service Discovery

Like most other P2P networks, I2P has to deal with the problem of finding
peers and subsequently the services offered by those peers. Every peer in the I2P
network is uniquely identified by a data structure called routerInfo. This data
structure holds all the key information about the peer, including public keys
of the peer, a 256 bit hash-identifier and information about how the peer can
be contacted. I2P addresses the bootstrapping problem, the problem of initially
discovering some other peer in the network, by using a non-anonymous HTTP
download of a list of routerInfos for available I2P peers from a fixed location.

I2P’s DHT: the netDB After bootstrapping, I2P uses a super-peer DHT
to build a network database, called the netDB, with information about all the
peers and services available in the network. The super-peers that maintain this
database are called floodfill peers; each floodfill peer is responsible for the infor-
mation closest to its ID. Proximity is determined using Kademlia’s XOR distance
metric [8]. If a peer has sufficient bandwidth and its configuration allows it, a
peer can promote itself to floodfill status and will do so as soon as the number
of active floodfill peers in the network drops below a certain threshold.

Storing Data in the netDB Information about how to contact a service
provided by an I2P peer is kept in a so-called leaseSet. LeaseSets are stored
in the same netDB that also contains routerInfos; nevertheless, leaseSets and
routerInfos are independent entities that only share the same storage facility. A
leaseSet primarily specifies a set of entry points (called leases) to the service. An
entry point is the identification of an inbound tunnel at a peer currently serving
as an inbound gateway to the service.

The lookup and storage of leaseSets and routerInfos is achieved by sending the
respective requests to a floodfill server. Figure 1 illustrates the storage process for
a leaseSet. After a floodfill peer receives a request, it replicates the information at
seven additional closest floodfill peers and sends a confirmation to the initiator.

F

X

outbound client tunnel

inbound client tunnel

1.store:
leaseX EncF{ {

2.reply msg
F

F

3.on the 7 other
 Floodfill peers,

leaseXstore:

inbound/outbound tunnel participants

other nodesFloodfill peersF

store initiatorX

Fig. 1: I2P uses tunnels to store a lease in the floodfill database to hide the identity of
the (HTTP) server.

Retrieving Data from the netDB Retrieving routerInfos and leaseSets is
also performed via tunnels. The request is transmitted to the — with respect
to the destination address — two closest floodfill peers known to the requester.
If a floodfill peer does not have the requested information, a list of other close
floodfill peers is sent back. The replies are transmitted to the initiator using an
inbound tunnel. If both floodfill peers do not have the requested information,
the requesting peer queries two other floodfill peers until all known floodfill peers
have been contacted.

2.2 I2P Tunnels

I2P uses tunnels to hide the IP address of a participant in an online interac-
tion. I2P tunnels closely resemble onion routing as implemented in Tor with
circuits [2]: the initiator selects the route through the network, no artificial de-
lays are introduced when forwarding, and link- and layered-encryption are used
to protect the data against observers.

I2P Tunnels are Unidirectional Tunnels in I2P only transfer payload data in
one direction. In order to achieve bi-directional communication, I2P uses inbound
and outbound tunnels. Inbound tunnels are used to transmit data to the peer
that constructed the tunnel and outbound tunnels are used to transfer data from
the peer that constructed the tunnel. Note that only the peer that constructed
the tunnel knows all of the peers in the tunnel.

For outbound tunnels, multiple layers of encryption are added by the creator
of a message; each one is then removed by the corresponding peer as the message
traverses the outbound tunnel.

For inbound tunnels, adding all layers of encryption at the first peer is not
possible; this would require the first inbound node to know the secret tunnel keys

for all of the participants of the tunnel. Instead, every node in an inbound tunnel
adds an additional layer of encryption. Finally, the creator of the tunnel, who
knows the tunnel keys used by each peer from the tunnel construction phase,
removes all layers of encryption to obtain the original message.

Tunnel Diversity Every I2P peer creates multiple tunnels; the specific number
of tunnels and the tunnel length depend on the peer configuration. The length of
the tunnel is considered to be a trade-off between speed and anonymity and I2P
gives the end-user control over this setting. The user specifies two non-negative
numbers, x and y. For each tunnel, I2P selects a random number r ∈ [−y, y] and
constructs a tunnel of length max(x + r, 0).

In addition to the distinction between inbound and outbound tunnels based
on the tunnel’s transfer direction, I2P further distinguishes between exploratory
and client tunnels. Exploratory tunnels are for routerInfo queries to the netDB
and for tunnel management. They are not used for privacy-sensitive operations.
Client tunnels are used for all typical application level network messages, for
example to provide tunnels for Eepsites and for leaseSet operations on the netDB.

Tunnel Construction In order to select peers for tunnel construction, I2P
first categorizes all known peers into tiers. Depending on the type of tunnel
that is being created, the peer selection algorithm then attempts to select peers
exclusively from a particular tier. In addition to selecting peers from particular
tiers, I2P also avoids the selection of multiple peers from the same /16 (IPv4)
network for the same tunnel.

