
Differentially Private Continual Monitoring of Heavy
Hitters from Distributed Streams?

T-H. Hubert Chan, Mingfei Li, Elaine Shi??, and Wenchang Xu

Abstract. We consider applications scenarios where an untrusted aggregator wishes
to continually monitor the heavy-hitters across a set of distributed streams. Since
each stream can contain sensitive data, such as the purchase history of customers,
we wish to guarantee the privacy of each stream, while allowing the untrusted
aggregator to accurately detect the heavy hitters and their approximate frequen-
cies. Our protocols are scalable in settings where the volume of streaming data
is large, since we guarantee low memory usage and processing overhead by each
data source, and low communication overhead between the data sources and the
aggregator.

1 Introduction

Consider k data streams at k data sources, where items from some set U arrive at each
stream. An untrusted aggregator wishes to continually monitor the most recent heavy
hitters (i.e. the frequent items) over a sliding window – however, the data sources do
not trust the aggregator, and wish to guarantee the privacy of their data streams. For
example, a public health provider would like to monitor the potential outbursts of new
epidemics (where the heavy hitters are the most common symptoms or diseases) by
studying hospital visit records from k hospitals. Since medical records contain highly
sensitive information, the hospitals may be legally obliged to protect their patients’ pri-
vacy from the third-party public health provider. In Figure 1, we show another example
where each stream represents a store, and the aggregator wishes to track the most pop-
ular items in the past week.

1.1 Results and Contributions

In this paper, we propose novel protocols that allow an untrusted aggregator to contin-
ually monitor the heavy hitters over a sliding window of duration W , while protecting
the privacy of each data source. Since the aggregator is untrusted and there is no sin-
gle trusted entity, standard privacy frameworks like PINQ [17] cannot be used directly
in our distributed setting. In our protocols, each data source periodically sends sani-
tized (and potentially also encrypted) updates to the aggregator in order to notify the
? T-H. H. Chan, M. Li: The University of Hong Kong; E. Shi: UC Berkeley; W. Xu: Tsinghua

University
?? This material is based upon work partially supported by the Air Force Office of Scientific

Research under MURI Grant No. 22178970-4170 and No. FA9550-08-1-0352. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the funding agencies.

Stream 1

Store 1

Stream 2
Sanitized Updates

This week’s
popular items:

…
… Untrusted

Store 2

…

Aggregator

Stream k

Store k

Fig. 1. Problem setup. In this example, k stores wishes to continually monitor the popular items
over the past week. The aggregator is assumed to be untrusted; and the stores may be concerned
about protecting their secret business information such as sales revenue, and protecting the pri-
vacy of their customers.

aggregator of latest trends as observed by the data source. The aggregator is then able
to reconstruct the most recent popular items and their respective frequencies through
these sanitized updates.

We conduct experiments using the Netflix Contest Dataset, and demonstrate that
our algorithms can achieve low communication bandwidth and good utility in realistic
application scenarios. We next explain the privacy guarantees and desirable features
that our constructions achieve.

Two Levels of Privacy Protection. We propose protocols that achieve the following two
different aspects of privacy.
Event-level differential privacy. Our first construction, referred to as the PDCH-LU al-
gorithm (which stands for Private Distributed Continual Heavy-hitter - Lazy Update),
achieves event-level differential privacy. Roughly speaking, the sanitized updates re-
leased should be insensitive to the occurrence or non-occurrence of a single event.
Intuitively, event-level differential privacy allows a store to guard the privacy of its
customers, by concealing whether a certain purchase has taken place.

In our constructions, we achieve event-level differential privacy through the addition
of appropriate noises before the release of any statistics. Note also that ε event-level
differential privacy immediately implies mε user-level differential privacy, where m is
the maximum number of items for each user.
Aggregator obliviousness. Through the use of bloom filters and special encryption
schemes, our second protocol, referred to as PDCH-BF (which stands for Private Dis-
tributed Continual Heavy-hitter - Bloom Filter), achieves even stronger privacy guar-
antees: specifically, it achieves aggregator obliviousness in addition to event-level dif-
ferential privacy.

On a high level, aggregator obliviousness advocates the need-to-know principle, i.e.,
the aggregator should ideally learn the least amount of information necessary to perform
the heavy-hitter monitoring task. Specifically, in our second construction PDCH-BF,

apart from the approximate frequencies of a subset of the relatively more popular items
across all streams, the aggregator learns nothing else.

To achieve aggregator obliviousness, our second protocol PDCH-BF employs bloom
filters, as well as special encryption schemes [15, 20, 21] which support secure aggre-
gation and controlled decryption of selective statistics.

Notice that aggregator obliviousness immediately implies the following: 1) in the
example in Figure 1 the aggregator can learn the approximate frequencies of (a subset
of) the items, but it cannot learn the transaction volume of each individual store which
may be considered secret business information; and 2) although the aggregator can
learn which the heavy hitters are and their approximate frequencies across all streams,
the aggregator fails to learn which streams are contributing to these heavy-hitters, and
how much each stream is contributing to these heavy hitters.

A more detailed discussion of our privacy notions and their nuances can be found
in Section 2.3.

Low Computational and Communication Overhead. Our protocols require only a small
amount of computation and memory from each data source. To process an item from
the stream, a data source needs to update only a small number of counters; and in each
time step, it needs to sample only a small number of random variables. This is desirable
in numerous application settings – for example, in sensor network applications, where
each node has low computational resources; or network intrusion detection scenarios,
where routers cannot afford expensive real-time computation due to the large bandwidth
throughput.

Our protocols also requires low communication costs between the data sources and
the aggregator. Moreover, all communications are uni-directional from the data sources
to the aggregator, and the data sources need not have interactions among themselves. In
contrast, generic secure multi-party computation construction [13] requires expensive
interactive communication between the data sources.

