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Abstract. We want to publish low-dimensional points, for example 2D
spatial points, in a differentially private manner. Most existing mech-
anisms publish noisy frequency counts of points in a fixed predefined
partition. Arguably, histograms with adaptive partition, for example V-
optimal and equi-depth histograms, which have smaller bin-widths in
denser regions, would provide more statistical information. However, as
the adaptive partitions leak significant information about the dataset, it
is not clear how differentially private partitions can be published accu-
rately. In this paper, we propose a simple method based on the obser-
vation that the sensitivity of publishing the sorted sequence of a dataset
is independent of the size of dataset. Together with isotonic regression,
the dataset can be reconstructed with high accuracy. One advantage of
the proposed method is its simplicity, in the sense that there are only a
few parameters to be determined. Furthermore, the parameters can be
estimated solely from the privacy requirement ε and the total number
of points, and hence do not leak information about the data. Although
the parameters are chosen to minimize the earth mover’s distance be-
tween the published data and original data, empirical studies show that
the proposed method also achieves high accuracy w.r.t. to some other
measurements, for example range query and order statistics.

1 Introduction

The popularity of personal devices equipped with location sensors leads to a large
amount of location data being gathered. Such data contain rich information and
would be valuable if they can be shared and published. As the data may reveal
location of an identified individual, it is important to anonymize the data before
publishing. The recently developed notion of differential privacy [5] provides a
strong form of privacy assurance regardless of the background information held
by the adversaries. Such assurance is important, as many case studies and past
events have shown that a seemingly anonymized dataset together with additional
knowledge held by the adversary could reveal information on individuals.

Most studies on differential privacy focus on publishing statistical values,
for instance, k-means [3], private coreset [7], and median of the database [20].
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Publishing specific statistics or data-mining results is meaningful if the publisher
knows what the public specifically wants. However, there are situations where the
publishers want to give the public greater flexibility in analyzing and exploring
the data, for example, using different visualization techniques. In such scenarios,
it is desired to “publish data, not the data mining result” [8].

The histogram of a dataset contains rich information that can be harvested
by subsequent analysis. In the context of different privacy, parallel composition
can be exploited to treat non-overlapping bins independently and thus achiev-
ing high accuracy. There are a number of research efforts [14, 2] investigating
the dependencies of frequencies counts of fixed overlapping bins, where parallel
composition can not be directly applied. Such overlapping bins are interesting
as different domain partition could lead to different accuracy and utility. For in-
stance, Xiao et al. [28] proposes publishing wavelet coefficients of an equi-width
histogram, which can be viewed as publishing a series of equi-width histograms
with different bin-widths, and is able to provide higher accuracy in answering
range queries compare to a single equi-width histogram.

It is generally well accepted that equi-depth histogram and V-optimal his-
togram provide more useful statistical information compare to equi-width his-
togram [21, 22], especially for multidimensional data. These histograms are adap-
tive in the sense that the domain partitions are derived from the data such that
denser regions will have smaller bin-widths and the sparser regions will have
larger bin-widths, as illustrated in Fig. 7(b). Since the bin-widths are derived
from the dataset, they leak information about the original dataset. There are rel-
atively few works that consider adaptive histogram in the context of differential
privacy. One exception is the work by Xiao et al. [29]. Their method consists of t-
wo steps where firstly synthetic data are generated from the differentially private
equi-width histogram. After that, a k-d tree (which can be viewed as an adaptive
histogram) is generated from the synthetic data, and the noisy counts are then
released with the partition. Machanavajjhala et al. [16] proposed a mechanism
that publishes 2D histograms with varying bin-widths, where the bin-widths are
determined from a previously released similar data. The histograms generated
are not adaptive in the sense that the partitions do not depend on the data to
be published.

