
Practical Privacy Preserving Cloud
Resource-Payment for Constrained Clients

Martin Pirker1, Daniel Slamanig2, and Johannes Winter1

1 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology (TUG), Inffeldgasse 16a, 8010 Graz, Austria

{martin.pirker,johannes.winter}@iaik.tugraz.at
2 Department of Engineering and IT, Carinthia University of Applied Sciences,

Primoschgasse 10, 9020 Klagenfurt, Austria
d.slamanig@cuas.at

Abstract. The continuing advancements in microprocessor technologies
are putting more and more computing power into small devices. Today
smartphones are especially popular. Nevertheless, for resource intensive
tasks such devices are still too constrained. However, the simultaneous
trend of providing computing resources as a commodity on a pay-as-you-
go basis (cloud computing) combined with such mobile devices facilitates
interesting applications: Mobile clients can simply outsource resource in-
tensive tasks to the cloud. Since clients have to pay a cloud provider
(CP) for consumed resources, e.g. instance hours of virtual machines,
clients may consider it as privacy intrusive that the CP is able to record
the activity pattern of users, i.e. how often and how much resources are
consumed by a specific client. In this paper we present a solution to this
dilemma which allows clients to anonymously consume resources of a CP
such that the CP is not able to track users’ activity patterns. We present
a scenario which integrates up-to-date security enhanced platforms as
processing nodes and a recent cloud payment scheme together with a
concrete implementation supporting the practicality of the proposed ap-
proach.

1 Introduction

The sustained advancements in microprocessor technologies put more and more
computing power into smaller and smaller devices. Today’s smartphones essen-
tially contain the computing “brainpower” of a desktop PC of not many years
ago. This development, along with improved wireless connectivity, naturally fu-
els a shift in device usage patterns. It is no longer necessary to use a full-size
desktop PC or laptop for certain tasks. Today, a smartphone is very well capable
to perform many of the tasks desired by common end-users, such as browsing
the web, or participation in social network services. Due to the small form fac-
tor, however, a smartphone’s resources are limited in terms of battery power,
storage, and consequently on available processing capacity.

A parallel trend is the rapid advancement of virtualisation technologies in
conjuction with cheap storage and fast (wireless) Internet connections. This has

created a market for providing computing resources as a commodity – so called
cloud computing. Large data centers can take advantage of the economics of
scale and dynamically lease computing power or storage capacities to clients on
demand. This trend promises to use IT resources more efficiently and to reduce
costs.

Consequently, in the future the desktop PC may continue to loose importance
and the split processing model may rise to dominance. In the split processing
model small tasks are executed directly on end-user devices such as smartphones,
tablets or other gadgets, while more complex and demanding jobs are delegated
to remote cloud computing services where resources are leased on demand.

Contribution In this paper, we address the privacy concerns of the split pro-
cessing model. We introduce a scenario where a low-resource client obtains cloud
processing credits from a reseller and then uses them to pay for high-powered ser-
vices at a remote cloud provider. Our main motivation for a “privacy-preserving
by design” approach is that such cloud providers will be able to link data and
information about resource consumption behaviour of their consumers (clients),
allowing them to build dossiers. For many customers such transparency can be
too intrusive. We want clients to be able to hide this information from cloud
providers. As, for instance, argued in [9], activity patterns may constitute con-
fidential business information and if divulged could lead to reverse-engineering
of customer base, revenue size, and the like.

More precisely, we consider a setting where clients should be able to purchase
a set of prepaid resources in form of cloud credits (CCs) from a reseller, e.g.
represented as a scratch-off card. This card contains information which allows
the client to obtain a single compact software token from a cloud provider that
includes how many CCs a client is allowed to consume from this cloud provider.
Then, clients should be able to consume their CCs from the cloud provider in an
anonymous and unlinkable yet authorized fashion. For instance, if a client wants
to consume n credits, he has to convince the CP that he possesses a valid token
and he is still allowed to consume n credits. If this holds, the anonymous client is
allowed to consume the resources and obtains an updated token corresponding
to the remaining CCs in a privacy-preserving manner. Although the CP should
be unable to track clients and determine how much credits a client has already
consumed, it must be guaranteed that the client only consumes as much resources
as CCs available in his token.

The novelty of our approach presented in this paper is that we use a recent
anonymous yet authorized and bounded cloud resource scheme from [20] in a
scenario which integrates up-to-date security enhanced platforms as processing
nodes. We assume ARM TrustZone architecture enabled smartphone clients and
Trusted Execution Technology attestable servers in the cloud. This scenario re-
sembles a realistic use-case for a cloud computing environment and could be
realised with today’s mass-market hardware in the near future. We also pro-
vide experimental results from a prototypical implementation of our scheme on
various current platforms.

Outline The remainder of the paper is structured into the following major sec-
tions. In Section 2 we present our scenario, in which we introduce all entities,
their motivations as well as their privacy requirements. We then continue in
Section 3 with preliminaries, including a brief background summary of the un-
derlying anonymous yet authorized and bounded cloud resource scheme and the
capabilities of trusted platform security technologies – in particular the Trust-
Zone and TXT architectures. Section 4 introduces our concrete scheme and
presents a description of all operations between the entities. We report practical
implementation results in Section 5. We consider supplemental security, privacy
implications, and trade-offs in Section 6. In Section 7 we present a brief overview
of related work. Finally, Section 8 concludes the paper.

2 Scenario and High Level Description

In this section we present a practical scenario for deployment of our privacy
preserving resource payment scheme. First we identify the core participants in-
teracting and then describe the scenario. Then, we provide a high level descrip-
tion of the operations between the entities. We also discuss privacy issues for all
involved entities.

2.1 Entities

In the scenario of this paper a small, resource limited client (C) wants to out-
source computations to a powerful cloud datacenter.

The cloud provider (CP) professionally runs this large datacenter which takes
advantage of the economics of scale. He rents computing power to anyone who
can pay for the resources consumed. We make no assumption about what kind
of resources are leased, we just define them to be accounted in discrete units of
cloud credits (CC). Naturally, the client and the cloud provider must consent to
a protocol so that the client can prove to the CP that he is eligible to consume a
certain amount of resources. Obviously, client and cloud provider must interact
directly when the client uses a CP service. However, before this step the client
first has to obtain a certain amount of cloud credits.