1.2 Related Work

Our work builds on several well-known lines of research. We describe some of the
works that are the most related to ours and refer the readers to the cited references for
more extensive review on the relevant research areas.
Differential Privacy in Continual Setting. Ever since Dwork [7] has introduced dif-
ferential privacy, this notion has gained popularity in both the theory and security com-
munities (see [8] for a quick review of the latest development). The idea of introduc-
ing randomness to perturb the outputs of algorithms allows a clean and formal way to
analyze the tradeoff between preserving input privacy and achieving output accuracy.
Recently, privacy has been studied in the continual setting [5, 9, 10]. Specifically, a
change in the input in the current time step would not only affect the output in the cur-
rent time step, but also might have a long lasting effect in the future. Useful continual
differentially private algorithms would need to mask this long term effect without sac-
rificing too much on accuracy. Chan et al. [5] gave a differentially private mechanism
to continually report the number of 1’s seen so far in a bit stream with additive error
that is polylogarithmic in the number of time steps. In the streaming model, Dwork et

al. [10] also distinguish between event-level privacy and user-level privacy: event-level
privacy hides the occurrence of a particular event, while user-level privacy prevents
adversaries from determining whether the stream contains any of a particular user’s ac-
tivities at all. In this paper, we use event-level differential privacy as our privacy notion.
Mir et al. [18] also considered the problem of private streaming algorithms to return
the counts of heavy hitters, not the heavy hitters themselves. However, they consider a
more general setting in which in each update, the counter of an item can be increased
or decreased arbitrarily, as long as the counter remains non-negative. Moreover, their
notion of privacy hides the following change in the stream: any subset of occurrences
of an item can be replaced with another item, and remaining updates can be arbitrarily
reordered; on the other hand, the total count of all items is public knowledge in their
setting.
Untrusted Aggregator. There have been works on studying the case when the aggre-
gator is untrusted [15, 20, 21], where cryptographic techniques are employed. We first
consider protocols in which each node will desensitize its data first so that cryptography
will not be necessary; in order to achieve a stronger notion of privacy and security, we
augment our protocols by employing cryptographic techniques.
Streaming Algorithms for Heavy Hitters. The first algorithm to output frequent items
was given by Misra and Gries [19] (MG algorithm). They designed a deterministic
algorithm that reads a stream of W items and at the end gives the count of every item in
the stream with relative error λ (i.e., additive error at most λW); the algorithm only uses
O(1λ) words of memory. The MG algorithm was rediscovered several times [6, 14].

Using the MG algorithm concurrently on overlapping blocks of different sizes,
Arasu and Manku [1] gave a deterministic algorithm that continually estimate the count
of every item with relative error λ with respect to the current window; the query and
the update time is O(1λ log 1

λ), while O(1λ log2 1
λ) words of memory is required. They

also gave a randomized version, where both the time and the memory is O(1λ log 1
δλ),

where δ is the failure probability.
Lee and Ting [16] augmented the counters in the MG algorithm to include ap-

proximate positions of where items occur, and consequently they improved Arasu and
Manku’s algorithm performance to O(1λ), for both running time and memory require-
ment.
Distributed Streaming Protocols with Low Communication Cost. In the distributed
streaming model, each of k nodes receives its own stream, and the nodes communicate
with the aggregator, who wishes to estimate the number of times each item appears in all
the streams in the current window with relative error λ. Yi and Zhang [22] considered
the special case with infinite window size and gave a 2-way communication (between
nodes and aggregator) protocol with total communication cost of O(kλ logN) words,
where N is the total number of items arriving at all streams. Chan et al. [3] considered
the case of a sliding window, and gave a one-way communication (from nodes to ag-
gregator) protocol. Under the special case of exactly one item arriving in each time step
for each stream, the communication cost for their protocol in L consecutive time steps
is O(kλ ·

⌈
L
W

⌉
logW) words.

Related Notion of Privacy. In Gantal et al. [11], it is mentioned that Dwork and Mc-
Sherry proposed semantic privacy which measures how the posterior distribution on

the database changes after the transcript is observed. In particular, it is shown that ε-
differential privacy implies (eε − 1)-semantic privacy.

2 Preliminaries

2.1 Notations and Conventions

Given a positive integer m, we let [m] := {1, 2, . . . ,m}, and use N := {1, 2, 3, . . .}
to index time steps. Let U be a set of n items. We use the standard notation Õ(·) to
suppress poly-logarithmic factors.

We assume that an integer can be represented by O(1) words. Although later on
we use random distribution on unbounded integers, we show that with high probability
the magnitudes of the sampled integers are small. Hence, we can use modulo arithmetic
over some large enough integer. We do not explicit explain how each data source obtains
its source of randomness, but we assume that it takes O(1) operations to sample a
random variable that is independent of the input data stream.

2.2 Problem Setup

We assume a set of k ∈ N streams, originating at k data sources (also referred to as
nodes) respectively. We assume that each data source only has limited memory and
computational power. Each stream σ(i) ∈ UN where i ∈ [k] is a sequence of items from
U , where σ(i)(t) ∈ U is the item appearing at time step t in the i-th stream.

We consider an untrusted aggregator who wishes to continually monitor the heavy
hitters over a sliding window of size W ∈ Z. Formally, the window at time step t over
stream σ is the multiset Wt(σ) := σ([t −W + 1, t]) containing all items coming to
stream σ between time t −W + 1 and t. Given k streams {σ(i) : i ∈ [k]}, we write
W(i)
t := Wt(σ

(i)) and denote W [k]
t :=]i∈[k]Wt(σ

(i)) as the multiset containing all
items from the k streams in the window at time t.

The notion of heavy hitters is formally defined as below. Given a multiset W , we
use |W| to denote the number of items it contains and for x ∈ U , countx(W) is the
number of times item x appears in W . Given 0 < θ < 1, we say an item x ∈ U is a
θ-heavy hitter in the multisetW if countx(W) ≥ θ · |W|.

Definition 1 (Approximate Heavy Hitters). Given 0 < λ, θ < 1 and a multisetW , a
set S ⊆ U is a λ-approximation for θ-heavy hitters inW if
1. the set S contains all θ-heavy hitters inW; and
2. if x ∈ S, then x is a (θ − λ)-heavy hitter inW .

Definition 2 (λ-approximate Count). Given a multi-setW on items in U , and an item
x ∈ U , an estimate ĉ(x) is called a λ-approximate count for x with respect to W , if
|ĉ(x)− countx(W)| ≤ λ|W|.

Observe that if we have a λ-approximate count for every item x ∈ U with respect
toW , then we can compute a 2λ-approximation for heavy hitters inW .

Communication Protocol. Consider a node receiving some stream σ. At every time
step t, upon receiving the item σ(t), the node might send messages to the aggregator to
update some counters. In the protocols that we consider, each message contains items
of the form c ∈ Z or 〈x, c〉 ∈ U × Z, each of which we assume can be expressed in
O(1) words. Given a (randomized) protocol Π , we denote by Π(σ) the (randomized)
transcript which consists of the messages sent at every time step by the node that applies
the protocol on the stream σ. We wish to reduce the amount of communication, say the
average number of words sent per time step.

Remark 1. In order to show that each item count has small relative error, we need a
lower bound on the total number items in the finite stream to absorb the noise error.
Moreover, the way in which we use PMG in combination with Arasu and Manku’s
algorithm [1] for fix-sized windows requires the assumption that exactly one item comes
in the stream at every time step.