After selecting peers for the tunnel, the initiator sends tunnel construction
requests (via that partially built tunnel) to the selected peers. A peer receiving
a tunnel construction request is free to either accept to participate in the tunnel
or reject the request, indicating a reason for the refusal. Naturally, tunnels can
still fail if peers that accepted a tunnel construction request are later unable
to sustain the tunnel. The behavior of a peer faced with tunnel construction
requests (including the reason given for rejection) as well as tunnel failures are
important for the performance evaluation of peers, which is used for assigning
peers to tiers.

Tier-based Peer Selection An I2P peer chooses other peers randomly from a
particular tier depending on the type of the tunnel. A tier consists of peers that
share certain performance characteristics. I2P places certain well-performing
peers into two special tiers:

Fast tier Peers with high throughput
High-capacity tier Peers that will accept a tunnel request with high proba-

bility.

The fast tier is considered the most valuable tier and is used for constructing
client tunnels. In the theoretical case where the fast tier does not have a sufficient

number of peers, I2P falls back to using peers from the high-capacity tier for
peer selection in the construction of client tunnels. In practice, we were unable to
observe this behavior since the fast tier was always sufficiently populated during
our evaluation.

The high-capacity tier is the default choice for exploratory tunnels. Peers
must also be in the high-capacity tier to be eligible for the fast tier. All other
peers are only used as fallback options if the fast and high-capacity tiers lack
available peers. In practice, this is unlikely to happen.

Peers are placed into tiers based on certain performance metrics. A peer is
put in a particular tier if its corresponding performance value exceeds a threshold
calculated by I2P for that tier.2 The size of the fast and high-capacity tiers is
bounded. For the fast tier the number of peers is between 8 and 30 and for the
high-capacity tier between 10 and 75. If the number of peers in those tiers drops
below the threshold, the best-performing peers from lower tiers are promoted.
If the number of peers in a tier exceeds the upper limit, the lowest rated peers
are demoted.

The I2P router keeps track of various performance statistics in order to sort
peers into the correct tiers. Performance metrics are gathered more often for
peers in the fast and high-capacity tiers, since performance metrics are always
gathered if a peer is used for a tunnel. Furthermore, performance scores are
cumulative; this generally results in higher performance values for peers in the
fast and high-capacity tiers and reduces fluctuation.

Metrics for Tier Assignment I2P is careful about only including performance
metrics that are hard to manipulate, relying only on measurements entirely
controlled by the peer for throughput and tunnel maintenance properties. In
particular, information about tunnels created by other peers is not taken into
consideration.

The capacity value of a peer is based on the number of times the peer accepts a
tunnel request, the number of tunnel rejections and the number of tunnel failures
that happen after a peer accepted to participate in a tunnel.

The goal of the capacity calculation is to estimate how a peer is likely to
behave in the future in terms of its participation in tunnels. The calculation is
primarily based on the accept, reject and failure actions of that peer. Further-
more, if the peer rejected events in the last 5 minutes, the reason given for the
rejection is also considered. A detailed description of the capacity calculation
algorithm can be found in [4]; the main point for this paper is that peers ac-
cepting tunnel requests score high, peers rejecting tunnel requests score low and
peers participating in tunnels that then failed score very low in terms of their
capacity value.

A peer’s speed value is the mean of its three highest, one second throughput
measurements in any tunnel established by the measuring peer over the course
of the last day. Throughput is measured whenever data is sent through a peer
via a tunnel created by the measuring peer. Naturally, throughput is bounded
2 The complex threshold calculation is described in detail in [4].

by the throughput capacity of the measuring peer as well as, for each individual
measurement, the slowest peer in the tunnel. While it would be nice to be able
to influence speed values of other peers, the fact that I2P uses the observed
maximum over an entire day makes this unattractive: attacking a peer to reduce
its speed for a whole day is expensive.

2.3 Eepsites

The I2P software comes with the Jetty web server3. Using Jetty, every I2P user
can offer HTTP web pages to the I2P network using a domain under the .i2p
TLD. Given such a domain name, I2P creates inbound and outbound client
tunnels for the service and (periodically) publishes a leaseSet in the netDB.

Accessing an Eepsite involves several steps (illustrated in Fig. 2):

1. Eepsite host (server) creates inbound and outbound tunnels for sender-
anonymity and publishes gateway information as a leaseSet in the netDB
(as described in Section 2.1). Fresh tunnels and corresponding leaseSet up-
dates are created at least every 10 minutes.

2. The peer running the HTTP client (client) uses a tunnel to access the netDB
and retrieves the leaseSet information.

3. The client uses inbound and outbound tunnels (for receiver-anonymity) to
contact the gateways from the leaseSet.

4. A handshake is performed via the tunnels for end-to-end encryption between
server and client, using the public key in the leaseSet.