In this paper, instead of publishing the noisy frequency counts in equi-width
bins, we propose a method that directly publishes the noisy data, which in turn
leads to an adaptive histogram. To illustrate, let us first consider a dataset
consisting of a set of real numbers from the unit interval, for example, the nor-
malized distance of Twitter users’ locations [1] to New York City (Fig. 1(a)). We
observe that sorting, as a function that takes in a set of real numbers from the
unit interval and outputs the sorted sequence, interestingly has sensitivity one
(Theorem 1). Hence, the mechanism that first sorts, and then adds independent
Laplace noise of LAP(1/ε) to each element achieves ε-differential privacy. Fig.
1(b) shows the noisy output data after the Laplace noise has been added to the
sorted sequence. Although seemingly noisy, there are dependencies to be exploit-
ed because the original sequence is sorted. By using isotonic regression, the noise
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(a) Sorted 1D points.
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(b) The sorted points with Laplace noise
added. To avoid clogging, only 10% of the
points (randomly chosen) are plotted.
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(c) Reconstructed with isotonic regres-
sion.

0 0.5 1 1.5 2

x 10
5

−0.04

−0.02

0

0.02

0.04

0.06

Points

D
is

pl
ac

em
en

t

 

 

Reconstructed data
Reconstructed data with grouping

(d) The differences of the reconstructed
points from the original.

Fig. 1. Overview of proposed method.

can be significantly reduced (Fig. 1(c)). To further reduce noise, before adding
the Laplace noise, consecutive elements in the sorted data can be grouped and
each point is replaced by the average of its group. Fig. 1(d) shows the difference
of the original and the reconstructed points with and without grouping.

To extend the proposed method to higher dimension data, for example, lo-
cation data of 183,072 Twitter users in North America as shown in Fig. 2(a),
we employ locality-preserving mapping to map the multidimensional data to
one-dimension (Fig. 2(b)), such that any two close points in the one-dimension
domain are mapped from two close multidimensional points. After that, the pub-
lisher can apply the proposed method on the 1D points, and publish the reverse
mapped multidimensional points.

One desired feature of our scheme is its simplicity: there is only one param-
eter, the group size, to be determined. The group size affects the accuracy in
three ways: (1) its effect on the generalization error, which is introduced due
to averaging; (2) its effect on the level of Laplace noise to be added by the d-
ifferentially private mechanism; and (3) its effect on the number of constraints
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(a) Locations of Twitter users. To avoid
clogging, only 10% of the points (random-
ly chosen) are plotted.
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(b) Sorted 1D images of the data.

Fig. 2. Twitter location data and their 1D images of a locality-preserving mapping.

in the isotonic regression. Based on our error model, the optimal parameter can
be estimated without knowledge of the dataset distribution. In contrast, many
existing methods have many parameters whose optimal values are difficult to
be determined differentially privately. For instance, although the equi-width his-
togram has only one parameter, i.e. the bin-width, its value significantly affects
the accuracy, and it is not clear how to differentially privately obtain a good
choice of the bin width.

Our error model utilizes the earth mover’s distance (EMD) to measure the
accuracy of the published data. Some existing works measure the accuracy of
a histogram by its distance, such as L2 distance or KL divergence, to a ref-
erence equi-width histogram. One limitation of this measurement is that the
reference histogram can be arbitrary and thus arguably ill-defined. If the refer-
ence bin-width is too small, each bin will contain either one or no point, which
leads to significantly large distance from a seemingly accurate histogram. On
the other hand, if its bin-width is too large, the reference histogram would be
over generalized. In contrast, EMD measures the distance of the published data
and original points, where the “reference” is the original points and thus well-
defined. We conduct empirical studies to compare against a few related known
methods: equi-width histogram, wavelet-based method [28] and smooth sensitiv-
ity based median-finding [20]. Although our method is designed to minimize the
EMD, it also attains high accuracy w.r.t. other measurements. Empirical studies
shows that our method outperforms the wavelet-based method w.r.t. accuracy of
range-query, even for ranges with large sizes. It is also comparable to the smooth
sensitivity based method in publishing median.
Organization: We first describe some background materials in the next sec-
tion. In Section 3 we present our main ideas and mechanism, and show that the
proposed mechanism achieves differential privacy in Section 4. Next, in Section
5, we formulate and analyze how the group size affects the accuracy and derive
a strategy to choose the group size based on this model. In Section 6, we com-
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pare our mechanism with three known mechanisms: (1) equi-width histogram,
(2) wavelet-based method, and (3) smooth sensitivity based median-finding. In
Section 7, we discuss the extensions and limitations of our method. Lastly, we
describe related works in Section 8 and conclude in Section 9.