2.3 Defining Privacy

As mentioned earlier, we define our privacy notions based on the following principles:
1) We advocate a need-to-know principle, the aggregator should ideally learn the least
amount of information necessary to perform the heavy hitter monitoring task. 2) While
the amount of information revealed to the aggregator is kept at a minimum, the in-
formation eventually revealed to the aggregator should satisfy event-level differential
privacy. In other words, any statistics revealed should be insentive to the occurrence or
non-occurrence of a single event. Intuitively, this helps to conceal whether some event
of interest has happened, e.g., whether a customer Alice has purchased a specific item.

Below, we formally define differential privacy and aggregator obliviousness.
Differential Privacy. In our setting, each node regards the contents on its stream as
private data. In particular, from the transcript of a node, the aggregator should not be
able to distinguish between input streams that are close to each other. Formally, two
different streams σ1, σ2 ∈ UN are adjacent or neighbors (denoted as σ1 ∼ σ2) if they
differ at exactly one time step. We use the notion of event-level differential privacy for
protocols.

Definition 3 (Differential Privacy for Protocols). Given ε > 0, a (randomized) pro-
tocol Π is ε-differentially private if for any adjacent streams σ1 and σ2, any subset O
of possible output transcripts, Pr[Π(σ1) ∈ O] ≤ exp(ε) · Pr[Π(σ2) ∈ O], where the
randomness comes from the protocol.

Aggregator Obliviousness. As we shall see, as an intermediate step in our protocols,
each node has some private number and the goal is for the aggregator to learn the sum of
all the nodes’ numbers, but nothing more. Formally, each node has some data in D and
we use x ∈ Dn to denote a configuration of all the nodes’ data. Intuitively, a protocol
Π is aggregator oblivious with respect to some function f : Dn → O if for all x and
y such that f(x) = f(y), no polynomial-time adversary can distinguish between the
transcripts Π(x) and Π(x) with non-negligible probability.

Definition 4 (Aggregator Obliviousness). Let κ ∈ N be a security parameter. A pro-
tocol ensemble {Πκ}κ∈N is aggregator obliviousness with respect to the function f :
Dn → O if there exists a negligible function η : N→ R+ such that for all x and y such
that f(x) = f(y), for all decisional probabilistic polynomial-time Turing machines A,
|Pr[A(Πκ(x)) = 1]− Pr[A(Πκ(y)) = 1]| ≤ η(κ),

where the probability is over the randomness of the protocolΠκ and the Turing machine
A.

2.4 Defining Utility

Recall that for each i ∈ [k], each node i receives some stream σ(i) and follows some
(randomized) protocol to send messages to the aggregator in every time step. Based
on the messages received up to time t, the aggregator computes for each x ∈ U some
number A(t, x), which is an estimate for countx(W [k]

t). Observe that A(t, x) is a ran-
dom variable, whose randomness comes from the randomized protocols. We use the
following notion to measure the usefulness of A(t, ·) with respect toW [k]

t for each t.

Definition 5 ((ξ, δ)-Usefulness). SupposeW is a multiset containing items in U , and
A ∈ RU is a collection of random variables indexed by U . Then,A is (ξ, δ)-useful with
respect toW , if with probability at least 1− δ, for every item x ∈ U ,
|A(x)− countx(W)| ≤ ξ; in particular, if ξ = λ|W|, then A(x) is a λ-approximate
count for x with respect toW .

Definition 6 ((ξ, δ)-Simultaneous Usefulness.). Let T be an index set. Suppose for
any t ∈ T , Wt is a multiset containing items in U , and At is a collection of random
variables indexed by U . Then, {At}t∈T is (simultaneously) (ξ, δ)-useful with respect
to {Wt}t∈T , if with probability at least 1 − δ, for every t ∈ T and every item x ∈ U ,
|At(x)− countx(Wt)| ≤ ξ.

3 Achieving Differential Privacy

3.1 Roadmap

This section describes a protocol between the data sources and an aggregator, allowing
the aggregator to continually monitor the heavy hitters over a sliding window. We will
show how to achieve event-level differential privacy in this section. Later in Section 4,
we show how to achieve aggregator obliviousness.

We proceed with the following three-step recipe:
1. The PMG algorithm outputs the heavy hitters in a single stream. In Section 3.2,

we describe a private streaming algorithm, which allows a single data source to
output the approximate heavy hitters in a stream, after a one-pass scan of the en-
tire stream. Since this algorithm builds on top of the Misra-Gries streaming al-
gorithm [19], we refer to it as the Private Misra-Gries (PMG) algorithm. The MG
Algorithm maintains an approximate vector of item counts by storing only non-zero
counts explicitly for only a small number of items. The main technical challenge
to privatize the MG Algorithm is to show that this approximate vector has small
sensitivity.

2. The PCC algorithm continually monitors the recent heavy hitters in a single
stream. In Section 3.3, we extend the aforementioned PMG algorithm to derive
a Private Continual Heavy-hitter (PCC) algorithm, which supports the continual
monitoring of heavy hitters over a sliding window in a single stream. The main
technique in this step is the use of a binary interval tree which allows us to achieve
small memory when the window size is large.

3. The PDCH-LU protocol continually monitors the recent heavy hitters across
multiple streams. Finally, in Section 3.4, we extend the above PCC algorithm,
which works for a single stream, to the distributed setting. In the resulting protocol
PDCH-LU (Private Distributed Continual Heavy-hitter - Lazy Update), in order to
save communication cost, each data source sends sanitized updates to the aggre-
gator whenever necessary (hence lazy updates), to inform the aggregator of latest
trends in its observed stream. The aggregator can in turn continually output the
approximate heavy hitters across all streams over a sliding window.

3.2 Private Misra-Gries Algorithm

In this section, we consider a sub-problem, which will be a useful building block to
construct the private streaming protocol at a node. Given a stream of length T and an
error parameter 0 < λ < 1, the goal is to estimate the number of times each item in U
appears in the stream with additive error λT .

Our approach is based on the (non-private) MG Algorithm [19], which keeps ex-
plicit counters for only O(1λ) items. Observe that since we accept λT additive error, if
an item x ∈ U appears for less than λT times in the stream, then we do not need to
keep a counter explicitly for x ∈ U and can give an estimate count of zero. Because at
most O(1λ) items can appear for at least λT times in a stream of length T , intuitively it
is sufficient to keep O(1λ) explicit counters. The MG Algorithm makes sure that at any
point in time at most O(1λ) items have explicit non-zero counts. If an item arrives and
we need to create an extra counter, all existing non-zero counters are decremented by
1; this step keeps the number of non-zero counters small. On the other hand, whenever
a non-zero counter of some item x decreases by 1, there are Θ(1λ) other items that also
have their counts decreased by 1. Since this can happen for at most λT times, the final
count for each item has additive error at most λT .