5. The HTTP request is transmitted through the outbound tunnel of the client
and the inbound tunnel of the server.

6. The HTTP response is transmitted through the outbound tunnel of the
server and the inbound tunnel of the client.

Steps 5 and 6 can then be repeated; I2P reuses the resulting channel for
subsequent HTTP requests to improve performance. This is somewhat relevant
to the attack presented in this paper since it allows an attacker to repeatedly
query the HTTP server without the need to perform the costly tunnel setup
operations each time.

2.4 Threat Model

The I2P project does not specify a formal threat model, it instead provides a
list of possible well-known attack vectors (such as intersection / partitioning,
tagging, DoS, harvesting, sybil and analysis attacks) and the authors discuss
how the design relates to these attack vectors.4

Based on the scenarios described, I2P’s attacker model closely resembles that
of Tor: malicious peers are allowed to participate in the network, collect data

3 http://jetty.codehaus.org/jetty/
4 http://www.i2p2.de/how threatmodel.html

msg

Eepsiterequester

outbound client tunnel inbound client tunnel

msg

outbound client tunnelinbound client tunnel

msg

message with end-to-end encryption

message with layered encryption

msg

msg msg msg

msgmsg

msg

Fig. 2: Accessing an I2P Eepsite.

and actively perform requests. However, the attacker is assumed to be unable
to monitor the entire network traffic, should not control a vast number of peers
(80% is used as an example) and should not be able to break cryptographic
primitives.

2.5 Summary: I2P vs. Tor

The key philosophical difference between the well-known Tor network and I2P is
that I2P tries to move existing Internet services into the I2P network and provide
service implementations within the framework whereas Tor enables anonymous
access to external Internet services implemented and operated separately. While
Tor has hidden services and I2P has exit nodes, the canonical usage of Tor is
accessing external services and the canonical usage of I2P is accessing integrated
services.

I2P and Tor also differ in a number of technical details, some of which are
key to the attack presented in the following section. Table 1 summarizes the
main technical differences between the two projects.

3 Our Attack

Our attack assumes an adversary that actively participates in the network. Ma-
licious nodes are distributed over different /16 subnets. The adversary should be
distributed in order to work around I2P’s restriction of one node per subnet per
tunnel and to provide reasonably well-performing malicious peers as neighbors
regardless of the location of the victim on the Internet. Each of the participating
peers is expected to have resources comparable to typical normal peers in the
I2P network. The peers participate in the I2P network according to the network
protocol. Our adversary does not have the capability to monitor the traffic of

Table 1: Key technical differences between Tor and I2P.

Tor I2P

3-hop tunnels user-configurable, randomized number
of hops

bi-directional tunnels uni-directional tunnels

guards, bandwidth-based peer selection performance-based peer selection

7 directory servers with complete data super-peer DHT (floodfill peers)

link- and layered-encryption, but not
(necessarily) end-to-end-encryption

end-to-end-, link- and layered-
encryption

many exit nodes, few hidden services one exit node, many integrated services

hidden services are external TCP
servers

build-in servers for many services

implemented in C implemented in Java

transport over TCP only transport over TCP or UDP

any other node. Our attack influences the performance of I2P peers likely to be
chosen by the host of an Eepsite — the victim — for creating its client tunnels.

The goal of the attacker is to identify the peer “anonymously” hosting a
given Eepsite with high probability. Furthermore, it is assumed that the Eepsite
is available to the entire I2P network for the duration of the attack and hence
resists intersection and partitioning attacks.

For our attack, the adversary uses three types of peers (illustrated in Fig. 3).
The first type, a monitor peer, simply participates in the I2P network as “nor-
mal” peer, but reports certain statistics about tunnel operations back to the
adversary. The most expensive operation (in terms of time and/or bandwidth)
is getting the victim to select these monitor peers as its direct neighbors during
tunnel construction. While there is always a (small) chance that the victim will
select the adversary’s monitor peers, the adversary uses a second type of peer,
an attack peer (which performs a limited type of DoS attack) to influence the
victim’s tiers to the adversary’s benefit. Note that, in contrast to [11], the goal of
the attack is to change the fast tier, not to impact the availability or reachability
of the Eepsite. Finally, the adversary also uses one peer to act as a “normal”
visitor to the Eepsite, querying the I2P NetDB for leaseSets and issuing HTTP
requests to the Eepsite. The leaseSets are used to determine which peers should
be attacked (by the attack peers), and the HTTP requests are used to create a
pattern which is detected by the monitor peers.