As significant feature we thus introduce a third entity, the credit reseller
(CR). The reseller obtains cloud credit units from the cloud provider in bulk and
subsequently distributes and resells them through (small) distribution branches.
This enables a wide range of use cases, such as cloud credits “gift-cards”, and
explicitly time-delayed, asynchronous interaction between the entities.

2.2 Scenario

We assume the client to be a state-of-the-art smartphone, based on an ARM
platform with TrustZone capabilities. The smartphone is connected to the In-
ternet, and thereby the cloud provider’s servers, through a wireless connection
to a mobile network. Figure 1 shows the major building blocks of our scenario
and subsequently we reflect on the role of each:

Fig. 1. Scenario in which a smartphone client connects to a cloud datacenter.

Cloud provider: Computing resources provided by the cloud provider are
servers which were booted with a Trusted Execution Technology measured
process (cf. Section 3.2). This enables the client to verify that he actually
receives what he paid for.

Network: In our scenario the client is a smartphone in a mobile network, and
thus the client is uniquely identifiable and his activities can be easily mon-
itored by the mobile network provider. The network connection continues
via the global Internet to the cloud provider. As privacy feature we assume
the use of an anonymizing network like Tor [13] to hide the effective network
address of the client from the cloud provider. Consequently, also the mobile
provider is unable to log where the smartphone is connecting to1.

Smartphone: The client device is essentially split into two processing worlds:
The normal-world which hosts the mobile’s OS, e.g. Android as is common
today, and end user applications. There is also a small isolated execution area
– the secure-world – for sensitive data and operations. The link between the
two worlds is strictly monitored and only well-defined calls are allowed2.
The client’s cloud credits accounting and private data storage is done in
the secure-world. Once the initial credit data structures (representing the
token) are imported, they never leave again (only in the case when they are
transferred to another client).

2.3 High Level Description of the Operations

We model the flows of cloud credits in our scenario as essentially a circle between
our three entities. The cloud provider is the central entity. He is responsible for
providing resources and requires clients to pay for the consumed resources by
providing the necessary number of CCs to him. Clients who want to consume
resources from a cloud provider need to acquire a certain number of CCs from a
credit reseller beforehand. This transaction is carried out without involving the

1 We ignore sophisticated global network surveillance scenarios and defer discussion
of these security edge cases to the Tor community.

2 See e.g. [24] for a practical realization of this approach.

cloud provider and thus can be carried out offline. After acquiring the credits
from the reseller, clients can activate the credits at the cloud provider, maybe
at some later point in time. Clients may not only consume acquired credits by
themselves, but may also give or sell them to other clients. Furthermore, if clients
pay too many credits at the cloud provider for a certain task, e.g. because they
do not know how many resources the task actually requires beforehand, then a
cloud provider can issue vouchers for unused credits. A graphical sketch of our
high-level operations for the client, cloud provider, and credit reseller setting
is given in Figure 2. Subsequently we present a high level description of the
operations.

Fig. 2. Core Payment Scheme Operations

Issue: This transaction is an initial bulk transfer of cloud credits (CC) from
the cloud provider (CP) to the credit reseller (CR). It is a personal business
relationship operation and assumed to happen in a secure and reliable way.

Acquire: This transaction is carried out between a client (C) and a CR. At
the end of this transaction C holds an amount of CCs, which cannot be used
before they are activated.

Activate: This transaction is carried out between C and the CP. Essentially, C
ends up holding an amount of activated CCs (in form of one compact token),
which may have a limited validity.

Spend: This transaction is carried out between a client C and CP, where C pays
a certain number of CCs and consumes an equivalent amount of resources
from CP. The client ends up with the result of the task performed at the
CP, and the remaining number of activated CCs.

SplitCredits: This is a transaction between C and CP in which C ends up
with (at most) two valid tokens. Let us assume that C wants to split off n
CCs from his collection of m CCs (if m > n)3. Then the first token contains
m− n CCs and the second token n CCs.

3 Otherwise, if m = n holds the first token will not be valid any more and if m < n
holds, the second token will only contain m CCs. Nevertheless, how such an operation

Refresh: This transaction is carried out between C and CP. It is required when
CCs have a limited validity. When the validity period ends, C carries out this
transaction and gets issued the same amount of activated credits he already
holds, but valid within the new period.

Transfer (not shown in Figure): This transaction is carried out between two
clients C1 and C2, whereas C1 transfers a number of activated CCs to C2

and C1’s CCs are deleted, i.e. we explicitly want to support transferability.

2.4 Privacy Issues

With the entities known we now discuss the privacy requirements which are
effective in our scenario. We assume that two entities can always connect to
each other using a private, i.e., confidential and authenticated, channel4. Note
that this does not mean that the entities need to mutually authenticate to each
other using their identities. Essentially, for our scenario we will realize privacy
by anonymity and unlinkability of conducted transactions. This presents a good
compromise in which clients have privacy guarantees while at the same time the
other entities can be sure that only authorized actions can be conducted.

Cloud provider From a privacy perspective the cloud provider is in the position
to be honest, but curios. Thus, he has the means to sniff, log and track the
cloud’s activities and is subsequently able to figure out who his clients are and
what they are doing. He must be able to demonstrate a certain level of security of
his services-for-rent. Without such a proof, customers will eschew doing business
with him as they cannot be sure what is happening with their data.

Credit reseller The relationship between the cloud provider and the credit
reseller is a business one. By definition, the cloud provider wants a reliable and
clearly identifiable reseller, and the reseller wants to ensure that he is dealing
with the correct provider contact point. From this follows the requirement for
secure communications and transactions between the two when they trade credits
for money – and privacy is not important in this context.

The reseller is the entity who comes into real-life contact with the end-user.
Consequently, the privacy of the client very much depends on the method of
payment for the prepaid cloud credits offered and how the actual handover is
organized. Similar to the cloud provider, the reseller has no motivation to invest
extra effort to identify his clients without additional external pressure.