At the end of the MG Algorithm, the output corresponds to a count vector f ∈ ZU ,
which has at most O(1λ) non-zero coordinates. Lemma 2 states that this vector has
sensitivity at most O(1λ), and hence we can apply the techniques of geometric noise to
achieve differential privacy. The properties of the private version of the MG Algorithm
are given in the following lemma, whose proof is given in the full version [4].

Lemma 1 (Private MG Algorithm). Given a privacy parameter ε > 0 and an ap-
proximation parameter 0 < λ < 1, there is a (randomized) mechanism M, denoted
as PMG(ε, λ) (Private Misra-Gries), that takes any finite stream σ and after one pass
outputs a vector f̂ ∈ ZU such that the following properties hold.
1. ε-Differential Privacy: for any adjacent streams σ1 and σ2, any subset O ⊆ ZU ,

Pr[M(σ1) ∈ O] ≤ exp(ε) · Pr[M(σ2) ∈ O], where the probability is over the
randomness from the mechanism.

2. Utility: Suppose 0 < δ < 1, and the length T of the stream σ satisfies T ≥
32
λ2ε log

n
δ . Then, the vector f̂ is (λT, δ)-useful with respect to the multiset σ([T])

of items in the stream.
3. The mechanism uses only O(1λ) words of memory. In particular, at most O(1λ)

coordinates of f̂ are non-zero. Moreover, it takes O(1λ) operations to process each
item, and samples O(1λ) random variables in total.

We modify the Misra-Gries Algorithm [16, 19] to get a counting mechanism, which
we call the Private Misra-Gries Algorithm (PMG) and is given in Algorithm 1. We
outline the main ideas of the algorithm. In the literature, it is common to achieve differ-
ential privacy by adding geometric noise. However, since we want to be careful about
memory usage, we want the output of the mechanisms to be integral. Therefore, we add
noises sampled from symmetric geometric distributions [12].

Definition 7 (Geometric Distribution). Let α > 1. We denote by Geom(α) the sym-
metric geometric distribution that takes integer values such that the probability mass
function at l is α−1

α+1 · α
−|l|.

The following property of symmetric geometric distribution is useful for designing
differentially private counting mechanisms.

Fact 1 Let u, v ∈ Zn be two vectors such that ||u − v||1 ≤ ∆, where ||u − v||1 =∑n
i=1 |ui − vi| is the `1-norm of u− v. Let r ∈ Zn be a random vector whose coordi-

nates are independent random variables sampled from symmetric geometry distribution
Geom(exp(ε∆)). Then, for any vector p ∈ Zn, Pr[u+ r = p] ≤ exp(ε) ·Pr[v+ r = p].

Definition 8 (Sensitivity). Let f : UT → Zn be a function that takes a stream of length
T as input. The sensitivity of f , denoted by ∆(f), is maxσ1∼σ2 ||f(σ1)− f(σ2)||1.

By Fact 1, for any function f : UT → Zn such that ∆(f) ≤ ∆, we can make
its output ε-differentially private by adding independent random noise sampled from
Geom(exp(ε∆)) to coordinates of f . The following lemma explains what parameter one
should use for the geometric distribution in the PMG Algorithm to achieve differential
privacy. We give its proof in the full version [4].

Lemma 2. In Algorithm 1 after Line 10, the function f : UT → ZU has sensitivity at
most β + 1, where β := d 2λe.

3.3 Private Continual Heavy-Hitter Monitoring over a Sliding Window

In this section, we use PMG to construct a differentially private mechanism named
Private Continual Heavy-hitter (PCC), that uses small memory and maintains some
efficient data structure at every time step.

As intuitively illustrated as in Figure 2, we build a binary interval tree, where each
leaf node represents

⌈
λW
4

⌉
(= 1 in the figure) time steps, and each non-leaf node rep-

resents a range of time steps. (Note that Figure 2 only depicts the bottom few levels of
this binary interval tree due to reasons stated below). We refer to each node as a block,

Input: A privacy parameter ε, an approximation parameter λ, and a finite stream σ ∈ UT
of length T .

Output: A vector f̂ ∈ ZU , where f̂(x) is a λ-approximate count of x with respect to
σ([T]) with high probability.

1 For each x ∈ U , f(x) and f̂(x) are (implicitly) initialized to 0;
2 β ← d 2

λ
e;

3 for t← 1 to T do
4 f(σ(t))← f(σ(t)) + 1;
5 if the number of items x such that f(x) > 0 exceeds the threshold β then

// the decreasing step
6 for x ∈ U such that f(x) > 0 do
7 f(x)← f(x)− 1;
8 end
9 end

10 end
// The sensitivity ∆(f) ≤ β + 1

11 for each x ∈ U do
// In the full version, we give a faster procedure that

samples only O(β) random variables and achieves the
same output distribution.

12 Sample a fresh independent noise rx ∼ Geom(exp(ε
β+1

));

13 f̂(x)← max{f(x) + rx, 0};
// we only keep the top β non-zero f̂(x)’s

14 if there are more than β items x with f̂(x) 6= 0 then
15 Let y be the item with smallest non-zero f̂(y) (resolving ties arbitrarily);
16 Set f̂(y)← 0;
17 end
18 end
19 Output f̂ ;

Algorithm 1: Private Misra-Gries Algorithm PMG(ε, λ)

and run the subroutine PMG algorithm for each block, with appropriate privacy and
approximation parameters. To output the heavy hitters for any time range, it suffices to
“sum up” a logarithmic number of blocks in the binary interval tree – since any range
can be represented by the union of a logarithmic number of disjoint blocks. In Figure 2,
since we consider a window size of W = 7, we only need the bottom 3 levels of the
binary tree. The main purpose of the binary interval tree technique is to save memory
and allow faster computation.
Small memory. The amount of memory necessary is Õ(1λ) independent of W . To
achieve this, we use a garbage collection technique, where a data source saves only
the blocks which will later be needed, and discard all “expired” blocks which will no
longer be needed. As shown in Figure 2, at any point of time, a block can be one of the
following four types: 1) expired, i.e., will no longer be needed in the future; 2) active,
i.e., the block has completed construction, and will be needed now or in the future; 3)

Fig. 2. Continual counting over a sliding window of the past week.

under-construction, i.e., the heavy hitters for this block are currently being constructed;
or 4) future, i.e., construction for this block will start at some point in the future. Specif-
ically, in the PCC algorithm, a data source saves only the blocks that are either active
or under construction – and the number of such nodes is O(1λ) at any point in time. Ob-
serve that the number of counters kept for binary nodes at different levels are different,
and we later give a calculation to show that the total number of counters kept at any
time is O(1λ log2 1

λ).
Faster Computation. Observe that we could achieve even smaller memory if we only
store the leaf nodes of the binary construction. However, in order to produce an estimate
count over a window, we would need to look at Ω(1λ) leaf nodes. Using the binary
construction, we only need to look at O(log 1

λ) binary tree nodes for count estimation
at each step.
Low Communication Bandwidth. Notice we could achieve even smaller memory if
only one leaf node (corresponding to W0 =

⌈
λW
4

⌉
time steps) in the binary tree con-

struction is stored at any time; however, updates need to be sent to the aggregator every
W0 time steps. As we shall see in Section 3.4, if information about each stream in the
current window is kept at each node, then the communication bandwidth to the aggre-
gator can be greatly reduced.