3.1 Distributed Monitoring

The main goal for the adversary is to control the nodes closest to the victim in
the inbound and outbound tunnels of the Eepsite. I2P never picks two nodes
from the same /16 network for the same tunnel twice. This makes it highly
beneficial to use a distributed attacker that deploys monitor nodes across many
/16 networks.

receiving tunnel
participation
information

Deciding which
peers attack whom

Control
Server

I2P

I2P Network

at
tack

attack

att
ac

k ?

a
t
ta
ck

sending tunnel
participation
information

sending tunnel
participation
information

a
ttack

sending attack
controls

1.leases
 lookup

Other I2P nodes

Controlled I2P nodes

Attack peers using their resources to attack peers

? Victim Host of Eepsite

Monitor peers trying to get picked from host of Eepsite

I2P nodes under attack, due to the
probability of performing well for
the host of the Eepsite

Fig. 3: Our attack on I2P uses several participating peers in different roles. Monitor
peers gather statistical evidence, attack peers accelerate getting the monitor peers into
the right position and the control server orchestrates activities.

The attacker needs to only control the guard node and not multiple nodes per
tunnel. Still, it is necessary to distribute the attacker across many /16 networks
because for inbound tunnels, the guard node is the last node being chosen. So
if the attacker’s monitor nodes were all from the same /16 network, none of
the attacker’s monitor nodes must have been picked previously to participate
in the tunnel before the guard node is selected in order to allow I2P to pick
an attacker’s monitor node as the guard node. If tunnels are of length n and
the adversary controls a out of s (where s = 30 for the current version of I2P)
monitor peers from the same /16 network in the victim’s fast tier, the probability
of being chosen as guard node would be only

(
a
s

)n if all monitor peers are from
the same /16 network. Even for small values of n, the attacker’s /16 network
would be blocked from being selected as the guard node most of the time. Since
our attacker distributes his monitor nodes over many /16 networks, the chance
of successfully becoming a guard node for the incoming tunnel is a

s , independent
of the path length n.

3.2 Taking over the Victim’s Fast Tier

The main challenge for the adversary is to force the victim to use the adversary’s
monitoring peers in its fast tier. Naturally, this requires the adversary to run

several well-behaved and fast (monitor) peers. Clearly, depending on the size
of the I2P network, just having a few monitor peers participate in the network
would make it unlikely that the victim chooses these peers. Our attack takes
advantage of the peer selection algorithm of I2P, which tries to select only well-
performing peers for the tunnels. Thus, the adversary can increase its chances of
entering the victim’s fast tier by actively hampering the performance of the peers
that are currently in the fast tier. While our goal is to enter the victim’s fast tier,
I2P’s use of the highest observed speed over the last 24h makes it impractical
to remove peers from the fast tier directly. Furthermore, the adversary may not
be able to simply perform faster than the fastest s peers in the network — not
to mention the victim may normally take a long time to even evaluate nodes
controlled by the adversary. Thus, our attack makes use of the fact that I2P
only allows high-capacity peers to remain in the fast tier; as a result, our attack
influences the peer selection algorithm by causing peers to reject tunnels, which
in turn makes it likely that they will be removed from the high-capacity tier
(and thereby also the fast tier). This increases the chance that the victim will
then select the adversary’s monitoring peers as replacements.

Before the adversary can get peers from the victim’s fast tier to reject tunnel
requests, the current nodes in the victim’s fast tier must be identified. Our
attack uses nodes that were recently specified in the leaseSet of the Eepsite as
good targets. After all, nodes that are in the leaseSet must be in the fast tier
of the victim at that time, and are thus likely to remain in the fast tier for a
while. We found that this method worked better than trying to predict the fast
tier from performance measurements done by adversarial nodes.

Given a (small) set of peers that are likely in the fast tier, the adversary
performs a denial-of-service (DoS) attack against these peers. Possible venues
we considered were attacks against the CPU (by forcing the victims to perform
many public key operations) and bandwidth exhaustion. In the end, overloading
the peers with a large number of idle tunnels turned out to be the most cost-
effective strategy for the current I2P release. This attack either exhausts the
amount of bandwidth the peer is configured to use, or, if that limit is rather
high, creates more than the 2500 tunnels that an I2P peer can participate in at
any time. It should be noted that the specifics of the DoS attack are not terribly
relevant to the big picture of the attack, and alternative strategies would likely
work as well.

3.3 Confirmation via Traffic Analysis

The final step of the attack is to observe the victim’s participation in a pair of
tunnels carrying the adversary’s signal with monitor peers adjacent to the victim
in both directions.

There are many established traffic analysis techniques to confirm that two
endpoints are participating in the same low-latency tunnel [6, 7]. Existing theo-
retical models typically assume that a single message moves through the tunnel
largely unmodified with only small chances of message loss. For I2P, the situ-
ation is a bit different; HTTP requests are explicitly converted into an HTTP

responses, and, moreover, individual HTTP requests result in two distinct peaks
in the packet frequency plots (see Fig. 5 (a)). Thus, we deployed a simple,
application-specific method for detecting this particular traffic pattern instead
of using more complex, generic methods that do not incorporate this domain
knowledge.

Control
Server

I2P

I2P
victim

Eepsite

}
Δt

} } }

Requesting
the Eepsite

?

?

?

?