Client The client is the entity motivated to ensure that privacy is enforced at
all steps in the transactions. First he has to obtain credits from the reseller. A
straightforward solution is to pay with money in cash, an intuitive way to ensure

ends is application dependent and one may also wish to terminate the operation if
m < n.

4 e.g., using Transport Layer Security (TLS) [11] over a Tor [13] connection

privacy of payment. By definition the client already knows which cloud provider
he wants to use, thus he must be able to verify that the offered credits from the
reseller are genuine. Second, for establishment of an untraceable, i.e. anonymous
and unlinkable, connection to the cloud provider the client uses an anonymous
communication network, e.g. Tor.

The process of exchanging cloud credits for resources represents the most
challenging issue. How to consume them at the cloud provider without the cloud
provider being able to identify and track clients? The most straightforward non-
privacy friendly solution for client payment is to require clients to register with
the cloud provider and to have the cloud provider maintain an account for ev-
ery client. The provider then bills all consumed resources to this account. In
this scenario clients could pay for their consumed resources on a regular basis.
However, this does not satisfy our privacy demands and we want to achieve the
following privacy requirements for the payment process:

Anonymity Clients do not want the cloud provider to be able to identify them.
Assuming that we have an anonymous channel between the client and the cloud
provider, this means that none of the operations Activate, Spend, SplitCredits and
Refresh must involve any information that can be used by the cloud provider to
identify a client. When we present our approach in Section 4 it will be clear that
anonymity solely depends on the underlying scheme for which it is shown in [20]
that anonymity is given.

Unlinkability Clients do not want the cloud provider to be able to link differ-
ent consumptions of resources (spending of credits), nor to discover how many
credits a client still possesses. This gives the client the guarantee that he is un-
observable from the cloud provider’s perspective. As in case of anonymity, the
operations Activate, Spend, SplitCredits and Refresh must be unlinkable and this
follows from the underlying scheme as shown in [20].

3 Background and Preliminaries

This section is devoted to building blocks and technologies that are employed
by our concrete scheme and deployment scenario. First we provide a compact
description of the underlying cryptographic scheme and present some abstrac-
tions used throughout the paper. We then provide a brief overview of trusted
platform security technologies, how they allow attestation of a platform’s state,
and how they support isolated, secured processing areas.

3.1 Anonymous Cloud Resource Scheme

In the following we represent all cloud credits (CCs) of a client as a single token,
i.e. one may think of a wallet of CCs, and a consumption of CCs from this token
can be thought of as spending some CCs out of the wallet.

We start by reviewing the anonymous yet authorized and bounded cloud re-
source scheme (AABCRS) introduced in [20], which is the most important build-
ing block for the work presented in this paper. The main idea behind such
schemes is that clients are able to purchase a contingent of credits for resources,
such as virtual machine instance hours, from a cloud provider (CP). While clients
spend their credits for resources at the CP, the CP does not learn anything about
the resource consumption behaviour of users. In particular, users can consume
an arbitrary number of their credits as long as there are still enough credits
from their purchased amount. Thereby, in any interaction with a client, the CP
is convinced whether a client is allowed to consume resources, but cannot iden-
tify the client nor link any of the client’s actions and thus cannot figure out their
consumption patterns.

Below we present the definition of [20] and slightly modify it by discarding
one of the protocols (the Reclaim protocol). This modification, however, has no
impact on the concrete scheme. Hence, an AABCRS is a tuple (ProviderSetup,
ObtainCredits, Consume) of polynomial time algorithms or protocols between
clients C and a cloud provider CP and works as follows:

– ProviderSetup. On input a security parameter k, this algorithms outputs
a private key sk and a public key pk of a suitable signature scheme and an
empty blacklist BL which is required for double-spending detection.

– ObtainCredits. In this protocol a client c wants to obtain a token t for L
credits (the credit limit) from the CP. The client’s output is a token t with
corresponding signature σt issued by CP. The token contains the credits L
and the up to now consumed credits s. These values may be represented by
a single value L′ := L− s within the token. Clearly, initially no credits have
been spent. The output of CP is a transcript TOL of the protocol.

– Consume. In this protocol a client c wants to consume n credits from the
credits still available in his token. The client shows a value id (a unique token
identifier) of a token t and convinces the CP that he holds a valid signature
σt for token t and that t contains at least n credits. If the token was not
already shown in a previous run of a Consume protocol, i.e. t.id /∈ BL, the
signature is valid and there are still enough credits available in the token,
i.e. s+ n ≤ L (or L′ − n ≥ 0 if both values are represented as a single one),
then c’s output is accept and an updated token t′ (with new id) for credit
limit L and up to now consumed credits s+ n (or L′ − n if both values are
represented as a single one) with an updated signature σt′ from CP. Finally,
CP includes id into BL. Otherwise the user’s output is reject. The output
of CP is a transcript TC .

In [20] the author presents two variants of an AABCRS scheme based on the
pairing based Camenisch-Lysyanskaya (CL) signature scheme [7]. In both vari-
ants, a token t is represented as an ordered sequence of values, whereas the
number of elements depends on the variant. In the first Variant (V1), a token
is of the form t = (C(id), C(s), L), whereas C(x) denotes an unconditionally
hiding commitment to value x. The value id represents a unique identifier of

the token, s represents the number of CC’s that have been consumed up to now
and L represents the credit limit. The drawback of V1 is that L is included in
plain in the token and thus is always visible to the CP. Hence, in the worst case,
i.e. L is issued to exactly one client, the cloud provider can link actions of this
client. However, if the set of clients associated to the same value L is reasonable
large, unlinkability is no longer a problem in a practical setting5. In the second
version (V2) even the value L is hidden from the cloud provider and a token is
of the form t = (C(id), C(s)). Here, s represents the number of CCs that are
still available from this token.