Note that a similar binary tree technique was also used in [1, 5].
We now give a formal description of the PCC algorithm, as well as its theoretic

guarantees. At every time step t, PCC maintains a dictionary Pt, which is a collection
of at mostO(1λ log 1

λ) pairs (x, cx) ∈ U×Z where for every item x ∈ U , item x appears
in at most one pair in Pt. Hence, Pt can also be interpreted as a vector ZU or a function
from U to Z in the natural way: Pt(x) := cx if (x, cx) ∈ Pt, and Pt(x) := 0 otherwise.
Observe that only non-zero counts need to be stored in the dictionary , and we denote
by |Pt| the number of items x having non-zero counts Pt(x). The following lemma is
the main result of the section.

Lemma 3 (Private Continual Heavy Hitter Monitoring). Given a privacy parameter
ε > 0, and an approximation parameter 0 < λ < 1, there exists a continual counting
mechanismM, denoted as PCC(ε, λ) (Private Continual Heavy-hitter), that takes an

infinite data stream σ ∈ UN, and maintains at every time step t a dictionary Pt ∈ ZU .
We writeM(σ) := (Pt)t∈N ∈ ZN×U . The following properties hold.
1. ε-Differential Privacy: for any adjacent streams σ1 and σ2, any subsetO ⊆ ZN×U ,

Pr[M(σ1) ∈ O] ≤ exp(ε) · Pr[M(σ2) ∈ O], where the probability is over the
randomness from the mechanism.

2. Utility: Suppose 0 < δ < 1 and L > 0. If W ≥ Θ(1
λ2ε (log

2 1
λ) · log(

n
δ log

1
λ)).

Then, at every time step t ∈ N, Pt is (λW, δ)-useful with respect to Wt. If W ≥
Θ(1

λ2ε (log
2 1
λ) · log(

L+W
λW · nδ)), then for any T ≥ L+ 1, {Pt}t∈[T−L,T] is simul-

taneously (λW, δ)-useful with respect to {Wt}t∈[T−L,T].
3. The mechanism uses onlyO(1λ log2 1

λ) words of memory. Moreover, it takesO(1λ log 1
λ)

operations to process each item in the stream, and samples at mostO(1λ log 1
λ) ran-

dom variables in each time step.
4. For every time step t, |Pt| = O(1λ log 1

λ).

Scheme Description PCC(ε, λ). We assume 1
λ is a power of 2; otherwise, let λ′ :=

max{ 1
2k

: 1
2k
< λ} and run PCC(ε, λ′).

LetW0 :=
⌈
λW
4

⌉
> 0, and let ` := log 4

λ . Note that we have W
2 ≤W0·2` ≤W . We

divide the time steps into binary hierarchical blocks with `+ 1 levels, where all blocks
at the same level have the same size, are disjoint and cover all time steps. In particular,
for 0 ≤ i ≤ ` and j ≥ 1, the jth block at level i is the interval [(j − 1)Wi + 1, jWi] of
Wi := 2i ·W0 time steps; we use block Bij to denote the multiset of items from stream
σ contained in this interval, i.e., Bij = σ([(j − 1)Wi + 1, jWi]). At any time t, each
block Bij is in one of the following four states.
1. future: None of Bij’s items has come intoWt(σ), i.e., (j − 1)Wi + 1 > t;
2. under-construction: Some of Bij’s items are in Wt(σ), and the remaining items

have not come intoWt, i.e., (j − 1)Wi + 1 ≤ t and jWi > t;
3. active: Bij is totally withinWt(σ), i.e., t−W + 1 ≤ (j − 1)Wi + 1 ≤ jWi ≤ t;
4. expired: At least one of Bij’s items has expired, i.e., (j − 1)Wi + 1 < t−W + 1.

For each blockBij , right before the time step when its state becomes under-construction,
i.e., t = (j − 1)Wi + 1, PCC(ε, λ) initiates an instance of PMG(εi, λi) on Bij , where
εi := ε

2`−i+1 and λi := 1
2i(`+1) . When Bij becomes active, PMG(εi, λi) produces a

vector f̂Bij ∈ ZU , which has O(1
λi
) non-zero coordinates. Then, PCC(ε, λ) uses O(1

λi
)

words of memory to maintain this vector until Bij expires.
Cover by Disjoint Active Blocks. Observe that at any time t, there exists a collection
Ct of disjoint active blocks, such that Ct contains at most two blocks from each level,
and that the union of blocks in Ct is the union of all active level-0 blocks. At any
time, PCC(ε, λ) maintains the dictionary Pt, where Pt = {(x,

∑
B∈Ct f̂B(x)) : x ∈

U and
∑
B∈Ct f̂B(x) > 0}.

We prove that PCC maintains differential privacy. The analysis of the remaining
properties is similar to that in [1, Section 5], and we include the proofs in the full
version [4].
Privacy Guarantee. Observe that the output of PCC is a deterministic function of
PMG’s outputs on all blocks. Hence, we need only to show ε-differential privacy is
maintained with respect to (f̂B)∀B. Consider an item arriving at time step t. We analyze

which of the blocks would be affected if σ(t) is replaced with a different item. It is not
hard to see that the item σ(t) can be in at most one block at each level. Observe that f̂B
for a level-i block B maintains εi-differential privacy, where εi = ε

2`−i+1 and observe
that

∑l
i=0 εi ≤ ε. Hence, we conclude that PCC(ε, λ) preserves ε-differential privacy.

3.4 Privately and Continually Monitoring Heavy Hitters Across Distributed
Streams

In this section, we use PCC to design a protocol between k data sources and an ag-
gregator, allowing the aggregator to continually monitor the global heavy hitters. The
resulting protocol, called PDCH-LU (which stands for Private Distributed Continual
Heavy-hitter - Lazy Update) has low communication cost; moreover, the messages sent
by each data source is differentially private against the aggregator.