Current Outbound tunnel

Current inbound tunnel

} } } }

} } } }

possible request
from others

own
request

sending tunnel
information

sending tunnel
information

Δt Δt Δt

Δt Δt Δt Δt

Δt Δt Δt Δt

Fig. 4: A periodic signal is induced by the control server and detected by the monitor
nodes. They report likely Eepsite hosts to the control server which aggregates the
information.

A periodic HTTP request at a fixed frequency t is issued by the adversary’s
control server to create a statistical pattern that is then used to identify the
correct tunnels at the monitor peers (Fig. 4). For our experiments we use t = 15s.
For each tunnel, each monitoring peer counts the number of packets received
in buckets representing time intervals of packet arrival times modulo t. If the
total number of packets is smaller than those transmitted by the adversary
to the Eepsite, the circuit is ignored. If the number of packets is close to or
exceeds the expected number, the monitoring peers compute how many standard
deviations the largest bucket size is from the average bucket size. If the resulting
factor is large, the packets were not equally distributed. Then, to exclude false-
positives from short, non-periodic bursts, the monitoring peers perform the same
calculation, this time for a time interval modulo q where gcd(t, q) = 1 and |t− q|
is small (we use q = 16s). If the signal had a frequency of t, the resulting factor

should be very small; however, if a burst caused a false-positive, the resulting
factor should be about as big as for the calculation modulo t. If the distribution
is normalized modulo q, the tunnel is reported to the adversary as detected.
If two monitoring peers report a peer between them at the same time, that
peer is flagged as likely to be the Eepsite host. The sensitivity used for the
standard deviation factor threshold determines how often the same peer needs
to be flagged before the adversary can be certain.

4 Experimental Results

In this section, we present results from our experiments based on extending the
extant I2P network with 70 “malicious” nodes (corresponding to less than 3.6%
of the nodes in the network) on PlanetLab [12]. Monitor and attacker peers were
configured to use at most 64 kb/s upstream and downstream bandwidth. We set
up the control peer on a machine we controlled to minimize jitter. Furthermore,
one of our peers was set up to host an Eepsite to serve as a victim for testing.
This host was configured to use the standard I2P bandwidth settings (96 kb/s
downstream and 40 kB/s upstream).

All tests were performed by having all of our peers join the live I2P network
and participate normally (except, of course, for attack-specific behavior). For
our tests, we used 40 attack peers and 30 monitor peers. The 40 attack peers
consistently utilized their 64 kb/s bandwidth; utilization of the 30 monitor peers
differed widely depending on how they were used by normal I2P traffic. The I2P
network contained at least 1921 peers at the time of our experiments.

We should note that the main impact of our experiments on the public I2P
network was that a small fraction (about 1–2%) of the network was slowed down
for a few hours. No personally identifiable information was collected. Despite our
expectation that the impact of the experiment on the network would be small,
an I2P developer did notice “strange” behavior (a significant increase in tunnels
and traffic) when his node was (by chance) chosen as one of the targets for
the attack. Those members of the I2P community we interacted with generally
approved of us doing these kinds of (limited) experiments on I2P. Naturally, given
an open community of anonymous participants, asking for everyone’s approval
is not possible.

4.1 Tier Evolution

First, we wanted to see how well the adversary would be able to predict the
victim’s fast tier from the public leaseSets for the Eepsite. This determines how
much of the attack actually has a chance to have an effect on the victim’s peer
selection algorithm. Table 2 shows what fraction of the last n peers observed in
the leaseSet were actually in the fast tier of the victim at the time. We configured
the victim to use only one inbound and one outbound tunnel (I2P’s default is two
tunnels for each direction). This configuration captures the worst case scenario
from the point of view of the adversary; with more tunnels, more leases could
be learned and the adversary would get a better picture of the victim’s fast tier.

Table 2: Accuracy of the prediction for peers in the fast and high-capacity tiers using
the n most recently observed peers from the lease set. The given percentage refers to
the fraction of the peers from the n most recent leases that are actually in the respective
tier. The fast tier typically consists of s = 30 peers, the high-capacity tier typically
has 75 peers. At the time of the measurement, the I2P network contained at least 1921
peers in total.

leases % nodes from lease set
(most recent) in fast tier in high-capacity tier

5 60% 60%

10 40% 50%

15 40% 47%

20 45% 55%

25 36% 52%

30 30% 50%

4.2 Attack Effectiveness

Next, we determined the impact of the DoS attack, first on the attacked peers
(to confirm that the attack works as expected), and then on peer fluctuation
in the fast and high capacity tier. Table 3 shows the impact of our attack on
a single peer. It compares the tunnel request acceptance rate of an ordinary
peer with the acceptance rate when that peer is attacked by several attackers.
Table 4 shows the typical churn rate for peers in the high-capacity and fast tiers
of the victim in two states: under normal operation, and under attack. The data
corresponds to the adversary attacking the last 30 peers observed as leases (with
the expected inaccuracies as listed in Table 2). The data shows that the DoS
attack is effective at obstructing tunnel operations and that the victim reacts
to these obstructions by replacing peers in its high-capacity and fast tiers more
often.