Intuition behind V1 [20] We briefly sketch the idea of V1 for simplicity,
whereas the modifications for V2 are straightforward (see [20]): The main intu-
ition of the construction is to let a client solely prove in each Consume protocol
that enough cloud credits are still available in a token. Therefore, the cloud
provider generates a key-pair (sk, pk) for the CL signature scheme, publishes pk
and initializes an empty blacklist BL. Then, a client obtains a CL signature σt
for a token t = (C(id), C(s), L), whereas initially no CCs s are consumed. Let
us assume that the client holds a token t = (C(id), C(s), L) and corresponding
signature σt. It is important to note, that id (a random token identifier) and s
were signed as commitments and thus the CP is not aware of these values. If a
user wants to consume n CCs from his token, he computes a commitment C(id′)
representing the updated token identifier for the updated token, randomizes the
signature σt to σ′

t (σt and σ′
t are then unlinkable) and proves in zero-knowledge

that σ′
t is a valid signature for id and L. This includes showing the values id

and L to the CP. Additionally, the client proves that the token includes an un-
known value s, which satisfies (s + n) ∈ [0, L] or equivalently s ∈ [0, L − n].
This proves convinces CP that at least n CCs are available from this token. If
id is not contained in BL and all proofs succeed, then the client is eligible to
consume n CCs. Consequently, the signature will be updated to a signature for
C(id + id′), C(s + n) and L in an interactive manner between the client and
CP. Subsequently, the CP adds id to BL and the client obtains an updated sig-
nature for an updated token t′ = (C(id + id′), C(s + n), L). This signature can
be randomized by the client (which makes t and t′ unlinkable) and used for the
next consumption of resources. Otherwise, CP will reject the client’s request to
consume n resources.

In the following we abstract from the details of the scheme, and use the
following high level parameters and state information respectively:

– The public parameters cpparamspub represent the public key pk of the CL
signature scheme and are public knowledge.

– The private parameters cpparamspriv represent the private key sk of the CL
signature scheme and the blacklist BL and are solely known to the cloud
provider.

5 Note that cloud resellers may sell cloud credits only in specific well-known amounts,
similar to cards for prepaid mobile phones, e.g. 5$, 10$, etc.

– The state cstatepub represents the actual token-signature pair of the client.
– The state cstatepriv represents the values id, s, (L in V1) as well as the

randomizers for the commitments and the randomization factors of the CL
signature of the client’s token. The state information is updated during every
Consume operation, since only the current values are required.

We note that it is not necessary to keep the token-signature pair cpparamspub
secret, since without knowing cstatepriv no one will be able to convince CP that
the signature σt is a valid signature for token t.

3.2 Trusted Platforms

In the last few years, mass-market computer platforms and devices have been
enhanced with functions dedicated to support advanced security. In the following
we give a short introduction to the features available in industry standard PCs
as well as mobile platforms.

Trusted Platform Modules The concept of Trusted Computing as promoted
by the Trusted Computing Group (TCG) extends the industry standard PC ar-
chitecture with a specialised hardware component, the Trusted Platform Module
(TPM) [22]. A TPM features cryptographic primitives similar to a smartcard,
but is physically bound to its host platform.

An important concept of Trusted Computing is the measurement logging
and reporting of the platform state. Upon platform hardware reset a special
set of platform configuration registers (PCRs) in the TPM are reset to a well
defined start value. PCRs cannot be directly written to, rather, a PCR with
index i, i ≥ 0, in state n is extended with input x by setting PCRn+1

i =
SHA-1(PCRn

i ||x). This enables the construction of a chain-of-trust. From the
BIOS onwards, every block of code is measured into a PCR before execution
control is passed to it. Thus, the current values in the set of PCRs represent a
log of what happend since system reboot, up to the current state of the system.
The current state may then be TPM signed with the TPM Quote operation and
reported in a so-called remote attestation protocol.

Intel Trusted Execution Technology Recent platforms from Intel6 extend
the basic TCG model of a static chain-of-trust from hardware reboot and trust
rooted in early BIOS. They provide the option of a dynamic switch to a well-
defined, measured system state [16], meaning at any point of execution after
platform reboot. Consequently, this capability significantly cuts down the com-
plexity of the chain-of-trust measurements to assess the platform state by ex-
cluding the early, messy bootup operations, leading to a simpler and practical
implementation.

6 We restrict our discussion to Intel’s Trusted Execution Technology (TXT) as this is
currently the dominant technology provider – comparable features are also available
on e.g. AMD platforms.

ARM TrustZone Many computing devices, especially in the embedded and
mobile domain, and more recently also in high-density data centers, do not use
x86 microprocessors, but are rather powered by a processor of the ARM fam-
ily. The ARM architecture follows a building-blocks approach, where the main
processor design is developed and controlled by one company. Individual ven-
dors select and license the intellectual property of the core and desired support
components as needed, and then enhance them with their own functional units
according to the needs of their customers.

The TrustZone architecture extension for ARM CPUs is an instruction set
extension for security critical scenarios. Basically, it provides a separation of
the memory resources and the CPU of a device, thereby creating two virtual
domains which are the so-called secure-world (SW) and normal-world (NW) [3].
This approach is an improvement to the basic concept of privileged/unprivileged
mode-split which can be found on many conventional architectures, including
earlier ARM cores.

The normal-world is the containment for user programs or any kind of un-
trusted applications. Security critical code is executed in the secure-world. The
isolation mechanisms of the TrustZone prohibit normal-world applications from
accessing the secure-world. Consequently, the data flow between both worlds is
controlled by a secure monitor entity, which is under control of the secure-world.

The total memory available for software inside the TrustZone is vendor de-
pendent and ranges from 64 kBytes up to 256 kBytes on typical systems. This
size enables the running of a small – hopefully evaluated and certified – core in
the secure-world along with trusted executables.

Due to the ARM building-block approach there is no standardized way to
report the genuinity of the TrustZone implementation of a certain vendor. How-
ever, typically TrustZone implementors provide a symmetric device-key for de-
vice identification and a asymmetric key for the purpose of secure boot. This
allows construction of hardware authentication similar to that implemented by
a TPM device and enforcement of a measured boot chain like with Intel TXT.