2 Background

2.1 Differential Privacy and Laplace Noise

We treat a database as a multi-set (i.e. a set with possibly repeating elements),
and consider two datasets D1 and D2 of size n to be neighbors when D2 can be
obtained from D1 by replacing one element, i.e. D1 = {x} ∪D2 \ {y} for some x
and y. Differential privacy with this definition of neighborhood is known as the
bounded differential privacy [6, 13].

A randomized algorithm (also known as mechanism) A achieves ε differential
privacy if,

Pr[A(D1) ∈ S] ≤ exp(ε)× Pr[A(D2) ∈ S]

for all S ⊆ Range(A), where Range(A) denotes the output range of the algorithm
A, and for any pair of neighboring datasets D1 and D2.

For a function f : D → Rk, the sensitivity [5] of f is defined as

∆(f) := max‖f(D1)− f(D2)‖1,

where the maximum is taken over all pairs of neighboring D1 and D2. It is
shown [6] that the mechanism A

A(D) = f(D) + (Lap(∆(f)/ε))k

achieves ε-differential privacy, where (Lap(∆(f)/ε))k is a vector of k indepen-
dently and randomly chosen values from the Laplace distribution with standard
deviation 2∆(f)/ε.

2.2 Isotonic Regression

Given a sequence of n real numbers a1, . . . , an, the problem of finding the least-
square fit x1, . . . , xn subjected to the constraints xi ≤ xj for all i < j ≤ n is
known as the isotonic regression. Formally, we want to find the x1, . . . , xn that
minimizes

n∑
i=1

(xi − ai)2, subjected to xi ≤ xj for all 1 ≤ i < j ≤ n.

The unique solution can be efficiently found using pool-adjacent-violators al-
gorithms in O(n) time [10]. When minimizing w.r.t. `-1 norm, there is also an
efficient O(n log n) algorithm [25]. There are many variants of isotonic regression,
for example, variants with a smoothness component in the objective function [27,
17].
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2.3 Locality-Preserving Mapping

A locality-preserving mapping T : [0, 1]d → [0, 1] maps d-dimensional points to
the unit interval, while preserving locality. In this paper, we seek a mapping
that, if the mapped points T (x), T (y) are “close”, then x and y are “close” in
the d-dimensional space. More specifically, there is some constant c s.t. for any
x, y in the domain of the mapping T ,

‖x− y‖2 ≤ c · (‖T (x)− T (y)‖)1/d. (1)

The well-known Hilbert curve [9] is a locality-preserving mapping. It is shown
that for any 2D points x, y in the domain of T , ‖x − y‖2 ≤ 3

√
|T (x)− T (y)|.

Niedermeier et al. [19] showed that with careful construction, the bound can
be improved to 2

√
|T (x)− T (y)| for 2D points and 3.25 3

√
‖T (x)− T (y)‖ for 3D

points. In our construction, for simplicity, we use Hilbert curve in our experi-
ments.

Note that it is challenging in preserving locality “in the other direction”,
that is, any two “close” points in the d-dimensional domain are mapped to
“close” points in the one-dimensional range [18]. Fortunately, in our problem,
such property is not required.

2.4 Datasets

We conduct experiments on two datasets: locations of Twitter users [1] (here-
in called the Twitter location dataset) and the dataset collected by Kaluža et
al. [12] (herein called Kaluža’s dataset). The Twitter location dataset contains
over 1 million Twitter users’ data from the period of March 2006 to March 2010,
among which around 200,000 tuples are labeled with location (represented in
latitude and longitude) and most of the tuples are in the North American conti-
nent, concentrating in regions around the state of New York and California. Fig.
2(a) shows the cropped region covering most of the North American continen-
t. The cropped region contains 183,072 tuples. The Kaluža’s dataset contains
164,860 tuples collected from tags that continuously record the location infor-
mation of 5 individuals. While some of the tuples consist of many attributes, in
our experiments, only the 2D location data are being used.

