
Fault-Tolerant Privacy-Preserving Statistics

Marek Jawurek and Florian Kerschbaum

SAP Research
Karlsruhe, Germany

{marek.jawurek|florian.kerschbaum}@sap.com

Abstract. Real-time statistics on smart meter consumption data must
preserve consumer privacy and tolerate smart meter failures. Existing
protocols for this private distributed aggregation model suffer from vari-
ous drawbacks that disqualify them for application in the smart energy
grid. Either they are not fault-tolerant or if they are, then they require bi-
directional communication or their accuracy decreases with an increasing
number of failures. In this paper, we provide a protocol that fixes these
problems and furthermore, supports a wider range of exchangeable statis-
tical functions and requires no group key management. A key-managing
authority ensures the secure evaluation of authorized functions on fresh
data items using logical time and a custom zero-knowledge proof pro-
viding differential privacy for an unbounded number of statistics calcu-
lations. Our privacy-preserving protocol provides all the properties that
make it suitable for use in the smart energy grid.

Keywords: Privacy, Smart Grid, Statistics, Aggregation, Stream, Fault-Tolerance

1 Introduction

In the smart energy grid there is a conflict between privacy of consumers and
utility for service providers. Utility providers can use real-time household elec-
tricity consumption data for forecasting future consumption. This consumption
forecasting allows them more efficient and more stable operation of the electric-
ity grid. However, real-time consumption data also closely reflects any activity
in the household involving electrical appliances. Thus, for the consumer, it rep-
resents a privacy invasion [10,11]. Previous studies [8,9,13,15,16,17,19,22] have
shown that and how information about a household and its inhabitants can be
inferred from its high-resolution energy consumption data. Furthermore, any
viable solution for forecasting consumption must also anticipate failing smart
meters or communication links. A single failure must not prevent the real-time
calculation of statistics.

The ability to calculate statistics in real-time, i.e., in the presence of failures,
can also benefit many other real-world applications like public health and clinical
research on patient information or any collection and monitoring where privacy-
sensitive data is processed.

In this paper we provide a protocol in the fault-tolerant, private distributed
aggregation model : Many data producers (e.g. smart meters) constantly produce
sensitive data items (e.g. hourly smart meter consumption measurements). An
untrusted data consumer (e.g. service provider) calculates statistics, e.g., for
forecasting future consumption, over subsets of these data items in the presence
of failing data producers. Not even a collusion of malicious data producers and
consumer may lead to the disclosure of sensitive data items.

Our protocol roughly works as follows: We use homomorphic encryption for
aggregation and employ an (w.r.t. privacy) untrusted, possibly distributed key-
managing authority that provides differentially private decryption services to
the data consumer while neither learning data items nor statistics results.

Recently, [2] also presented a protocol for this model. Without fault-tolerance
it has been considered in [23,25]. In comparison to these existing protocols our
contributions can be summarized as follows:

– The accuracy of the calculated statistics is higher. In our protocol the ac-
curacy is independent of the number of data producers, the number of data
items and the number of failures.

– We do not require synchronized clocks, but only rely on logical time.
– Our protocol enables the calculation of a wider range of statistical functions

(weighted sums). The statistical function can be chosen and exchanged inter-
mittently by the data consumer without notification to the data producers.

– We do not require any group key management. Data producers may join or
leave without interaction with other participants.

– We only require uni-directional communication channels between data pro-
ducers and data consumers. This implies a reduced attack surface of the
smart meter.

The remainder of this paper is structured as follows: Section 2 describes the
contributions of our protocol in comparison to [2,23,25]. Section 3 introduces the
prerequisites used in our protocol. In Section 4 we introduce a naive version of
our protocol to achieve differentially private, fault-tolerant statistics in the semi-
honest model. Then, in Section 5 we present the final protocol and our custom
zero-knowledge proof for the malicious model. Finally, we present related work
(Section 6) and conclude with a summary in Section 7.

2 Contributions

We compare our protocol to the protocols in [2,23,25]. We favorably compare
in existing criteria, but also extend their set of criteria. Our extended Table 1
illustrates the differences.

2.1 Communication

We assume that many (unsynchronized) data producers constantly produce sen-
sitive data items. They send these items to a data consumer over a uni-directional

Scheme Avg
comm.

per user

Comm.
model

Error Fault-
tolerant

Group key
management

required

Syn-
chr.

clocks

Secu-
rity

model

Naive DP O(1) C → S O(
√
n) Yes No No DP

[23] O(1) C ⇔ S O(1) No Yes Yes CDP
AO

[25] O(1) C → S O(1) No Yes Yes CDP
AO

[2] Sampling O(1
φ2∗n) C ⇔ S O(φ ∗ n) Yes Yes Yes DP

[2] Binary O(logn) C → S Õ((logn)
3
2) Yes Yes Yes CDP

this paper O(1) C → S O(1) Yes No No DP AO
Table 1. DP: differential privacy CDP: Computational differential privacy AO: Aggre-
gator Obliviousness C → S: client-to-server uni-directional C ⇔ S: interactive between
client and server

communication channel. Every data producer has constant communication cost
per data item. The data consumer queries the key-managing authority for de-
cryption over a bi-directional channel. Thus, the communication cost for the
key-managing authority is linear in the number of calculated statistics.