4 Practical Anonymous Payment

Building on the scenario, definitions and restrictions outlined in Section 2 we are
now ready to present our resource payment scheme in more detail. When we write
A(C(a1, . . . , an), CP (b1, . . . , bm)) we mean that operation A is run between entity
C with private inputs a1, . . . , an and entity CP with private inputs b1, . . . , bm.
All operations are conducted by the entities client (C), cloud provider (CP) and
credit reseller (CR). Furthermore, we will use the algorithms of an AABCRS as
defined in section 3.1 as subroutines.

We note, that the Acquire operation can be conducted by several means. One
suitable and also privacy friendly scenario is to require the cloud provider to
hand over scratch-off cards to the credit reseller. These scratch-off cards are of
different monetary denominations representing some equivalent of cloud credits
(CCs). If a user buys, e.g. with cash, such a card at a CR, he can scratch off the

opaque covering and a QR-Code is revealed. This QR-Code contains information
about the denomination, a serial number and potentially a validity period along
with a digital signature for those values. A client can scan this QR-Code with
the built-in camera of his smartphone7 and then holds all information necessary
to conduct an Activate operation with the CP. We denote the information which
is necessary for the activation as paramsact subsequently. Note, that the afore-
mentioned approach is advantageous from a privacy perspective, since CR does
not learn the serial number of the card and thus cannot link (in cooperation with
the cloud provider) the Acquire operation to the respective Activate operation.

Now, we present the remaining operations in a more formal manner, whereas
we assume for simplicity that the CP provides one type of resource and has
already conducted the ProviderSetup procedure. Furthermore, we denote by
NW the normal-world and by SW the secure-world of the client’s platform.

Activate(C(paramsact, cpparamspub), CP (cpparamspub,priv)): The NW sends
paramsact to the CP, who verifies them for validity and returns true or false
to C. In case of true, C imports cpparamspub into SW and C’s SW runs an
ObtainLimit protocol for CC limit L (contained in paramsact) with CP. The
client ends up with storing cstatepub in the NW and cstatepriv in the SW. If
the CP returns false in the first interaction, the operation terminates.

Spend(C(cstatepub,priv, n), CP (cpparamspub,priv)): The NW sends the number
n of desired CCs along with cstatepub to SW. If enough CCs are still available
(”in” the token) then SW runs a Consume protocol to consume n CCs with
CP, otherwise it returns false and the operation terminates. Thereby, CP
obtains a proof that cstatepub represents a valid token-signature pair, there
are still enough CCs available and the token id not already contained in
the blacklist BL. If any check fails, the operation terminates. If all checks
succeed, the SW updates cstatepriv and obtains an updated token-signature
pair cstatepub, which is stored in NW.

SplitCredits(C(cstatepub,priv,m), CP (cpparamspub,priv)): The NW sendsm along
with cstatepub to SW. Let us assume that n > m whereas n represents the
number of remaining CCs in cstatepriv for simplicity. Essentially, the oper-
ation works identical to the Spend operation, but the m resources are not
consumed. Instead, an additional cstate′pub is returned to C. At the end of
this operation C holds cstatepriv, cstate′priv (in SW) as well as cstatepub and
cstate′pub (in NW), whereas the former token represents n−m and the latter
m CCs.

Transfer(C1(cstatepub,priv), C2(·)): The SW of C1 exports cstatepriv and the
public and private state information cstatepub,priv are transferred to C2 who
imports cstatepriv into his SW and cstatepub into his NW. The SW of C1

deletes cstatepriv. Note that C1 transfers all n CCs represented by cstatepriv
to C2.

Refresh(C(cstatepub,priv), CP (cpparamspub,priv, cpparams′pub,priv)): C’s NW
sends cstatepub to the SW and SW sends cstatepub along with cstatepriv (rep-

7 The use of a mobile phone camera to provide a trusted import path for cryptographic
data was demonstrated viable in the Seeing-is-Believing effort [17].

resenting n CCs) to CP. Now, CP can check whether cstatepub represents
a valid token-signature pair for n CCs. If this is true, CP engages in an
ObtainLimit protocol with respect to new parameters cpparams′pub,priv with
C and issues a token for n CCs.

We additionally observe the following:

SplitCredits: A client may have several motives to invoke a SplitCredits op-
eration. For instance, a client may want to ”split” off some CC’s from his
token to obtain a new token, in order to give one of the tokens to someone
else, e.g. as a gift. Another scenario is that a client pays n CCs for some
computation, but the computation actually only requires m < n CCs. Then,
after having conducted the computation, CP issues some kind of voucher in
form of a new token to C for n−m CCs.

Refresh: The version of the Refresh operation presented here is the simplest
one. Essentially, the client is issued fresh CCs with respect to new CL signa-
ture parameters, i.e. every validity period is represented by distinct signature
parameters. Note, that providing unlimited validity of tokens would not scale
well, since CP would have to store the entire blacklist for double-spending
detection. More flexibility can be achieved if validity periods are encoded
directly into the tokens as it is proposed as an extension in [20].

Spend: For every Spend operation at least one CC is removed from circulation
and at least one new entry in the blacklist BL is required to prevent double-
spending. Naturally, the amount of CCs in circulation must be known to the
CP as he must be able to manage a blacklist. Consequently, the maximum
amount of credits issued is bound by the maximum size of the blacklist. The
policy of the CP must enforce a periodical Refresh operation by the clients
– in effect accounting periods – to allow periodical clearing of the blacklist
(of the expired period).

5 Implementation

For practical evaluation we prototyped the core anonymous payment operations
of our approach on multiple software and hardware platforms. Some are good
approximations of the current generation of smartphones.