3 Proposed Approach

Before receiving the data, the publisher has to make a few design choices. The
publisher need to decide on a locality-preserving mapping T , and the strategy
(which is represented as a lookup table) of determining the group size from the
privacy requirement ε and the size of dataset n. Now, given the dataset D of size
n, and the privacy requirement ε, the publisher carries out the following:

A1. The publisher maps each point in D to a real number in the unit interval
[0, 1] using T , and lookups the group size based on n and ε. Let T (D) be
the set of transformed points. For clarity in exposition, let us assume that k
divides n.
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A2. The publisher sorts the mapped points, divides the sorted sequence into
groups of k consecutive elements, and then for each group, determines its
average over the k elements. Let the averages be S = 〈s1, . . . , sn/k〉.

A3. The publisher releases S̃ = S + (Lap(ε−1)/k)(n/k) and the group size k.

A public user may extract information from the published data as follow:

B1. The user performs isotonic regression on S̃ and obtains IR(S̃), and then

replaces each element s̃i in IR(S̃) with k points of value s̃i. Let P be the set
of resulting points.

B2. The user maps the data point back to the original domain, that is, computes
D̃ = T−1(P ). Let us call D̃ the reconstructed data.

Note that the public user is not confined to performing step B1 and B2. The
user may, for example, incorporates some background knowledge to enhance
accuracy. To relieve the public from computing step B1 and B2, the regression
and the inverse mapping can be carried out by the publisher on behalf of the
users. Nevertheless, the raw data S̃ should be (although it is not necessary)
published alongside the reconstructed data for further statistical analysis.

4 Security Analysis

In this section, we show that the proposed mechanism (Step A1 to A3) achieves
differential privacy. The following theorem shows that sorting, as a function,
interestingly has sensitivity 1. Note that a straightforward analysis that treats
each element independently could lead to a bound of n, which is too large to be
useful.

Theorem 1. Let Sn(D) be a function that on input D, which is a multi-set con-
taining n real numbers from the unit interval [0, 1], outputs the sorted sequence
of elements in D. The sensitivity of Sn w.r.t. the bounded differential privacy
is 1.

Proof. Let D1 and D2 be any two neighboring datasets. Let 〈x1, x2 . . . xi . . . xn〉
be Sn(D1), i.e. the sorted sequence of D1. WLOG, let us assume that an element
xi is replaced by a larger value A to give D2, for some 1 ≤ i ≤ n−1 and xi < A.
Let j to be largest index s.t. xj < A ≤ 1. Hence, the sorted sequence of D2 is:

x1, x2, . . . , xi−1, xi+1, . . . , xj , A, xj+1, . . . , xn.

The L1 difference due to the replacement is,

‖Sn(D1)− Sn(D2)‖1
= |xi+1 − xi|+ |xi+2 − xi+1|+ |xj − xj−1|+ |A− xj |
= (xi+1 − xi) + (xi+2 − xi+1) + (xj − xj−1) + (A− xj)
= A− xi ≤ 1.

We can easily find an instance of D1 and D2 where the difference A − xi = 1.
Hence, the sensitivity is 1. ut



8 Chengfang Fang Ee-Chien Chang

Since the sensitivity is 1, the mechanism Sn(D)+Lap(1/ε)n enjoys ε-differential
privacy. Also note that the value of n is fixed. Hence, the size of D is not a secret
and is made known to the public.

The following corollary shows (proof omitted) that grouping (in Step A2)
has no effect on the sensitivity.

Corollary 1. Consider a partition H = {h1, h2 . . . hm} of the indices {1, 2, . . . , n}.
Let SH(D) be the function that, on input D, which is a multi-set containing n
real numbers from the unit interval [0, 1], outputs a sequence of m numbers:

yi =
∑
j∈hi

xj ,

for 1 ≤ i ≤ m where 〈x1, x2, . . . , xn〉 is the sorted sequence of D. The sensitivity
of SH is 1.

Note that the grouping in step A2 is a special partition with equal-sized hi’s,
whereas Corollary 1 gives a more general result where H can be any partition.
From Corollary 1, the proposed mechanism achieves ε-differential privacy.

5 Analysis and Parameter Determination

The main goal of this section is to analyze the effect of the privacy requirement
ε, dataset size n and the group size k on the error in the reconstructed data,
which in turn provides a strategy in choosing the parameter k given n and ε.