Table 3: Direct impact of the tunnel acceptance rate of a peer under attack from
various number of attackers with a configured bandwith limit of 64 kb/s. Note that an
increasing number of attackers not only causes the peer under attack to reject tunnels,
but additionally causes requests for tunnels to be lost and hence not be answered at
all.

under attack, number of attackers

normal 2 3 5 7 10

Tunnels accepted 82% 63% 52% 16% 9% 1%

Tunnels rejected 18% 36% 41% 40% 36% 28%

Tunnels lost 0% 1% 7% 44% 55% 71%

Table 4: Impact of the DoS attack on the network using 40 peers with a configured
bandwidth limit of 64 kb/s. This table shows the increase in the churn for the high-
capacity and fast tiers of the victim that the attacker tries to deanonymize. Each
value represents the churn of nodes per 45 seconds tier evaluation cycle of the victim.
Note that the attack uses our (limited-precision) leaseSet-based prediction heuristic
(Section 3.2) to determine which peers to attack. If the attacker could be certain about
which peers are in the respective tiers, the increase in churn would be significantly
higher. Monitor peers provided by the attacker are not subjected to the attack.

normal under attack

High-capacity tier churn 0.89 peers/cycle 3.41 peers/cycle

Fast tier churn 0.76 peers/cycle 1.71 peers/cycle

(a) (b) (c)

Fig. 5: Subfigure (a) shows a packet frequency plot for a circuit containing the signal
(with timestamps calculated modulo the correct modulus t). Subfigure (b) shows the
same packet frequency plot, but with timestamps calculated modulo a different mod-
ulus q. Finally, Subfigure (c) shows a packet frequency plot for a typical circuit not
created by the adversary. In all plots, average and standard deviation are calculated
over the distribution excluding the two largest values (since we expect two peaks).

4.3 Deanonymization

Finally, we measured how effective our statistical analysis is at determining the
victim once the monitor peers are in place. First, we will provide some examples
for what the statistical patterns observed by the monitor peers (Section 3.3) look
like. Figure 5a shows a representative pattern for the case where the adversary
observes the correct circuit with the signal and performs the statistical analysis
using the correct modulus (here t = 15). Internals of the I2P implementation
typically create two distinct (and close) peaks if the signal is present. Since
we expect to see these two peaks, we remove them from the distribution when
calculating the average and standard deviations.

Figure 5b shows the same data using a different modulus (here q = 16),
resulting in the peaks being destroyed. This would not be the case if the signal
was not due to requests at the adversaries frequency of t. Sometimes, a circuit
may experience spikes in load at a single point in time. Such spikes would show

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
r
u
e

P
o
s
i
t
i
v
e

R
a
t
e

False Positive Rate

1 Std. Dev.

2 Std. Dev.

5 Std. Dev.

10 Std. Dev.

(a) 1-hop tunnel

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
r
u
e

P
o
s
i
t
i
v
e

R
a
t
e

False Positive Rate

1 Std. Dev.

2 Std. Dev.

5 Std. Dev.

10 Std. Dev.

(b) 2-hop tunnel

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
r
u
e

P
o
s
i
t
i
v
e

R
a
t
e

False Positive Rate

1 Std. Dev.

2 Std. Dev.

5 Std. Dev.

10 Std. Dev.

(c) 3-hop tunnel

Fig. 6: Final result of the statistical analysis. For each tunnel length, the monitor peers
collected 4h worth of data. During this time, the victim created 40, 48 and 34 tunnels
for 1-hop (Fig. 6a), 2-hop (Fig. 6b) and 3-hop (Fig .6c) tunnels respectively. The true-
positive rates represent the fraction of those tunnels flagged by the statistical analysis
for the given threshold. The monitor peers also observed a varying number of other
tunnels (with a sufficient number of packets) unrelated to the victim (14,823 for 1-hop
(Fig. 6a), 11,861 for 2-hop (Fig. 6b) and 5,898 for 3-hop (Fig. 6c)). The false-positive
rates represent the fraction of those tunnels flagged by the statistical analysis for the
given threshold. We marked the 1, 2, 5 and 10 standard deviation thresholds in the
charts.

up as false-positive signals mod t, but also as spikes mod q. Our analysis
eliminates these false-positives by only considering signals valid that show up
mod t but are extinguished mod q.

Finally, Figure 5c shows a typical pattern for a circuit that does not contain
the signal. It should be noted that during our experiments, most circuits never
reached the required minimum number of messages (approximately the number
of messages transmitted by the adversary via the tunnel) and were hence filtered
long before this statistical analysis is even performed. As a consequence, the
adversary also does not have to worry about small sample sizes for calculating
averages and standard deviations.