Observe that each node could send the privatized updates to the aggregator at every
time step in order for the aggregator to compute the approximate heavy hitters. How-
ever, to save communication bandwidth, we use a lazy update approach: updates are
only required when the count of an item changes by a huge amount. Chan et al. [3]
gave a distributed algorithm (called Approximate Counting (AC)) based on this idea
and proved that it achieves small error. Since the AC Algorithm in [3] only needs an
approximate count in the current window for each item in each stream at any time, our
PCC algorithm is sufficient for this purpose. We give the main result and the construc-
tion of the protocol; the detailed analysis is given in the full version [4].

Theorem 1. Suppose ε > 0 is a privacy parameter, 0 < λ < 1 is an approximation
parameter, W is the window size and L is some positive integer. Given k streams each
received by a node, every node can run an ε-differentially private communication pro-
tocol with the same time and space performance as PCC(ε, λ11) in Lemma 3 to send
messages to the aggregator such that if W ≥ Θ(1

λ2ε (log
2 1
λ) log(

L+W
λW · knδ)), then for

every time interval T = [T +1, T +L] (where T ≥W), with probability at least 1− δ,
at every time t ∈ T , the aggregator can maintain a λ-approximate count for every item
with respect to the current window in all streams, and the total communication cost by
all nodes in the period T is O(kλ ·

⌈
L
W

⌉
logW) words.

Algorithm for the Aggregator. The aggregator maintains a counter ci(x) (initially 0)
for each stream i ∈ [k] and each item x ∈ U . Upon receiving a message 〈x, c〉 from
node i, the aggregator updates the counter ci(x) := c. In each time step t, the aggregator
calculates a count c(x) =

∑
i∈[k] ci(x); to produce a 2λ-approximate set of θ-heavy

hitters, the aggregator releases the set of items x such that c(x) ≥ (θ − λ)kW .
Protocol for Each Data Source. We use Algorithm AC (Approximate Counting) in
[3, Section 2.2] to get a protocol (shown in Algorithm 2), denoted as PDCH-LU(ε, λ)
(Private Distributed Heavy-hitter - Lazy Update). Each node i runs an instance of
PDCH-LU(ε, λ) on the stream σ(i) it receives.

4 Achieving Aggregator Obliviousness

The main construction described earlier in Section 3 is a protocol for k nodes to com-
municate with an aggregator, whose task is to keep track of heavy hitters over a sliding

Input: A privacy parameter ε, an approximation parameter λ, and a stream σ ∈ UN

Run an instance of PCC(ε, λ
11
) and (implicitly) initialize Last(x) := 0 for each x ∈ U ;

// We only store non zero Last(x)’s.
for t← 1 to∞ do

for each x such that Pt(x) > 0 or Last(x) > 0 do
Up: if Pt(x) > Last(x) + 9

11
· λW , send 〈x,Pt(x)〉 and set Last(x)← Pt(x);

Off: if Last(x) > 0 and Pt(x) < 3
11
· λW , send 〈x, 0〉 and set Last(x)← 0;

Down: if Pt(x) < Last(x)− 9
11
· λW , send 〈x,Pt(x)〉 and set

Last(x)← Pt(x);
end

end

Algorithm 2: PDCH-LU(ε, λ)

window. This protocol guarantees differential privacy at the event level, i.e., the statis-
tics released to the aggregator is not affected by the change of one event.

In this section, we describe a protocol which achieves a stronger level of privacy
protection, i.e., we additionally achieve aggregator obliviousness on top of event-level
differential privacy. Specifically, we wish to reveal the minimum amount of information
possible to the aggregator, for it to successfully perform the heavy hitter monitoring
task.

The main techniques we use to achieve aggregator obliviousness include Bloom
filters [2] as well as special encryption schemes [15, 20, 21] that support the controlled
decryption of selected statistics. Using these techniques to augment the PMG protocol
described earlier, we achieve aggregator obliviousness in the sense that the aggregator
learns only the approximate counts of each item, but nothing else. In particular, the
aggregator does not learn which data sources are contributing to the heavy hitters and
how much their contributions are.

In our protocol to be described later in this section, each node communicates the
update with the aggregator every W0 =

⌈
λW
4

⌉
time steps. We then employ Bloom

filters to effectively reduce the bandwidth overhead. Observe that without the Bloom
filters, we would need to perform n secure additions, one for each item, for each update.
We shall see that using Bloom filters, we can reduce the dependence of the number of
additions per update on n to O(log n).

4.1 Background on Special Encryption Scheme

As a building block for achieving aggregator obliviousness, we employ a special en-
cryption scheme which supports the conditional decryption of selected statistics. In
particular, we can use either the encryption scheme proposed by Shi et al. [21], Ras-
togi et al. [20], or Kursawe et al. [15] In comparison, the scheme by Shi et al. [21]
requires uni-directional communication from the data sources to the aggregator, but the
decryption algorithm is more expensive; whereas the scheme by Rastogi et al. [20] re-
quires bi-directional communication between the data sources and the aggregator, but
has smaller decryption overhead. The scheme by Kursawe et al. [15] only needs uni-
directional communication and has low overhead, but each node needs to store Θ(k)

keys corresponding to all other nodes. We now give a high-level overview of these spe-
cial encryption schemes. The special encryption schemes we employ typically involve
the following algorithms or phases:

Setup. In a one-time setup phase, cryptographic keying materials are distributed to all
data sources and the aggregator. In particular, each data source receives an encryption
key, and the aggregator receives a cryptographic capability which will allow it to later
decrypt the sum of all data sources in each aggregation time step. The setup phase can
either be performed by an offline authority (which will no longer be needed after the
setup phase); or through an interactive multi-party protocol amongst the data sources
and the aggregator.

Periodic Encryption and Aggregation. In each time step, each data source i ∈ [k] en-
crypts a value xi using the encryption key established in the setup phase, and sends
the ciphertext to the aggregator. After receiving ciphertexts from all data sources, the
aggregator can use its cryptographic capability to decrypt the value

∑k
i=1 xi, but learn

nothing else. In the construction by Shi et al. [21] and Kursawe et al. [15], this decryp-
tion is done solely by the aggregator, whereas in the scheme by Rastogi et al. [20], the
aggregator needs to communicate with the data sources to perform decryption.

In the remainder of this section, we will use this special encryption scheme as a
blackbox – for more algebraic details on how these schemes are constructed, we refer
the readers to [15, 20, 21].

4.2 Augmenting PMG Algorithm with Secure Bloom Filters

Straightforward Solution using Cryptography. We first describe a straightforward
construction using one of the special encryption schemes [15, 20, 21]. A brief back-
ground on these encryption schemes was given in Section 4.1. We show that one draw-
back of this straightforward construction is its high bandwidth overhead. Later, we shall
employ Bloom filters to reduce the bandwidth consumption.