5.1 Specifications

On the software side, our scheme was implemented in the high-level language
Java and uses the jPBC 1.2.0 library8, a library for Pairing-Based Cryptography
(PBC) in Java. As an alternative to the pure Java implementation there is also
a C implementation of PBC9, which can be called from Java via a Java-to-C
wrapper. In the following we denote these two setups as Java “-J“ and Native C

8 http://gas.dia.unisa.it/projects/jpbc/
9 http://crypto.stanford.edu/pbc/

http://gas.dia.unisa.it/projects/jpbc/
http://crypto.stanford.edu/pbc/

accelerated ”-C“ variants. Our platforms ran either Linux (Li) or Android (An)
as operating system. The platforms used to measure execution speed were as
follows:

Pc* Laptop HP 8440p Elitebook, Intel i7M620 @2,67 Ghz, running Android for
x86 2.3.5 (RC1 20110828) of the Android x86 porting effort [1], or Ubuntu
11.10 with IcedTea6 1.11pre (OpenJDK 64-Bit Server VM (build 20.0-b11)

Ek* Freescale i.MX51 evaluation kit [15], Freescale MX515D @800Mhz10, run-
ning Android 2.3.4 (build R10.3.2 3), or Ubuntu 10.04 LTS with IcedTea6
1.8.10 (OpenJDK Zero VM (build 14.0-b16))

SpGs Smartphone Google Nexus S, Samsung Exynos 1 GHz (ARM Cortex-A8),
running Android 2.3.6.

SpS2 Smartphone Samsung Galaxy S2, Samsung Exynos 1.2 GHz dual-core
(ARM Cortex-A9), running Android 2.3.3.

5.2 Results

For performance evaluation we focused on the Activate and Spend operations
conducted by the client. This is due to the fact that the remaining protocols
only require negligible computational resources or are based on one of the two
aforementioned protocols, i.e. perform identically. The first one being run only
once for initialisation of the credits token, the latter being run everytime credits
are spend at the CP. Table 1 shows the results from our implementation on the
platforms presented in Section 5.1. We measured from 4 to 16 bits for a practical
cloud credits limit of 24 = 16 to 216 = 65536 credits. The credits token is only
valid at one specific provider and these limits enable many basic use cases. A
larger limit is always possible, if the resulting additional computation time is
acceptable for the client.

PcLi-C PcAn-C PcLi-J SpS2-C SpGs-C EkAn-C

Activate 0.06 0.15 0.35 0.64 0.86 1.12

Spend 4 bits 0.16 0.35 0.82 1.43 1.94 2.54
Spend 16 bits 0.34 0.77 1.72 2.99 4.11 5.32

EkLi-C PcAn-J SpS2-J SpGs-J EkAn-J EkLi-J

Activate 1.09 1.80 6.76 11.1 15.7 19.8

Spend 4 bits 2.53 3.60 13.3 20.9 29.6 39.7
Spend 16 bits 5.42 6.87 24.4 41.7 54.7 77.3

Table 1. Execution time of Activate and Spend 4 bits to 16 bits [s]

Figure 3 provides a more detailed analysis of the Spend protocol for tokens
containing 2x CCs. As can be seen from the figure, the time required for the

10 The processor on this board is based on ARM’s Cortex-A8 core and supports ad-
vanced security features such as ARM’s TrustZone and secure boot facilities. Un-
fortunately, most parts of the documentation is only available under NDA from
Freescale. For this prototype effort this is sufficient.

run of a Spend protocol grows linearly11 in the number of bits x of CCs in the
activated token, which is due to required zero-knowledge range proofs. We do
not provide explicit timings for computations of the cloud provider, since he
uses state-of-the-art servers and the computations are very efficient (the most
expensive operation of the CP, i.e. Consume for a limit of 230 CCs, reported in
[20] takes about 1 second).

 0

 1

 2

 3

 4

 5

 6

 4 6 8 10 12 14 16

E
xe

cu
ti

o
n
 T

im
e
 [

s]

EkLi-C
EkAn-C
SpGs-C
SpS2-C

PcLi-J
PcAn-C
PcLi-C

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 6 8 10 12 14 16

EkLi-J
EkAn-J
SpGs-J
SpS2-J
PcAn-J

Fig. 3. Spend execution speed, x-axis shows credits token limit L = 2x [bits]

Our results clearly show that the PC* versions dominate, the C versions take
full advantage of the raw processor power. We interpret the difference between
PcLi-C and PcAn-C due to the first being 64bit and the second a 32bit platform.
They are closely followed by PcLi-J, a pure Java version executed by a server
JVM optimized over many years. The next 4 places are claimed by the remaining
C builds, as expected by their platform processor powers: 1.2GHz SpS2-C before
1.0GHz SpGs-C and 800MHz Ek*-C. The EkLi-C build runs almost identical to
EkAn-C. The Java versions trail, again as expected by their processor speed. For
the last platform, EkLi-J, the ARM JVM port appears to be quite unoptimized.

We must note that all Androids except PcAn-J and SpS2-J exhibited slight
process memory leakage during execution. Despite continuous garbage collector
runs memory usage grew. We assume this issue to add GC runtime overhead,
therefore their execution time should actually be a little lower. So far we have
been unable to determine the cause of this problem.

11 With the non-linearities in the measurements caused by OS system services running
in the background.

The main Java classes of our basic test code only consume 25 kB in size.
The supporting Java libraries (jpbc-api.jar, jpbc-plaf.jar, jpbc-pbc-jni.jar) require
371 kB. The native C support libs (libgmp.so, libjpbc-pbc.so, libpbc.so) sizes vary
according to the specific platform: Linux x86 64 772 kB, Android x86 32 688 kB,
Linux Arm 588 kB and Android Arm 800 kB.

5.3 Discussion

The results of our practical evaluation support the feasibility of our scheme.
While the Java numbers may appear to be very high at first glance, the C core
accelerated versions are multiple times faster. To achieve this, first we replaced
the default JNA wrapper for the Java-to-C bridge with our own custom JNI
coded wrapper to allow the C code to be accessible on Android. Second, the
ARM code was compiled to take advantage of ARM processor Neon SIMD and
ARMv7 instructions features12. Consequently, an optimized, C core enhanced,
Android build runs fast enough on current generation smartphones to allow
Spend(ing) operations without long delays for end users.

Our prototype uses off-the-shelf libraries for crytography which were not
optimised at all as initial evaluation of execution speed was our first objective.
Consequently, our test code plus support libraries and JavaVM are way too
large to fit into a TrustZone environment (Section 3.2). However, we expect a
standalone implementation of the algorithm along with a small JavaVM to fit
into a small TrustZone environment. This remains future work.

6 Discussion

In the following we reflect on supplemental aspects which were not discussed
during the presentation of our scheme or our scenario.