[23] requires bi-directional communication between data producers (users)
and the data consumer (aggregator) so that the users can cooperate in de-
crypting the threshold decryption system. [25] only requires uni-directional com-
munication links between data producers and the consumer and has the same
communication cost as our scheme. In [2] data producers also communicate uni-
directionally with data consumers but have higher communication cost. This is
due to redundant information provided by data producers for fault-tolerance.

2.2 Accuracy

In our protocol the accuracy of the data consumer’s calculated statistics is in-
dependent of the number of data producers or data producer failures. The only
error in accuracy is introduced deliberately to ensure differential privacy and
that is O(1) with respect to the number of data producers or failures.

[25] and [23] also introduce O(1) error for differential privacy while [2] intro-
duces polylogarithmic error dependent on the number of data producers.

2.3 Fault-Tolerance

Fault-tolerance in our protocol is introduced by a selection process of the data
consumer. The data consumer can arbitrarily select a subset of available data
items as input to the statistics calculation. Consequently, our scheme tolerates an
arbitrary and unbounded number of failing data producers. The key-managing
authority can also be distributed (as we describe in Section 4.3) and we only
require a majority of key-managing authority instances to be available during a
run of the protocol.

[25] and [23] do not tolerate any failures of data producers (users). The former
relies on blinding shares of zero which requires all shares to be present. The latter
requires the data producers to participate in a threshold decryption of the final
result. This offers some fault-tolerance, but the accuracy of the result degrades
with failures. [2] offers fault-tolerance, but the error of the results grows sub-
linearly in the number of absent users. A bound on the maximum number of
failing users needs to be pre-arranged.

2.4 Group Key Management

In our protocol, there is no group or elaborate key management. Data producers
may join or leave independently at any time without any new key distribution
or setup phase.

[25] requires a new distribution of the blinding shares for all data producers
whenever a new producer joins. [23] requires a new distribution of key shares for
the threshold decryption. [2] introduce a dynamic join & leave protocol which
tolerates joining of data producers up to a certain limit. Beyond, they need to
increase the tree height to accommodate more data producers. In such a case,
the trusted dealer needs to distribute one additional secret key to existing users
and O(log n) secret keys to new users.

2.5 Synchronization

Our protocol does not require synchronized clocks. We use logical time in order
to chronologically order and thus prevent re-use of data items. All data items
are encrypted under the same key.

All protocols [2,23,25] depend on communication rounds and require syn-
chronization, although they do not explicitly mention this.

2.6 Security

Our scheme offers aggregator obliviousness (AO), i.e., the aggregator will not
learn anything else but the final result. Input data and intermediate results are
not available to him. Furthermore, we ensure differential privacy (DP) [4] for
statistics.

Although [23,25] provide aggregator obliviousness they only guarantee the
weaker notion of computationally differential privacy (CDP). In these proto-
cols the differential privacy has to be ensured by the data producers while in
our scheme the key-managing authority ensures this. [2] offers protocols with
differential privacy and computational differential privacy, but does not ensure
aggregator obliviousness. The data consumer (aggregator) learns some interme-
diate values (even if there is no fault) in order to calculate the result in the
presence of failures.

3 Prerequisites

3.1 Differential Privacy

The definition of differential privacy according to [4] is the following:

Definition 1 A randomized function K gives ε-differential privacy if, for all
data sets D1 and D2 differing on at most one element and all S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) · Pr[K(D2) ∈ S]

It means, that the probability for any result of K changes only slightly (less
than exp(ε) if single elements are included/excluded in the set of inputs to K.
In consequence, even with knowledge of the data set, the function result and
arbitrary auxiliary information, it is hard for an attacker to identify whether an
element is present or not. Thus, also the actual value of the element is protected.

Applied to smart metering that means, that if every statistics function on
smart meter consumption data is differentially private, the individual readings
can not be recovered by the receiver of the statistics’s results, e.g. the service
provider. Thus, differentially private statistics functions protect consumer pri-
vacy.

We will transform any function f into an ε-differential private version of
itself by adding random noise according to a symmetric geometric distribu-
tion [6]. Specifically, if δ is the f ’s sensitivity, we add a sample from distribution
Geom(exp(εδ)) to each function result f(x) to make it differentially private. The
parameter ε must be chosen according to the use case at hand. It represents the
desired trade off between accuracy of the function K and how well it preserves
privacy.

3.2 Paillier Cryptosystem

We only give a basic introduction to the Paillier cryptosystem, further informa-
tion – including security proofs – can be found in [20]. This cryptosystem defines
two functions:

– E(m, r) → c, encrypts a message m ∈ Zn with random value r ∈ Z∗n to the
ciphertext c ∈ Z∗n2 . All encryptions in our protocol are performed by data
producers and use the key-managing authority’s public key.

– D(c) → (Dv(c), Dr(c)) → (m, r), decrypts ciphertext c to a tuple (m,r). In
our protocol, all decryptions are performed by the key-managing authority
using its private key.

We use this cryptosystem’s ability to also recover the random parameter r during
decryption.