The basic idea is to apply the special encryption scheme all items in the universe.
Suppose each of the k nodes is running PMG(ε, λ) on its finite stream as described

in Section 3.2. Each node v ∈ [k] produces some f̂v : U → Z, which is represented
by at most β = O(1λ) non-zero counters. In every time step, for each x ∈ U , each
data source encrypts its observed frequency f̂v(x), and sends the ciphertext to the ag-
gregator. The aggregator may then use its cryptographic capability to decrypt the total
frequency

∑
v∈[k] f̂v(x) for each x ∈ U – and meanwhile, the security of these en-

cryption schemes guarantee that the aggregator learns nothing else beyond the total
frequency of each item.

It is not hard to see that each node needs to send Ω(n) words (proportional to the
size of U) to the aggregator. Even though each node only has β non-zero counters, it still
has to participate in every addition such that the aggregator does not know where the
non-zero values come from. We would like to decrease the communication cost through
the use of Bloom filters.
Construction with Bloom Filters. Let 0 < δ < 1 be the desired failure probability,
i.e., with probability at least 1 − δ, the aggregator can retrieve

∑
v∈[k] f̂v(x) for all

x ∈ U . Let P :=
⌈
ln n

δ

⌉
and Q := dekβe, where e is the natural number and β is

the maximum number of non-zero counters for each node. We assume there is a public
family {Hp : U → [Q]}p∈[P] of random hash functions that satisfy the following
properties.
1. The functionsHp are totally independent over different p ∈ [P].
2. For each p ∈ [P], Hp is pairwise independent over U , i.e., for x 6= y, Hp(x) and
Hp(y) are independent; moreover, for each x ∈ U and each q ∈ [Q], Pr[Hp(x) =
q] = 1

Q .
Bloom Filters for Each Node. Each node v constructs a table Av of size P ×Q that is
constructed in the following way.
1. Initially, every entry Av[p][q] := 0.
2. For each x ∈ U such that f̂v(x) 6= 0 (note that there are at most β such x’s), for

each p ∈ [Q], increment A[p][Hp(x)] by f̂v(x).
Secure Addition of Bloom Filters. Using one of the secure periodic schemes [15, 20,
21] described above, the aggregator learns for each p ∈ [P] and q ∈ [Q], A[p][q] :=∑
v∈[k]Av[p][q]. Observe that each node sends O(PQ) = O(kλ log n

δ) words to the
aggregator.
Retrieving Sum of Counts for Each Item. For an item x, the aggregator computes
minp∈[P]A[p][Hp(x)].

Theorem 2. With probability at least 1− δ, the aggregator retrieves
∑
v∈[k] f̂v(x) ac-

curately for all x ∈ U .

Proof. Fix some x ∈ U . Observe that the aggregator makes a mistake for item x iff for
all p ∈ [P], there exists some y 6= x such that Hp(x) = Hp(y) and there exists v ∈ [k]

such that f̂v(y) 6= 0.
Observe that each node v can only have at most β non-zero counts. For fixed p ∈

P , by pairwise independence of Hp over U and uniformity of Hp(y) over [Q], the
probability that there exists some y 6= x such that some node has non-zero count for y
andHp(x) = Hp(y) is at most kβQ ≤

1
e .

By the total independence of Hp over p’s, it follows that the probability that the
aggregator makes a mistake for item x is at most 1

eP
≤ δ

n . Using the union bound over
all x ∈ U , it follows that the probability that the aggregator makes a mistake for some
item is at most δ, as required.

4.3 Distributed Protocol Achieving Aggregator Obliviousness

We next describe how the PMG Algorithm augmented with Bloom Filters can be used to
design a distributed protocol that achieves aggregator obliviousness – the resulting pro-
tocol is referred to as PDCH-BF (Private Distributed Continual Heavy-hitter - Bloom
Filter).

Each node performs the binary construction as in the PCC algorithm described in
Section 3.3. In particular, for a block at level i with size Wi = 2i · W0 = 2i · λW4 ,
PMG(εi, λi) is run with εi := ε

2`−i+1 and λi := 1
2i(`+1) . As soon as PMG is completed

for a block, a Bloom filter is constructed for that block as described in Section 4.2. The
Bloom filter for that block is encrypted and sent to the aggregator.

For a particular block, after the aggregator has received the ciphertexts of the Bloom
filters from all the k nodes, it can decrypt the sum of the Bloom filters and reconstruct
the counts for all items in that block.

Observe that to estimate the counts in a window, the aggregator just needs the counts
from at most 2 log 1

λ blocks. Hence, in order to achieve failure probability of δ due to
the Bloom filters for each window, it suffices to set the Bloom filter failure probability
for each block to be δ

2 log 1
λ

. There is also failure probability δ due to the randomness
introduced to achieve differential privacy. Hence, Lemma 3 implies the aggregator can
compute λ-approximate heavy hitters within a window with probability 1− 2δ.
Communication Cost. For each node, the communication cost for a block at level
i is O(kλi log

n
δ0
) words, where λi = 1

2i·(l+1) , l = log 4
λ and δ0 = δ

2(l+1) . More-
over, a block at level i is constructed every Wi := 2i · W0 = 2i · λW4 time steps.
Hence, it follows that the average number of words of communication per time step is
O(k

λW log2 1
λ log

n log 1
λ

δ).

5 Experiments

5.1 Experimental Setup

The data used in our experiment was constructed from the Netflix Contest Dataset,
which contains n = 17770 movies with 480189 users’ ratings from 1999-11-11 to
2005-12-31. We divided the users randomly into 100 groups to construct 100 streams.
We selected roughly 200 days’ data of each stream from 2002-09-23 to 2003-04-30
to conduct our experiments, where we continually monitored the moving average over
a window size of 90 days. We plot the result for the last 10 days by when the sys-
tem should have become stable. We use the following parameters in our experiments:
heavy-hitter fraction θ = 0.004 and error λ = 0.001. In our experiments, we consider
differential privacy parameter ε = 1, 2, 5, 10. Note that there is no consensus on what
privacy parameters are acceptable in practice, and even for ε = 1, the scheme still offers
some guarantee on privacy.

For the Bloom filters, we choose the number of hash functions to be P = 8, and
the array size for each hash function to be Q = de · 3600e (we explain the choice of Q
below).
Practical Optimization. Several aspects of our protocols can be further optimized in
this application.
1. Empirical Sensitivity of PMG Count Vector and Bloom Filter Size. Since the value

of λ we choose is small, in practice, the number of distinct movies observed by
each node in each day never exceeds O(1λ), the number of counters in PMG. If
we assume that the daily number of distinct movies never exceeds the number of
counters in PMG, the real sensitivity isO(1), and so we can use Geom(eε) noise for
PMG, instead of Geom(eΘ(ελ)). Moreover, we observe that the number of distinct
movies observed by all nodes in each day never exceeds 3600 and hence we can
choose Q = de · 3600e to be the size of the Bloom filter array for each hash.