Intuitively, when n and ε are fixed, the choice of parameter k affects the
accuracy in following three ways: (1) a larger k decreases the number of con-
straints in isotonic regression, which leads to lower noise reduction; (2) a larger
k reduces the effect of the Laplace noise; and (3) a larger k introduces higher
generalization error due to averaging.

Our analysis consists of the following parts. We first describe our utility
function in Section 5.1. In Section 5.2, we consider the case where k = 1 and
empirically show that the expected error of a typical dataset can be well approx-
imated by the expected error on a synthetic equally-spaced dataset. Let us call
this error Errn,ε. Next in Section 5.3, we investigate and estimate the general-
ization error due to the averaging and show that with a reasonable assumption
on the dataset distribution, the expected error can be approximated by k

4n . Let
us call this error Genn,k. Finally, in Section 5.4, we consider the general case of
k ≥ 1 and give an approximation of the expected error in terms of Errn,ε and
Genn,k.

5.1 Error function

We use an error function based on the earth mover’s distance(EMD) [24] to
quantify the utility of the published data. The EMD between two pointsets of
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equal size is defined to be the minimum cost of bipartite matching between the
two sets, where the cost of an edge linking two points is the cost of moving
one point to the other. Hence, EMD can be viewed as the minimum cost of
transforming one pointset to the other. Different variants of EMD differ on how
the cost is defined. In this paper, we adopt the typical definition that defines the
cost as the Euclidean distant between the two points.

In one-dimensional space, the EMD between two sets D and D̃ is simply
the L1 norm of the differences between the two respective sorted sequences, i.e.
‖Sn(D)−Sn(D̃)‖1, which can be efficiently computed. Recall that Sn(D) outputs
the sorted sequence of elements in D. In other words,

EMD(D, D̃) =

n∑
i=1

|pi − p̃i|, (2)

where pi’s and p̃i’s are the sorted sequence of D and D̃ respectively. Note that
this definition assumes D and D̃ have the same number of points, which is
ensured by step B1 of our scheme.

Given a dataset D and the published dataset D̃ of a mechanism M where
|D| = |D̃| = n, let us define the normalized error as 1

nEMD(D, D̃) and denote
ErrM,D the expected normalized error,

ErrM,D = Exp

[
1

n
EMD(D, D̃)

]
, (3)

where the expectation is taken over the randomness in the mechanism.
Our mechanism publishes D̃ based on two parameters: the privacy require-

ment ε and the group size k. Therefore, let us write Errε,k,D for the expected
normalized error of the dataset published in Step B2.

5.2 Effects on Isotonic Regression

Let us consider the expected normalized error when k = 1, in other words, we
first consider the mechanism without grouping. In such case, the reconstructed
dataset is IR(Sn(D) + Lap(ε−1)n). Thus, the expected normalized error is

Errε,1,D = Exp

[
1

n
EMD(D, IR(Sn(D) + Lap(ε−1))n)

]
.

To estimate the above expected error, we compute the expected normalized
error on a few datasets of varying size n: (1) Multi-sets containing elements
with the same value 0.5 (herein called repeating single-value dataset), (2) sets
containing equally-spaced numbers (i/(n − 1)) for i = 0, . . . , n − 1 (herein call
equally-spaced dataset), (3) sets containing n randomly chosen elements from
the Twitter location data [1], and (4) sets containing n randomly chosen elements
from the Kaluža’s data [12].

Fig. 4(a) shows the expected error Err1,1,D for the four datasets with different
n. Each sample in the graph is the average over 500 runs. Observe that the error
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on equally-spaced data well approximates the errors on the two real-life dataset
(Twitter location dataset and Kaluža’s dataset). Hence, we take the error on
the equally-spaced dataset as an approximation of the errors on other datasets.
For abbreviation, let Errε,n denote the expected error Errε,1,D where D is the
equally-spaced dataset with n points. Based on experiences on other datasets,
we suspect that the expected error depends on the difference of the minimum
and the maximum element in D, and the repeating single-value dataset is the
extreme case whose error could be served as a lower bound as shown in Fig. 4(a).