The Paillier cryptosystem also has the following homomorphic properties:

D(E(m1, r1)E(m2, r2) mod n2) = (m1 +m2, r1 · r2) mod n (1)

D(E(m, r)k mod n2) = (km, rk) mod n (2)

In the following, whenever we refer to the encryption E or the decryption
function D applied to either singular values or vectors of ciphertexts it yields
what makes most sense in the respective context: Singular values are encrypted
(decrypted) to singular values and a vector of values is encrypted (decrypted)
to a vector of values. The function X ∪ v appends the scalar value v to the
vector X. Also, for improved readability, we write f ◦ h(X) for the sequential
composition of functions f and h.

4 Protocol Description

In this Section we first give a description (Section 4.1) of a naive version of our
fault-tolerant, differentially private statistics protocol. It provides differential
privacy for a semi-honest data consumer, but may fail in case of a malicious
data consumer. Then, in Section 4.2 we analyze this deficiency and explain the
necessary restrictions that we must employ, namely the freshness of used data
items and correctness of computation.

Finally, in the next Section 5, we present the full protocol with a focus on
our custom zero-knowledge proof that provides fault-tolerant differential privacy
in the presence of malicious data consumers with a distributed key-managing
authority.

4.1 Naive Protocol

We restrict ourselves, without loss of generality, to one round of communica-
tion from data producers to the data consumer and one subsequent function
evaluation and decryption. In the general case, the protocol step Preparation
i.e., the creation of data items, is executed repeatedly in parallel and unsyn-
chronized to the protocol steps that implement calculation and the decryption
(Calculation and Decryption). Therefore, in the general case, in protocol step
Calculation the data consumer could choose among all input values that he has
received during the entire system run time, i.e. multiple rounds of data item
creation. Furthermore, also without loss of generality, we assume, that data con-
sumer and key-managing authority have pre-arranged a function f that the data
consumer wishes to evaluate. We also assume, that in a setup phase all data pro-
ducers obtain the public key that corresponds to the private key only held by
the key-managing authority.

Preparation: Every data producer j encrypts its value vj with a random num-
ber rj . Every data producer sends E(vj , rj) to the data consumer.

Calculation: The data consumer now chooses a vector

V = (E(v1, r1), . . . , E(vm, rm))

out of all encrypted data items that it received and has never used before.
The data consumer calculates any statistics function of the form

f((x1, . . . , xm), c) = (

m∑
i=1

ai · xi) + c

by evaluating f ’s homomorphic counterpart

fh(V , E(c, rc = 1)) = (
∏
i=1

E(vi, ri)
ai) · E(c, rc)

fh is derived from f using the homomorphic relationship (see Equations 1, 2),
the ai are constants and c is a data consumer-chosen variable.
Then, the data consumer sends fh(V , E(c, 1)) to the key-managing authority
for decryption to receive the plaintext of the statistics result.

Decryption: The key-managing authority decrypts fh(V , E(c, 1)) which yields
(according to Equations 1,2):

Dv ◦ fh(V , E(c, 1)) = f ◦Dv(V , E(c, 1))

Note that the data consumer can use its addend c to prevent the disclosure
of the statistics result to the key-managing authority.
Then, it applies the function mf (s, x) which adds a random sample accord-
ing to the sensitivity of f (see Section 3.1) and a seed s to the decrypted
function result in order to make the statistics function evaluation differen-
tially private. Finally, it returns the differentially private statistics result’s
plaintext: mf (s) ◦Dv ◦ fh(V , E(c, 1))

4.2 Malicious Behavior

The naive protocol version described in Section 4.1 will provide differential pri-
vacy in the semi-honest model [7]. We assume that the data consumer abides
by the protocol and computes the function as agreed with the key-managing
authority. This includes that he only chooses data items that he has never used
before. However, this freshness property of the data items is not ensured by the
protocol. Thus, in the presence of malicious data consumers, the naive protocol
cannot protect data items from re-use by the data consumer.

The re-use of data items has severe implications for differential privacy of
continuous statistics calculation: It is easy (see Section 3.1) to determine the
necessary parameter for the distribution of the random noise that makes a sin-
gle function evaluation ε-differentially private. In [18] McSherry has analyzed
how the differential privacy of combined function evaluations (queries) over in-
tersecting data sets relates to the differential privacy of the individual functions:
Let a function fi provide εi-differential privacy. If all functions fi cover disjoint
subsets, the differential privacy for the combined function is maxiεi. However,
if several functions span the same set of values, the differential privacy for the
combination of those functions is

∑
i εi.

Thus, if we do not prevent the re-use of data items, the differential privacy
will add up. Eventually, it will be insufficient for the protection of data items.
In the PINQ framework [18] the aggregate knowledge gain of the attacker, i.e.
the sum of differential privacy over all combined functions, is limited. This is
achieved by giving every user a specific, upfront budget of differential privacy.

Once this budget is used up, no more statistics calculations (and decryptions)
are allowed.

This approach is incompatible with continuous calculation of statistics. In
the smart meter statistics context but also for other applications the number of
statistics calculations must be unbounded. Thus, in order to limit the aggregate
knowledge gain of an attacker we have to prohibit the re-use of data items and
thus make it equivalent to calculations over disjoint subsets.

In order to turn the naive protocol into a secure protocol in the malicious
model, the data consumer must prove to the key-managing authority that it used
fresh data items and that it correctly evaluated a known statistics function. The
evaluated statistics function f must be part of the data consumer’s proof, because
f ’s sensitivity determines the variance of the random noise in differential privacy
(see Section 3.1).