Figure 6 shows the ROC curves with the ratios for true-positives and false-
positives for different standard deviation thresholds (in the range of 0 to 10
standard deviations). Tunnels with too few packets to carry the adversary’s
signal are not considered; for instance, for the 1-hop experiment, 47,503 out of
62,366 tunnels (76%) did not carry a sufficient number of packets. If such tunnels
were included, the false-positive rate of the analysis would be lower.

The data from Figure 6 was obtained over the course of four hours with
the victim manipulated to give the attacker control over the entire fast tier
(to control this variable in the experiment). In practice, during a long-term
measurement the adversary would not know at what times his monitor peers
are in the correct position, making false-positive measurements more frequent.
If the adversary is weak, he might rarely be in the correct position and hence
would need to apply an aggressively high threshold to avoid false-positives. For
example, if the adversary is only able to observe the signal 10% of the time, the

ratio between the target and the top FP peer must be significantly larger than
10:1 to avoid identifying the wrong peer as the host.

Using a threshold of just one standard deviation would be a bit low, given
that the adversary must expect many more non-victim tunnels over the duration
of an experiment. During our experiment, the ratio was 40:14,823 for the 4h
measurement with 1-hop tunnels. In reality, the adversary should expect even
higher ratios because the adversary is likely to control a smaller fraction of the
fast tier of the victim. Figure 6 shows that the signal is strong enough to be
detected even when using a wide range of thresholds that are so high that there
are virtually no false-positives. There are also no significant differences in the
quality of the results between 1, 2 and 3-hop tunnels. Additional experimental
results are included in [4].

5 Discussion

This work confirms the well-known result [1] that attacks on availability or reli-
ability of an anonymizing service can be used to compromise anonymity. What
we have shown specifically is that anonymizing networks that have a strong bias
towards well-performing peers for tunnel construction are particularly vulner-
able to this type of attack. Once the tunnel is compromised, other researchers
have shown that latency measurements could be used to determine the likely
identity of the victim [5].

5.1 Simplifying the Attack

The presented attack uses both monitor peers and attack peers. In theory, the
attack could work without the attack peers, after all, the attack peers only speed-
up the churn rate in the fast and high-capacity tiers of the victim. However,
without attack peers, it is quite possible that the victim may rarely, if ever,
choose the adversary’s monitor peers: they might be too slow or not even ever
measured by the victim.

In our attack, the attack peers more than doubles the churn in the fast tier,
so we can expect that they cut down the time for the attack by about a factor
of two. Using twice as many monitor peers would have been about as expensive;
thus using a small number attackers to double the effect of the monitor peers
represents a reasonable trade-off (as long as doubling the monitor peer effect
is about as expensive as doubling the number of monitors). Using even more
attackers would allow us to attack more peers; however, given that our knowledge
about the fast tier of the victim is limited, the ratio between attack bandwidth
and attack effect quickly gets worse. Using significantly fewer attacker peers also
does not work — at 64 kb/s, a handfull of attackers might not cause a significant
increase in the number of rejected tunnel requests.

5.2 Uni-directional vs. Bi-directional Tunnels

Because of the uni-directional nature of the I2P tunnels the attacker has to wait
a longer time to observe the victim in the correct position for deanonymization;
monitoring peers have to be in the correct position for both the inbound and the
outbound tunnel. Thus, with a being the number of monitor peers in the fast tier
of the victim, the probability for deanonymization in a fast tier of size s is

(
a
s

)2.
For bi-directional tunnels the attacker would only need one peer in the correct
position, resulting in a probability of a

s . This shows that the attacker has to wait
t times longer to be in a position to confirm the victim in the uni-directional
case when compared to the bi-directional case.

However, the chance of being correct about the deanonymization is different
for both cases as well. To really compare the two styles, we need to consider
the probability of deanonymizing the wrong peer (false-positive). For the uni-
directional case, it is possible to accuse the wrong peer if the same ordinary
tunnel participant happens to be adjacent to the victim for both the inbound
and the outbound tunnel. For this to happen, the peer running the Eepsite has
to first choose an ordinary, non-malicious peer for the first hop of the inbound
tunnel. This happens with probability a−s

s . The same peer then also needs to
be in the outbound tunnel, which happens with probability 1

s . Additionally, the
victim has to choose a monitor peer for the second hop of the inbound and the

outbound tunnel, which happens with probability
(

a
s−1

)2

. Combining all these
probabilities, the probability for false-positives with uni-directional tunnels is:

s− a

s

1
s

(
a

s− 1

)2

=
s− a

s2

(
a

s− 1

)2

≈ a2 s− a

s4
(1)

With bi-directional tunnels, the probability for a false-positive is higher, be-
cause any other peer between a monitor peer and the victim can be falsely
accused. The overall probability for a bi-directional 2-hop tunnel is:

s− a

s

a

s− 1
≈ a

s− a

s2
(2)

We now relate the probabilities for getting a false-positive for uni-directional
and bi-directional tunnels. Dividing (1) and (2) we get a

s2 , which shows that the
accuracy for the uni-directional case is up to s2 times higher when compared to
the bi-directional case.