Fig. 3(a) shows the expected error Errε,1,D for dataset on equally-spaced
points for different ε and n, and Fig. 3(b) shows the ratios of error for different
ε to Err1,n. The results agree with the intuition that when ε is increased by a
factor of c, the error would approximately decrease by factor of c, that is,

Errε,1,D ≈
1

c
Errcε,1,D. (4)
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Fig. 3. The normalized error for different security parameter ε on equally-spaced
dataset, each sample is the average of 500 runs.

5.3 Effect on Generalization Noise

When k > 1, the grouping introduces a generalization error, which is incurred
when all elements in a group are represented by their mean. Before giving formal
description of generalization error, let us introduce some notations.

Given a sequence D = 〈x1, . . . , xn〉 of n numbers, and a parameter k, where
k divides n, let us call the following function downsampling:

↓k (D) = 〈s1, . . . , s(n/k)〉,

where each si is the average of xk(i−1)+1, . . . , xik. Given a sequenceD′ = 〈s′1, . . . , s′m〉
and k, let us call the following function upsampling,

↑k (D′) = 〈x′1, . . . , x′mk〉,
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Fig. 4. The expected normalized error and normalized generalization error with ε = 1
on different dataset D.

where x′i = s′b(i−1)/kc+1 for each i.
The normalized generalization error is defined as,

GenD,k =
1

n
‖D− ↑k (↓k (D))‖1.

It is easy to see that, for any k and D of size n, the normalized generalization
error is at most k/(2n). However, this bound is often an overestimate. Fig.
4(b) shows the generalization error of different group size a dataset containing
10, 000 equally-spaced values, a dataset containing 10, 000 numbers randomly
drawn from the transformed Kaluža’s dataset, and a dataset of 10, 000 numbers
randomly drawn from the transformed Twitter location data.

Observe that, empirically, the generalization error can be well approximated
by k

4n . To see that such approximation holds for a typical dataset, consider
the following partition of the unit interval: 0 = p0 < p1 < p2, . . . , p(n/k)−1 <
pn/k = 1. Let us consider a sorted sequence S of elements in dataset D, where
the jk + 1, jk + 2, . . . (j + 1)k-th elements in S are uniformly independent and
identically distributed over [pj , pj+1) for j = 0, 1, . . . , (n/k) − 1. We can verify
that the expected generalization error GenD,k ≈ k

4n with simulations. Hence, we

approximate the generalization error by k
4n and denote it as Genn,k.

5.4 Determining the group size k

Now, let us combine the components and build an error model of how k affects
the accuracy. First, grouping reduces the number of constraints by a factor of k.
As suggested by Fig. 4(a), when the number of constraints decreases, the error
reduction from isotonic regression decreases. On the other hand, recall that the
regression is performed on the published values divided by k (see the role of k
in Step A3). This essentially reduces the level of Laplace noise by a factor of
k. Hence, the accuracy attained by grouping k elements is “equivalent” to the
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accuracy attained without grouping but with the privacy parameter ε increased
by a factor of k. These two components can be estimated in terms of Errε,n as
follow:

Errε,k,D ≈
1

k
Errε,n/k.

For general k, the reconstructed dataset is

D̃ =↑k (IR(S̃)),

where S̃ is an instance of ↓k (Sn(D)) + Lap(1)n/k. Now, we have,

EMD (D, D̃) = ‖Sn(D)− ↑k (IR(S̃))‖1
= ‖Sn(D)− ↑k (↓k (Sn(D))+ ↑k (↓ (Sn(D)))− ↑k (IR(S̃))‖1
≤ n ·GenD,k + ‖ ↑k (↓k (Sn(D)))− ↑k (IR(S̃))‖1
= n ·GenD,k + k · ‖ ↓k (Sn(D))− IR(S̃)‖1
= n ·GenD,k + k · EMD(↓k (Sn(D)), IR(S̃)). (5)

Note that the first term n · GenD,k is a constant independent of the random
choices made by the mechanism. Also note that the second term is the EMD
between the down-sampled dataset and its reconstructed copy obtained using
group size 1. Thus, by taking expectation over randomness of the mechanism,
we have

Errε,k,D ≤ GenD,k +
1

k
Errε,1,↓k(D). (6)

In other words, the expected normalized error is bounded by the sum of normal-
ized generalization error, and the normalized error incurred by the Laplace noise.
Fig. 5(a) shows the three values versus different group size k for equally-spaced
data of size 10,000. The minimum of the expected normalized error suggests the
optimal group size k.