However, Goldreich’s compiler approach [7] to turn the naive protocol se-
cure in the malicious model would not be feasible: The resulting generic zero-
knowledge proof (ZKP) would be prohibitively costly spanning the entire history
of data items.

Therefore, we subdivide the proof in two parts: The first part covers the fault-
tolerance of the calculated statistics, i.e., the choice of k fresh data items out of
n total data items. We model this choice with the function freshk(n). Section 4.3
describes how a key-managing authority can guarantee this freshness by keeping
state. Furthermore, in Section 4.4, we implement a distributed key-managing
authority to make it resilient to failures.

The second part of the proof covers the the evaluated statistics function f .
In Section 5 we present the final protocol that employs a custom zero-knowledge
proof that covers the evaluated statistics function and completes the freshness
guarantee.

Thus, in total, the data consumer proves to the key-managing authority with
both parts that it honestly evaluated f ◦ freshk(n).

4.3 Freshness of Data Items

As identified in Section 4.2 the key-managing authority must only allow decryp-
tion of function results that incorporate fresh data items.

This can only be accomplished by keeping state with the key-managing au-
thority. The main challenges with keeping state are:

1. Keep the state as small as possible and not dependent on the number of
decryption requests or the frequency of data item creation.

2. Allow for a distributed key-managing authority which makes the protocol
resilient to failure of the key-managing authority.

In order to keep the state at the key-managing authority manageable we
further restrict the freshness property: Data items originating from the same
data producer can only be used in chronological order. Items may be skipped
however. The function Pj(v) at data producer j returns the position (logical
time) of data item v within the total order of data items of data producer j.

The key-managing authority remembers for every data producer which data
item was used last in any statistics calculation. At the key-managing authority,
the function C(j) returns for data producer j the position (logical time) of the
latest data item that was used in a statistics calculation in j’s total order of data
items.

Preparation: In addition to the naive protocol, every data producer j also
sends Pj(vj) to the data consumer.

Decryption request: Let pi denote the data producer, then the data consumer
compiles data item information I about the input values V (see the naive
protocol) he used for the current statistics calculation:

I = ((p0, P0(v0), . . . , (pm, Pm(vm)))

We provide integrity protection for I using signatures in Section 5.
The data consumer sends a decryption request with the encrypted statistics
result fh(V , E(c, 1)) and I to the key-managing authority.

Validation of freshness: The key-managing authority verifies the freshness of
every used data item: For every (pj , Pj(vj)) ∈ I it checks whether C(pj) <
Pj(vj). If successful, C() is updated so that: C(pj) ← Pj(vj) and the key-
managing authority proceeds with the decryption and the addition of random
noise as in the naive protocol.

4.4 Distributed Key-Managing Authorities

It may be desirable to distribute the key-managing authority to make it resilient
against failure.

However, a key-managing authority like described in the previous Section 4.3
cannot be simply split into several instances because of its state C(). A malicious
data consumer could send decryption requests over intersecting subsets of data
items to different instances of the key-managing authority. These instances would
be unable to guarantee freshness of data items which would break our measures
for ensuring differential privacy (as explained in Section 4.2).

Communication between different instances, in order to synchronize state,
would also be prohibitively costly: Upon every decryption request an instance
would have to query all other instances for the current state of their function C.
We also would have to cover merging of different functions C and how to cope
with failed instances.

Therefore, we propose the following augmented protocol for a distributed
key-managing authority:

The total number of key-managing authority instances is n = 2t+ 1 and we
assume that at least a majority of t + 1 instances are alive at any time. Every
instance holds its own version of function C().

Decryption request: The data consumer prepares the same decryption re-
quest for all key-managing authority instances. As in the non-distributed

protocol, it sends the encrypted statistics result fh(V , E(c, 1)) and the in-
formation about the used input values I to, unlike in the non-distributed
protocol, all key-managing authority instances.

Validation of freshness: As in the non-distributed case, every instance ver-
ifies the freshness of used data items: For every (pj , Pj(vj)) ∈ I it checks
whether C(pj) < Pj(vj). If successful, C() is updated: C(pj)← Pj(vj).
The k-th instance decrypts fh(V , E(c, 1)) and applies the function mf (s, x)
to make it differentially private. We describe at the end of this Section how
all instances can ensure they apply the same random noise. This yields

x = mf (s) ◦Dv ◦ fh(V , E(c, 1))

The k-th instance now creates a share sk of secret x using a random polyno-
mial in Shamir’s secret sharing scheme. In order to ensure that all instances
choose the same random polynomial, we apply the same mechanism as for
the noise (see below). This resulting secret share sk is finally returned to the
data consumer.

Assembly: The data consumer collects the secret shares from at least t + 1
key-managing authority instances and reassembles the differentially private
statistics result’s plaintext.

The idea of this protocol is that the data consumer has to contact at least
t + 1 instances of the key-managing authority to obtain enough shares for its
statistics. Every instance in this majority will then also update their state C.
This means, that subsequently, a malicious data consumer will fail to find a
disjoint majority set of instances and thus cannot cannot create partitions of
key-managing authority instances with different states.