2. Unnecessary Internal Blocks in Binary Construction. Since the width W of our
window is small, W0 =

⌈
λW
4

⌉
= 1. Hence, each leaf node in the binary tree corre-

sponds to one time step, and therefore, the binary construction does not help to save
memory in this case. Moreover, since W is small, the cost of count reconstruction
from W leaf nodes is still better than the overhead of keeping track of the binary
construction.

3. Relaxing Assumption on Item Arrival. Since we no longer need the binary con-
struction, we can further relax the assumption that exactly one item arrives at each
stream per time step. In our dataset, at least one item arrives at each stream at each
time step, and we do not need any upper bound on the number of arriving items.
Within each time step, PMG for each stream serializes the arriving items and pro-
cess them in any arbitrary order.

4. Estimating the Total Number of Arriving Items. With the assumption that only one
item arrives at each time step for each stream, it is trivial to compute the total num-
ber items within a window; this quantity is required for estimating the fraction an
item appears and deciding when to do lazy updates (this is the W in the conditions
for Up, Off and Down in PDCH-LU). However, now each stream also needs to
report to the aggregator the number of items that arrive each day, which has sen-
sitivity 1 for neighboring streams. Hence, in order to achieve ε-differential privacy
for the whole protocol, we can assign ε1 := 9ε

10 and ε2 := ε
10 such that each stream

runs PMG with ε1-differential privacy (using Geom(eε1) noise) and estimates the
number of items each day with ε2-differential privacy (using Geom(eε2) noise).1

Performance Metric. We consider the following performance measures. For each per-
formance measure, we plot its mean with an error bar of 2 standard deviations (hence
each plot could go negative).
1. Error in estimated fraction. For each day, suppose H is the set of items whose true

fraction in the current window is at least θ and Ĥ is the set of items whose estimated
fraction in the current window is at least θ − λ. For each item x ∈ H ∪ Ĥ , we
calculate the error E(x) which is the absolute difference between the true and the
estimated fractions of item x in the current window. We compute the mean and the
standard deviation of E(x) over x in H ∪ Ĥ . We evaluate these statistics over time
for different protocols with various parameters.

2. Communication Cost. We measure the number of words each node sends to the
aggregator each day. For each day, we compute the mean and the standard deviation
of the communication cost over different nodes.

5.2 Results

Utility. In Figures 3, 4, and 5, we observe that the error in each case is well below the
theoretic guarantee λ = 0.001, and we interpret each figure as follows.

Figure 3 compares the errors of the PDCH-LU and PDCH-BF protocols, and also
demonstrates a breakdown of the error, i.e., how much error is introduced by com-

1 We give more privacy budget to PMG as it is more complicated, and less privacy budget to
the estimation of number of items each day as it is relatively simpler. It does not really affect
the asymptotic error as long as each part get a constant fraction of the privacy budget, but
experiment suggests that these parameters work well.

Fig. 3. Error under different protocols Fig. 4. Error under different privacy parame-
ters for the PDCH-LU algorithm.

Fig. 5. Error under different privacy parame-
ters for the PDCH-BF algorithm.

Fig. 6. The number of words sent per data
source in the PDCH-LU protocol.

pressing the bandwidth, and how much due to the noise necessary for differential pri-
vacy. With our choice of parameters, the Bloom filter should introduce almost no error
and hence DCH-BF(no noise) forms the baseline for comparison. The plot for protocol
PDCH-BF essentially reflects the error introduced when we wish to preserve differen-
tial privacy. The plot for DCH-LU(no noise) reflects the error introduced by lazy update
in order to save communication bandwidth. The interesting unexpected result is that for
PDCH-LU when we use lazy update together with noise to ensure differential privacy,
the extra noise does not seem to increase the error by much. In fact, the effect of lazy
updates seem to smooth out some of the error introduced by the added random noise.

Figures 4 and 5 plot the utility of PDCH-BF and PDCH-LU under different dif-
ferential privacy parameter ε. As we decreases ε, the magnitude of noise increase and
we can see in Figure 5 that as expected the error for PDCH-BF is increased as well.
However, we can see that in Figure 4, that reducing ε has only a small effect on the
performance of PDCH-LU.

Communication cost. Figure 6 shows that in the PDCH-LU protocol, the number of
item updates sent by each node per day is around 5 and almost never above 20. Typi-
cally, each item update is under 10 bytes of data.

In comparison, we need to pay higher (but still reasonable) communication cost
if we wish to ensure aggregator obliviousness. In our PDCH-BF experiment, given 8

hashes each having a filter of size Q = de · 3600e, and assuming that each Diffie-
Hellman ciphertext is 1024 bits, then the each sends about 10MB data per day to the
aggregator.

References

[1] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In
PODS, 2004.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[3] H.-L. Chan, T.-W. Lam, L.-K. Lee, and H.-F. Ting. Continuous monitoring of distributed
data streams over a time-based sliding window. In STACS, 2010.

[4] T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Differentially private continual monitoring of
heavy hitters from distributed streams. In Cryptology ePrint Archive, 2012.

[5] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. In ICALP
(2), pages 405–417, 2010.

[6] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency estimation of internet packet
streams with limited space. In ESA, pages 348–360, 2002.

[7] C. Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.
[8] C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86–95, 2011.
[9] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual

observation. In STOC, pages 715–724, 2010.
[10] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-private streaming

algorithms. In ICS, pages 66–80, 2010.
[11] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks and auxiliary infor-

mation in data privacy. In KDD, pages 265–273, 2008.
[12] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy

mechanisms. In STOC, 2009.
[13] O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge

University Press, 2004.
[14] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for finding frequent

elements in streams and bags. ACM Trans. Database Syst., 28:51–55, 2003.
[15] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the smart-

grid. In PETS, pages 175–191, 2011.
[16] L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding

frequent items over sliding windows. In PODS, 2006.
[17] F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data

analysis. In SIGMOD Conference, pages 19–30, 2009.
[18] D. J. Mir, S. Muthukrishnan, A. Nikolov, and R. N. Wright. Pan-private algorithms via

statistics on sketches. In PODS, pages 37–48, 2011.
[19] J. Misra and D. Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–152,

1982.
[20] V. Rastogi and S. Nath. Differentially private aggregation of distributed time-series with

transformation and encryption. In SIGMOD 2010, pages 735–746, 2010.
[21] E. Shi, H. Chan, E. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation of

time-series data. In NDSS, 2011.
[22] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles. In PODS,

2009.