Trusted Computing Attestation In Section 2.2 we use Trusted Execution
Technology to attest the cloud servers provided to the client. This technology
is mass-market available and TXT integration has already been demonstrated
for Linux based servers [21]. Thus, if the software image to be rented to the
client is agreed upon, a remote client can ask for a remote attestation proof
(TPM Quote) from the server to confirm what specific software image was actu-
ally booted. Attacks of the TXT components require physical intervention [25]
and consequently raise the bar for manipulation13.

The execution of multiple parallel running client VMs on a cloud server and
subsequent attestation of the security of the system is an active topic of Trusted
Computing research. The current TPM chip generation was not designed for this
use case, an updated revision of the TPM hardware “V2” is expected to make
this use case practical.

12 GCC CFLAGS=”-march=armv7-a -mfloat-abi=softfp -mfpu=neon“
13 Or good old runtime software bugs which allow priviledge escalation.

Identification at credits purchase An obvious privacy problem is a potential
camera at the reseller’s place, which may collect a photo of the client’s face.
This threat is mitigated with the possibility of scratch-off cards and the ability
to Transfer credits between trustworthy friends.

Isolated secure world By definition computation in the SW is isolated from
the rest of the platform and only reachable via a well-defined, narrow interface.
Consequently, an obvious problem is to decide from inside the SW whether a
request from the NW is authorized – or not. This problem is non-trivial, but one
solution would be to require a trusted input and display path which provides
user-interaction (e.g. PIN entry) if explicit authorization for sensitive operations
in the SW is required. We assume that users are acting in their own best interests
when using their own smartphones, which is reasonable. Nevertheless, this still
leaves the problem of potential malware on the client’s platform which would be
able to circumvent this feature. Note that this isolation also impacts the privacy
provided by our network connection, as the Tor connection is currently anchored
in the NW. Thus, how could the limited SW verify whether an anonymizing
network connection to the CP is properly used?

Honesty of clients If two clients exchange cloud credits by means of a Transfer
operation, say C1 gives n CCs to C2, then C2 has no means to verify whether
C1 has properly deleted the transferred credits. Essentially, if C1 is dishonest
the first-come-first-served principle applies and whoever is the first one to spend
credits from the token will be able to continue spending. We may, however,
assume that only clients who trust each other exchange CCs, in which case this
is not a problem. Furthermore, from the perspective of CP, even if C1 does not
delete his CCs, then this does not mean any harm to the CP, since only n CCs
can be consumed in total and clients cannot create ”extra” credits.

Forward Secrecy What happens when a smartphone is stolen, lost or seized?
If Spend is not protected by additional secret information, e.g., a PIN, then
someone in possession of the smartphone is able to spend all credits left within
the currently activated token. Nevertheless, we note that even if the adversary
is able to extract information from the secure world, he will not be able to link
previous actions of the smartphone’s holder – since no ”history data” of the
randomization processes of the underlying scheme is stored.

7 Related Work

To the best of our knowledge an approach related to the one presented in this
paper has not been considered before. Nevertheless, there are three lines of work
whose combination leads to the kind of work presented here. We will briefly
elaborate on this below.

Privacy in trustworthy mobile platforms With the growing popularity of
mobile computing, their ubiquitous application and the resulting privacy issues,
there arises the necessity to provide functionalities of traditional privacy en-
hancing cryptographic protocols. However, due to limited storage capacities and
processing power this task is non trivial and requires clever design. Recent works
include the design of anonymous authentication for mobile devices by modifying
direct anonymous attestation (DAA) and using hardware security features to
prevent copying and sharing of private credentials [23]. Another implementation
of DAA on mobile platforms with TPMs is presented in [12].

Privacy in cloud computing: Privacy is considered as one of the main is-
sues in cloud computing. Besides known problems regarding user’s privacy in
traditional web applications, additional aspects imposed by the heavy use of
virtualization seem to be novelties. For instance, sharing of resources among dif-
ferent users may potentially lead to the construction of covert or side channels
which allows to infer activity patterns of other users (cf. [9]). User’s access pat-
terns represent privacy sensitive information that should also be hidden from the
cloud. Recent works are mainly focusing on storing and sharing data in the cloud.
In [14] an oblivious RAM (ORAM) based approach is presented, which allows
users to outsource a set of data items to the cloud and provide read and write
permission to users as follows. Users can only access (and read in plain) data
items when accurate permissions were obtained and can learn nothing about
other items. Additionally, users and even the cloud provider observing all ac-
cesses cannot infer which user is accessing which data items how often. Another
approach based on dynamic accumulators was recently proposed in [19]. Here,
no ORAM is employed and thus the cloud (and other users) may learn which
data items are accessed, but each access is anonymous and unlinkable to each
other. Hence, usage patterns of users can also not be inferred. Independent of
the latter approach [18] also proposed a discretionary access control model for
data outsourced in the cloud which hides access patterns.

Anonymous payments: Concepts for anonymous and untraceable electronic
payments are around for quite a long time [8]. While these first schemes were
based on blind signatures and the cut-and-choose paradigm, over the years sev-
eral improvements, especially for off-line e-cash, e.g. compact e-cash [5] or divis-
ible e-cash [4], allowing to spend 2n coins from a ”single coin” accumulating all
coins, have been proposed. Recently, the use of anonymous payments for overlay
networks like Tor [2,10], which use lightweight payment protocols for micropay-
ments, have been proposed. Unlike all aforementioned schemes, which assume a
bank, a set of payees and a set of payers, in our scenario we have one bank and
one payee represented as the same entity. Thus, we do not need to employ offline
schemes, but use a kind of online payment scheme. Since we do not need proper-
ties of e-cash schemes such as double-spender identification as well as spending
with arbitrary payees (this usually adds a non trivial computational overhead),
we employ a scheme tailored to payment for cloud resources in our work.