Note that all key-managing instances operate completely independent of each
other. On the one hand, this eliminates any synchronization problems. On the
other hand, every instance must create valid shares of the same x in order to
allow successful assembly of x at the data consumer. We propose a mechanism
that chooses the randomness for the random noise and for the secret sharing
polynomial based on a pseudo-random function with identical seed across all
instances. We then use the commonly available information I as seed.

5 Zero Knowledge Proof

5.1 Properties

Already in the naive protocol version we shown how a key-managing authority
can decrypt a homomorphically encrypted function result and add random noise
in order to guarantee ε-differential privacy in the presence of a semi-honest data
consumer. However, this relies on the key-managing authority’s knowledge about
the sensitivity of the evaluated function (see Section 3.1) and on the freshness
of data items (Section 4.2). In Section 4.3 we describe how a key-managing
authority can guarantee freshness with manageable state and how such a key-
managing authority can be distributed (Section 4.4).

In order to complete the final protocol that ensures differential privacy over
an unbounded number of statistics calculations in case of a malicious data con-
sumer we require guarantees for the following properties:

1. The key-managing authority can verify the correctness of the provided data
item information I in order to guarantee freshness.

2. The key-managing authority can verify the correct evaluation of a known
statistical function on data items provided by data producers. This allows the
key-managing authority an appropriate choice of random noise for making
the statistics result differentially private.

In the following (Section 5.2) we describe the final fault-tolerant, privacy-
preserving statistics protocol between the data consumer and the distributed
key-managing authority that provides guarantees for these properties.

5.2 The Final Protocol

Like in the naive protocol version we assume, without loss of generality, a pre-
arranged statistics function f and a pre-distributed key-managing authority’s
public key. The function Pj(v) at data producer j returns the position (logical
time) of data item v within the total order of data items of data producer j. At
the key-managing authority (at every instance), the function C(j) returns for
data producer j the position (logical time) of the latest data item that was used
in a statistics calculation in j’s total order of data items.

Preparation: Every data producer j ∈ 1, . . . , n encrypts its data item vj with a
random number rj . Furthermore, the data producers encrypt the rj with an-
other chosen random value r′j and create signatures over the random’s cipher-
text and the data item identification tuple (j, Pj(vj)): Sj(E(rj , r

′
j), (j, Pj(vj)))j .

Every data producer sends (j, Pj(vj)), E(vj , rj), E(rj , r
′
j) and Sj(E(rj , r

′
j), (j, Pj(vj)))j)

to the data consumer.
Calculation: The data consumer now chooses a vector

V = (E(v1, r1), . . . , E(vm, rm))

out of all encrypted data items that it received and corresponding vectors of
encrypted randoms R, of data item information I and signatures S:

V =(V1, . . . , Vm)|Vi ∈ {E(v1, r1), . . . , E(vn, rn)}
R =(R1, . . . , Rm)|Ri ∈ {E(r1, r

′
1), . . . , E(rn, r

′
n)}

I =(I1, . . . , Im)|Ii ∈ {(1, P1(v1)), . . . , (n, Pn(vn))}
S =(S1, . . . , Sm)|

Si ∈ {S(E(r1, r
′
1), (1, P1(v1))1, . . . , S(E(rn, r

′
n), (n, Pn(vn)))n}

Then, exactly like in the naive protocol version, it calculates the pre-arranged
function f of the form

f((x1, . . . , xm), c) = (

m∑
i=1

ai · xi) + c

by evaluating f ’s homomorphic counterpart

fh(V , E(c, rc = 1)) = (

m∏
i=1

E(vi, ri)
ai) · E(c, rc)

fh is derived from f using Equations 1 and 2, the ai are constants and c is
a data consumer-chosen input variable.
If V = (E(v1, r1), . . . , E(vm, rm)) and fh and f ′ have been derived from the
same function f the following holds:

Dr ◦ fh(V , E(c, 1)) = f ′ ◦Dr(V ∪ E(c, 1)) (3)

Then, the data consumer sends fh(V , E(c, 1)), R, I and S to each available
key-managing authority instance for decryption.

Decryption: Every key-managing authority instance performs two checks:
First, for the freshness guarantee: For every Ij = (j, Pj(vj)) ∈ I and Rj ∈ R
it checks the signature Sj and the freshness of every used data item: C(j) <
Pj(vj). If successful, C() is updated so that: C(j)← Pj(vj).
Second, for correct function evaluation with data producers’ data items: It
derives function f ′ from f . f ′ represents the homomorphic operations on the
random part of the ciphertext of f (see Equations 1,2):

f ′(V) =

m∏
i=1

Dr(E(vi, ri))
ai

It checks if (according to Equations 3):

Dr ◦ fh(V , E(c, 1)) = f ′ ◦Dv(R)

The key-managing authority instance accepts the proof if both checks pass.
Then, like in the naive protocol it applies the function mf (s, x) which adds
a random sample according to the sensitivity of f (see Section 3.1) and seed
s to the decrypted function result: x = mf (s) ◦ Dv ◦ fh(V , E(c, 1)). We
use a pseudo-random function on the data item information I as seed s in
order to create the randomness, so that every instance of the distributed
key-managing authority will add the same random sample and thus obtains
the same result x. This allows the k-th key-managing authority instance to
finally create a share sk of x (using the same seed s, but a different pseudo-
random function) and return that to the data consumer.