This result indicates that uni-directional tunnels help an attacker due to
the much higher certainty an attacker gets once the monitor peers are in the
correct position. Considering this, using uni-directional seems to be a bad design
decision; it makes the statistical evaluation for the adversary easier for the attack
presented in this paper. However, it should be said that the false-positive rate
of bi-directional paths is not tremendously high and might still be manageable
for an attacker.

5.3 Suggestions for Improvements to I2P

While making the I2P network more robust towards DoS attacks is always a
good goal, we do not believe that this would address the main problem: the
ability of the adversary to influence peer selection. While I2P’s heuristics seem
to make it hard for an adversary to directly influence the metrics used for peer
selection, influencing performance itself is likely always possible. Hence, a better
solution would be to limit churn in the fast and high-capacity tiers. Furthermore,
when the Tor network was subjected to a similar attack [10], guard nodes were
introduced into the design of Tor; this would also help in the case of I2P.

Another problem is the fact that Eepsites allow repeated measurements, giv-
ing the attacker the opportunity to possibly collect data for many months. This
problem is not unique to I2P, but also applies in exactly the same way to Tor’s
hidden services. The I2P developers are currently working on integrating a ver-
sion of the secure distributed Tahoe filesystem [14], which may address this issue.

I2P could try to detect the specific attack, for example by watching for peri-
odic requests. However, such a defense would likely not be effective because an
adversary could use signals that are much harder to detect, for example using [6].

Most importantly, I2P should avoid leaking information about its fast tier
by selecting random peers for the leases. This would make it harder for an
adversary to determine which peers should be attacked with the DoS attack
while maintaining performance advantages for the rest of the tunnel.

6 Conclusion

Biasing peer selection towards well-performing peers has previously been seen
as a mostly theoretical issue. This work shows that combined with a limited,
selective DoS attack on a few peers it enables an adversary to compromise
the anonymity of long-running services. This work also shows that peers re-
acting quickly to changes in observed network performance can be detrimental
to anonymity.

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under
ENP GR 3688/1-1. We thank Katie Haus for her help with the figures and
Nathan Evans, Matthew Wright and the anonymous reviewers for their feedback
on the paper.

References

1. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or denial of secu-
rity? How attacks on reliability can compromise anonymity. In: CCS ’07: Proceed-
ings of the 14th ACM conference on Computer and communications security. pp.
92–102. ACM, New York, NY, USA (October 2007)

2. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

3. Evans, N.S., Dingledine, R., Grothoff, C.: A practical congestion attack on tor using
long paths. In: 18th USENIX Security Symposium. pp. 33–50. USENIX (2009)

4. Herrmann, M.: Privacy-Implications of Performance-Based Peer Selection by
Onion-Routers: A Real-World Case Study using I2P. Master’s thesis, Technische
Universität München (2011)

5. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network
latency leak? ACM Transactions on Information and System Security 13(2) (Febru-
ary 2010)

6. Houmansadr, A., Borisov, N.: Swirl: A scalable watermark to detect correlated
network flows. In: NDSS 2011 (2011)

7. Levine, B., Reiter, M., Wang, C., Wright, M.: Timing attacks in low-latency mix
systems. In: Juels, A. (ed.) Financial Cryptography, Lecture Notes in Computer
Science, vol. 3110, pp. 251–265. Springer Berlin / Heidelberg (2004)

8. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the xor metric. p. 53–65 (2002)

9. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: SP ’05: Proceed-
ings of the 2005 IEEE Symposium on Security and Privacy. pp. 183–195. IEEE
Computer Society, Washington, DC, USA (May 2005)

10. Øverlier, L., Syverson, P.: Locating hidden servers. In: SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy. pp. 100–114. IEEE Computer
Society, Washington, DC, USA (May 2006)

11. Øverlier, L., Tong, L.: Valet services: Improving hidden servers with a personal
touch. In: Danezis, G., Golle, P. (eds.) Proceedings of the Sixth Workshop on Pri-
vacy Enhancing Technologies (PET 2006). p. 223–244. Springer, Springer, Cam-
bridge, UK (June 2006)

12. Peterson, L.: PlanetLab: Version 3.0. Tech. Rep. PDN–04–023, PlanetLab Consor-
tium (October 2004)

13. Syverson, P., Goldschlag, D., Reed, M.: Anonymous Connections and Onion Rout-
ing. In: IEEE Symposium on Security and Privacy. pp. 44–54. Oakland, California
(4–7 1997)

14. Wilcox-O’Hearn, Z., Warner, B.: Tahao – the least-authority filesystem. In: Pro-
ceedings of the 4th ACM international workshop on Storage security and surviv-
ability. ACM (2008)

15. zzz, Schimmer, L.: Peer profiling and selection in the i2p anonymous network. In:
PET-CON 2009.1. TU Dresden, Germany (03/2009 2009)