8 Conclusion and Outlook

In this paper we present a privacy preserving cloud resource payment scheme
for resource constrained mobile devices such as smartphones. We discuss a con-
crete scenario for a setting which includes clients, credit resellers and a cloud
provider. The client and cloud provider take advantage of the state-of-the-art
security enhanced TrustZone and TXT hardware platforms. Besides theoretical
considerations, we also prototype the core operations on state-of-the-art plat-
forms. Our results suggest that an optimized C implementation of our scheme is
already fast enough for deployment on the current generation of smartphones.

Future work includes the use of an instantiation of an AABCRS based on
the strong RSA version of the CL signature scheme [6], which should provide a
significant performance boost. Other interesting aspects are the extension of the
scenario to multiple cloud providers such that credits can be spend at different
CPs (potentially including a ”bank” as within traditional payment systems)
and the consideration of alternative (more efficient) payment mechanisms as for
instance proposed in [10]. The problem of practically realizing such scenarios
with smartphone secure processing and secure data storage technologies remain
an active area of research.

Acknowledgements

We thank the anonymous reviewers for their helpful feedback on the paper. In
particular we thank Thomas S. Benjamin for his many suggestions for improving
this paper. This work has been supported by the European Commission through
project FP7-SEPIA, grant agreement number 257433. The second author has
been supported by an internal grant (zentrale Forschungsförderung – ZFF) of
the Carinthia University of Applied Sciences.

References

1. Android x86 Team: Android-x86 - porting android to x86 (2011), http://www.

android-x86.org/

2. Androulaki, E., Raykova, M., Srivatsan, S., Stavrou, A., Bellovin, S.M.: PAR:
Payment for Anonymous Routing. In: Privacy Enhancing Technologies. LNCS,
vol. 5134, pp. 219–236. Springer (2008)

3. ARM Ltd.: TrustZone Technology Overview. http://www.arm.com/products/

esd/trustzone_home.html (2011)

4. Au, M.H., Susilo, W., Mu, Y.: Practical Anonymous Divisible E-Cash from
Bounded Accumulators. In: Financial Cryptography and Data Security. LNCS,
vol. 5143, pp. 287–301. Springer (2008)

5. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: EURO-
CRYPT. LNCS, vol. 3494, pp. 302–321. Springer-Verlag (2005)

6. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
SCN. LNCS, vol. 2576, pp. 268–289. Springer (2002)

http://www.android-x86.org/
http://www.android-x86.org/
http://www.arm.com/products/esd/trustzone_home.html
http://www.arm.com/products/esd/trustzone_home.html

7. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: CRYPTO. LNCS, vol. 3152, pp. 56–72. Springer (2004)

8. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO. pp. 199–203.
Plenum Press (1982)

9. Chen, Y., Paxson, V., Katz, R.H.: What’s New About Cloud Computing Security?
Tech. Rep. UCB/EECS-2010-5, University of California, Berkeley (2010)

10. Chen, Y., Sion, R., Carbunar, B.: XPay: Practical Anonymous Payments for Tor
Routing and other Networked Services. In: WPES. pp. 41–50. ACM (2009)

11. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, IETF (2008), http://tools.ietf.org/html/rfc5246

12. Dietrich, K., Winter, J., Luzhnica, G., Podesser, S.: Implementation Aspects of
Anonymous Credential Systems for Mobile Trusted Platforms. In: Communications
and Multimedia Security. LNCS, vol. 7025, pp. 45–58. Springer (2011)

13. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The Second-Generation Onion
Router. In: USENIX Security Symposium. pp. 303–320 (2004)

14. Franz, M., Williams, P., Carbunar, B., Katzenbeisser, S., Peter, A., Sion, R.,
Sotáková, M.: Oblivious Outsourced Storage with Delegation. In: Financial Cryp-
tography and Data Security. LNCS, vol. 7035, pp. 127–140. Springer (2011)

15. Freescale Semiconductor Inc.: i.MX51 evaluation kit. http://www.freescale.com/
webapp/sps/site/prod_summary.jsp?code=MCIMX51EVKJ (2010)

16. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press (2009)

17. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-Is-Believing: Using Camera Phones
for Human-Verifiable Authentication. In: IEEE Symposium on Security and Pri-
vacy (2005)

18. Raykova, M., Zhao, H., Bellovin, S.: Privacy Enhanced Access Control for Out-
sourced Data Sharing. In: Financial Cryptography and Data Security. LNCS,
Springer (2012)

19. Slamanig, D.: Dynamic Accumulator based Discretionary Access Control for Out-
sourced Storage with Unlinkable Access. In: Financial Cryptography and Data
Security. LNCS, Springer (2012)

20. Slamanig, D.: Efficient Schemes for Anonymous yet Authorized and Bounded Use
of Cloud Resources. In: Selected Areas in Cryptography (SAC 2011). LNCS, vol.
7118, pp. 73–91. Springer (2012)

21. Toegl, R., Pirker, M., Gissing, M.: acTvSM: A Dynamic Virtualization Platform
for Enforcement of Application Integrity. In: Chen, L., Yung, M. (eds.) Second
International Conference on Trusted Systems (INTRUST 2010). LNCS, vol. 6802,
pp. 326–345. Springer Verlag (2010)

22. Trusted Computing Group: TCG TPM Specification Version 1.2 (2007), https:
//www.trustedcomputinggroup.org/developers/

23. Wachsmann, C., Chen, L., Dietrich, K., Löhr, H., Sadeghi, A.R., Winter, J.:
Lightweight Anonymous Authentication with TLS and DAA for Embedded Mobile
Devices. In: ISC. LNCS, vol. 6531, pp. 84–98. Springer (2010)

24. Wiegele, P., Winter, J., Pirker, M., Toegl, R.: A flexible software development and
emulation framework for ARM TrustZone. In: Proceedings of The Third Interna-
tional Conference on Trusted Systems (INTRUST2011). LNCS, Springer (2012)

25. Winter, J., Dietrich, K.: A Hijacker’s Guide to the LPC Bus. In: EuroPKI. LNCS,
Springer (2011)

http://tools.ietf.org/html/rfc5246
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCIMX51EVKJ
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCIMX51EVKJ
https://www.trustedcomputinggroup.org/developers/
https://www.trustedcomputinggroup.org/developers/

	Practical Privacy Preserving Cloud Resource-Payment for Constrained Clients