Remark 1. Note that, if the data consumer supplies different input I′ to one
key managing authority, then its resulting share will be uniformly randomly
distributed. Our ZKP only covers malicious behavior in the computation of
the statistical function f by the data consumer and not its decryption. The
data consumer can always prevent the correct decryption of the statistics,
but this only prevents him from obtaining the result.

Assembly: The data consumer assembles the decryption shares from at least
(t + 1) key-managing authority instances and reassembles the decrypted,
differentially-private, statistics result:

Dv(mf (I) ◦h fh(V , E(c, 1)))

Theorem 1. Our zero knowledge proof is complete, sound and honest-verifier
zero-knowledge.

Proof. Following Remark 1, we can assume that the vector I is static and omit
it from the proof. For completeness: Assume that the data consumer, according
to protocol step Calculation, chooses V ,R and S, computes the pre-arranged,
linear function fh with V and supplies the function result fh(V , E(c, 1)), R and
S to the key-managing authority. Then the key-managing authority will verify
that R only contains fresh entries and that those entries have valid signatures
in S and according to the last check of the protocol’s step Decryption it will
accept the proof if: Dr ◦ fh(V , E(c, 1)) = f ′ ◦Dv(R)
Which is true if R contains the corresponding entries to V (using Equation 3):

Dr ◦ fh(V , E(c, 1)) = f ′ ◦Dr(V ∪ E(c, 1))

=f ′((Dv(R1), . . . , Dv(Rm)) ∪ 1)

=f ′ ◦Dv(R)

�

For soundness, we show by contradiction: If our ZKP was not sound, IND-
CPA game for the Paillier cryptosystem would be solvable. By providing a sim-
ulator that reduces the IND-CPA challenge to the problem of forging the ZKP
we will show that forging the ZKP must be hard as well.

For soundness of the prover we need to differentiate between data producers
(system environment) and consumer (prover). We use – in this and the subse-
quent part of the proof – a signature oracle for the data consumers that returns
any valid signature. In this part of the proof, the data consumer has no access
to this oracle.

Our simulator first interacts with the IND-CPA challenger. It provides two
values as input: r0 and r1. The challenger returns the encryption of a randomly
chosen value cx = E(r0|r1, r′x). Without loss of generality, assume that the func-
tion f takes m data items from data producers as inputs. Now, the simula-
tor takes (m − 1) triples {vi, ri, r′i} and encrypts and signs them, resulting in
(m− 1)× {E(vi, ri), E(ri, r

′
i), S(E(ri, r

′
i), (j, Pj(vi)))}. The simulator also signs

cx and some data item information tuple y (using the oracle) and supplies this
incomplete ZKP Z = {(m − 1) × {E(vi, ri), E(ri, r

′
i), S(E(ri, r

′
i), (j, Pj(vi)))} ∪

{cx, S(cx, y)} to the data consumer. Note that in this setup the data consumer
needs to complete the ZKP, e.g. by supplying the missing (input value) cipher-
text: E(vx, r0|r1). Then the data consumer engages in communication with the
key-managing authority, with our simulator listening in their communication.
The data consumer passes the full ZKP Z ∪ E(vx, r0|r1) to the key-managing

authority and obtains the decrypted function result f(V). The simulator still
knows all vi (except vx) and can then infer vx from the function result. Conse-
quently, the simulator can also infer a plausible E(vx, r0|r1). Now, the simulator
performs the last check: It creates E(vx, r0) and E(vx, r1) and compares them
to E(vx, r0|r1). It thus solves the IND-CPA problem. �

For honest-verifier zero-knowledge we give a simulator of the authority’s (ver-
ifier’s) view only from its input and output. We stress, that for zero-knowledge
of the verifier we can view the data producers and consumer as one entity. The
verifier – and not the prover – holds the private keys for the encryption of the
values submitted during the proof. Consequently we need to simulate the plain-
texts of the encryption. Furthermore, we need to take care of the randomization
of the encryption, since it is not always uniformly distributed.

In order to simulate fh(V , E(c, 1)) the simulator uniformly chooses two ran-
dom values x ∈ Zn and r ∈ Z∗n. The simulated value is E(x, r). Note that, since
c can be drawn uniformly from Zn, so can x. Then, in order to simulate R the
simulator uniformly chooses m − 1 random values ri ∈ Z∗n (1 ≤ i ≤ m − 1).

It sets rm = r(
∏m−1
i=1 ri)

−1. The simulated values are the ciphertexts E(ri, r
′
i)

where the r′i are drawn uniformly from Z∗n. All the random values in the message
of the ZKP are identically distributed – including their arithmetic relationship.

Last, in order to simulate the signatures S the simulator invokes the signature
oracle on the simulated vector R. If this oracle works properly, all signatures will
be valid. This completes our simulator.

6 Related Work

Attacks on smart metering privacy: Several works [8,9,15,16,17,19,22] have
covered the area of behavior analysis from energy consumption traces. The au-
thors of [17] developed a system which inferred behavior events from the elec-
trical consumption data and evaluated the performance of their approach with
control data from video surveillance. This enables them to construct a sam-
ple disclosure metric that “...associates data quality (accuracy of readings, time
resolution, types of readings, and so on) from a particular source with the infor-
mation that the data could reveal.” [15] focuses on detecting and characterizing
different appliances according to load signatures.

Privacy-preserving smart meter billing: A cryptographic approach to
privacy in smart meter billing has been presented in [12]. A privacy compo-
nent homomorphically calculates the price locally in the household and only
reports the final price and a cryptographic proof over commitments on the me-
ter readings to the supplier. The proof allows the supplier to verify the correct
calculation and tariff without ever receiving plaintext values. Another crypto-
graphic approach very similar to [12] is described in [24]. It focuses on realizing
a variety of different tariff types with a cryptographic solution and reducing the
complexity of the calculations in the smart meter.

Private distributed aggregation model: In the following we describe two
general protocols [25,23] in the private distributed aggregation model and one [2]
in the fault-tolerant, private distributed aggregation model.

[25] describes a system where users provide homomorphically encrypted data
items with individually added random noise. The aggregator homomorphically
aggregates these data items and decrypts them. During aggregation individual
amounts of random noise cancel each other out except for a specific amount that
guarantees computational differential privacy.

In [23] bi-directional communication between users and the aggregator is re-
quired. First, users supply their homomorphically encrypted and randomized
value to the aggregator for aggregation. Then, the aggregator sends the aggre-
gated perturbed value back to all users for decryption. Every user removes its
individually added random noise (except for differential privacy) and replies
with a decryption share of the the final result which are finally combined by the
aggregator.

In [2] a system of intersecting user groups allows the aggregator to compen-
sate for user failures with the help of redundant information. As every user’s
data item is represented in the aggregate of several groups it can be recovered
even if some group aggregates cannot be recovered due to user failures.

Privacy-preserving smart metering statistics: Furthermore, we provide
an overview on different (non-fault-tolerant) approaches that ensure privacy for
different applications of smart metering data: leakage detection [5] by homo-
morphic encryption, general aggregation [14] and comparison by secret-sharing,
aggregation by third party [1,21] or aggregation [1] by randomization.

In [5] a privacy-preserving detection algorithm for leakages in electricity dis-
tribution has been proposed. Using homomorphic encryption and secret sharing
several smart meters engage in a protocol with a (potentially malicious) substa-
tion that searches for differences between its own measurement and the sum of
all smart meter readings. While both compute the sum in a private manner, our
approach (obviously) does not require a measurement of aggregate consumption,
requires only uni-directional communication and tolerates failing smart meters.

In [14] the authors propose several protocols for privacy-preserving aggrega-
tion or comparison on smart metering data based on secret-sharing. They also
provide an extensive analysis w.r.t. cryptographic verifiability, their computa-
tional and communicational complexities and their applicability for settlement
and profiling applications. Their work differs from ours mainly in their require-
ment of smart meters to form groups over which aggregates are computed which
also implicates meter to meter communication and implicitly assumes no failures.

Furthermore, in [1] a model for measuring privacy in smart metering is de-
veloped and subsequently two different solutions to privacy are presented: A
trusted third party approach, where aggregation takes place at the third party
and alternatively the approach of masking individual values with added noise
directly at the smart meters which is canceled out in the sum over all meters
at the supplier. The trusted third party of their first approach is able to calcu-
late arbitrary statistics. However, as it has to perform all calculations instead

of one decryption, as in our case, it requires more computational power and
storage than in our protocol. Their second approach has reduced variance in the
function result with increasing number of meters in contrast to our approach.
Ours, however, is independent of the total amount of smart meters contributing
readings and allows the calculation of arbitrary linear functions.

Finally, in [21] the authors suggest to use the electrical grid infrastructure
as a trusted third party to anonymize up-to-date consumption values constantly
sent out by smart meters. This third party verifies the authenticity of the data,
removes the identifying information and forwards it to the consumer of this
data. This solution provides privacy by anonymizing information at a trusted
third party before forwarding them to the data consumer which requires a similar
computational and storage effort as in [1].

Application of differential privacy in smart metering: In [3] the au-
thors build upon a previous work [24] and additionally apply differential privacy
to hide any information leakage that is implied by the billing amount itself. Using
differential privacy the consumer presents a randomized bill to the supplier that
is higher then the actual one. Their approach especially targets the remaining
information leakage implied by the bill calculation function itself, in which it is
similar to ours. However, we target forecasting where smart meter readings are
required in real-time and thus aggregation over time is not an option.

7 Summary and Conclusion

We provide a protocol in the fault-tolerant, private distributed aggregation model
that allows a data consumer to calculate unbounded statistics (weighted sums)
over homomorphically encrypted sensitive data items from data producers. Our
protocol is fault-tolerant, as the data consumer can choose to calculate over an
arbitrary subset of all available data items, i.e., failing data producers do not
prevent the statistics calculation. It is also privacy-preserving, because a (pos-
sibly distributed) key-managing authority ensures differential privacy before re-
sponding to the data consumer’s decryption request for the homomorphically
encrypted statistics result. Our protocol is secure against malicious data con-
sumers (aggregators) and features aggregator obliviousness, differential privacy
and a uni-directional communication model between data producers and data
consumers. In comparison to the other existing protocol [2] in this model the ac-
curacy of our statistics calculation is higher, particularly in the presence of fail-
ures. We are also more flexible, since we allow the non-interactive, intermittent
change of the statistics function and we do not require group key management.

In summary, our protocol provides the best suitable foundation for privacy-
preserving, real-time energy consumption forecasting using smart meters. Future
work is to extend the availability of consumption data to other data consumers,
such as regulators that need to verify single data items, and to incorporate other
data sources, such as weather forecast and television programs.

8 Acknowledgments

Marek Jawurek’s work in this paper was partly funded by the German Federal
Ministry of Economics and Technology (BMWi) as part of the MEREGIOmobil
project with reference number 01ME09007 and the MEREGIO project with
reference number 01ME08006.

References

1. J.-M. Bohli, O. Ugus, and C. Sorge. A privacy model for smart metering. In
Proceedings of the First IEEE International Workshop on Smart Grid Communi-
cations (in conjunction with IEEE ICC 2010), 2010.

2. T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with
fault tolerance. In Proceedings of the 16th International Conference on Financial
Cryptography and Data Security, FC ’12, 2012.

3. G. Danezis, M. Kohlweiss, and A. Rial. Differentially private billing with rebates.
Cryptology ePrint Archive, Report 2011/134, 2011. http://eprint.iacr.org/.

4. C. Dwork. Differential privacy. In in ICALP, pages 1–12. Springer, 2006.
5. F. Garcia and B. Jacobs. Privacy-friendly energy-metering via homomorphic en-

cryption. In Proceedings of the 6th International Workshop on Security and Trust
Management, 2010.

6. A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing
privacy mechanisms. In Proceedings of the 41st annual ACM symposium on Theory
of computing, STOC ’09, pages 351–360, New York, NY, USA, 2009. ACM.

7. O. Goldreich and A. Warning. Secure multi-party computation, 1998.
8. G. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE,

80(12):1870 –1891, dec 1992.
9. G. W. Hart. Residential energy monitoring and computerized surveillance via

utility power flows. IEEE Technology and Society Magazine, June 1989.
10. W. Heck. Smart energy meter will not be compulsory. NRC Handelsblad

(online), April 2009. http://www.nrc.nl/international/article2207260.ece/

Smart_energy_meter_will_not_be_compulsory.
11. A. Jamieson. Smart meters could be ’spy in the home’. Telegraph (UK) (online),

October 2009. http://www.telegraph.co.uk/finance/newsbysector/energy/

6292809/Smart-meters-could-be-spy-in-the-home.html.
12. M. Jawurek, M. Johns, and F. Kerschbaum. Plug-in privacy for smart metering

billing. CoRR, abs/1012.2248, 2010.
13. M. Jawurek, M. Johns, and K. Rieck. Smart metering de-pseudonymization. In

ACSAC, pages 227–236, 2011.
14. K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the

smart-grid. In S. Fischer-Hübner and N. Hopper, editors, PETS, volume 6794 of
Lecture Notes in Computer Science, pages 175–191. Springer, 2011.

15. H. Lam, G. Fung, and W. Lee. A novel method to construct taxonomy electrical
appliances based on load signaturesof. Consumer Electronics, IEEE Transactions
on, 53(2):653 –660, may 2007.

16. C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P. Armstrong.
Power signature analysis. Power and Energy Magazine, IEEE, 1(2):56 – 63, mar-
apr 2003.

http://eprint.iacr.org/
http://www.nrc.nl/international/article2207260.ece/Smart_energy_meter_will_not_be_compulsory
http://www.nrc.nl/international/article2207260.ece/Smart_energy_meter_will_not_be_compulsory
http://www.telegraph.co.uk/finance/newsbysector/energy/6292809/Smart-meters-could-be-spy-in-the-home.html
http://www.telegraph.co.uk/finance/newsbysector/energy/6292809/Smart-meters-could-be-spy-in-the-home.html

17. M. A. Lisovich, D. K. Mulligan, and S. B. Wicker. Inferring personal information
from demand-response systems. IEEE Security and Privacy, 8(1):11–20, 2010.

18. F. McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. Commun. ACM, 53(9):89–97, 2010.

19. A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin. Private memoirs
of a smart meter. In Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building, BuildSys ’10, pages 61–66, New York,
NY, USA, 2010. ACM.

20. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In IN ADVANCES IN CRYPTOLOGY — EUROCRYPT 1999, pages 223–238.
Springer-Verlag, 1999.

21. R. Petrlic. A privacy-preserving concept for smart grids. In Sicherheit in vernetzten
Systemen: 18. DFN Workshop, pages B1–B14. Books on Demand GmbH, 2010.

22. A. Prudenzi. A neuron nets based procedure for identifying domestic appliances
pattern-of-use from energy recordings at meter panel. In Power Engineering Society
Winter Meeting, 2002. IEEE, volume 2, pages 941 – 946 vol.2, 2002.

23. V. Rastogi and S. Nath. Differentially private aggregation of distributed time-
series with transformation and encryption. In Proceedings of the 2010 international
conference on Management of data, SIGMOD ’10, pages 735–746, New York, NY,
USA, 2010. ACM.

24. A. Rial and G. Danezis. Privacy-preserving smart metering. Technical report,
Microsoft Research, November 2010.

25. E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving
aggregation of time-series data. In NDSS, 2011.

	Fault-Tolerant Privacy-Preserving Statistics