Fig. 5(b) illustrates the expected errors for different k on the Twitter location
data with 10,000 points. The red dotted line is Errε,k,D whereas the blue solid line
is the sum in the right-hand-side of the inequality (6). Note that the differences
between the two graphs are small. We have conducted experiments on other
datasets and observed similar small differences. Hence, we take the sum as an
approximation to the expected normalized error,

Errε,k,D ≈ Genn,k +
1

k
Errε,n/k. (7)

Now, we are ready to find the optimal k given ε and n. From Fig. 4(a) and
Fig. 4(b) and the approximation given in equation (7), we can determine the best
group size k when given the size of the database n and the security requirement
ε. From the parameter ε, we can obtain the value 1

kErrn/k,e for different k.

From the database’s size n, we can determine Genn,k which is k
4n . Thus, we can

approximate the normalized error Errk,D with equation (7) as illustrated in Fig.
5(a). Using the same approach, the best group size given different n and ε can
be calculated and is presented in table 1.
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Fig. 5. The expected error derived based on the equally-spaced dataset and the com-
parison with actual error on the Kaluža’s dataset with ε = 1.

Table 1. The best group size k given n and ε

ε = 0.5 ε = 1 ε = 2 ε = 3

n= 2,000 44 29 20 12
n= 5,000 59 37 27 18
n= 10,000 79 51 36 27
n= 20,000 121 83 61 41
n= 100,000 234 150 98 73
n= 180,000 300 177 110 94

6 Comparisons

In this section, we compare the performance of the proposed mechanism with
three known mechanisms w.r.t. different utility functions. We first compare
the mechanism that outputs equi-width histograms. Next, we investigate the
wavelet-based mechanism proposed by Xiao et al. [28] and measure accuracy
of range queries. Lastly, we consider the problem of estimating median, and
compare with a mechanism based on smooth sensitivity proposed by Nissim et
al. [20]. We do not conduct experiments to compare with the k-d tree method [29]
because it is designed for high dimensional data and it is not clear how to apply
it to low dimension effectively. For comparison purposes, we empirically choose
the best parameters for the known mechanisms, although this apriori informa-
tion is not available to the publisher. We remark that the parameter k of our
proposed mechanism is chosen from Table 1.

6.1 Equi-width Histogram

We want to compare the performance of our method with the equi-width his-
togram method. Fig. 6(a) shows a differentially private equi-width histogram. To
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Fig. 6. Visualization of the density functions, where the darker region corresponds to
higher value. The superposing red dots are randomly selected from original data points
for comparison purposes.

visualize the reconstructed points of our method as a histogram, we construct
the bins in the following way: let B be the set of distinct-points in D, and we
construct the Voronoi diagram of B. The cells in the Voronoi diagram are taken
to be the bins of a histogram as depicted in Fig. 6(b).

To facilitate comparison, we treat the histograms as estimations of the un-
derlying probability density function f , and use the statistical distance between
density functions as a measure of utility. The value of f(x) can be estimated by
the ratio of the number of samples, over the width of the bin where x belongs
to, with some normalizing constant factor.

In this section, we qualify the mechanism’s utility by the distance between
the two density functions: one that is derived from the original dataset, and the
other that is derived from the mechanism’s output.

Fig. 6(a) and 6(b) show the estimated density function from the Twitter’s
location dataset, by equi-width histogram mechanism and by our mechanism.
For comparisons, 1% of the original points are plotted on top of the two recon-
structed density functions. Fig. 7(a) and 7(b) show the zoom-in view of the dense
region around New York City. Observe that the density function produced by
our mechanism has “variable-sized” cells and thus is able to adaptively capture
the fine details.

The statistical difference, measured with `1-norm and `2-norm, between the
two estimated density functions derived from the original and the mechanism’s
output are shown in Table 2. We remark that it is not easy to determine the
optimal bin-width for the equi-width histogram prior to publishing. Fig. 8 shows
that the optimal bin-width differs significantly for three different datasets. For
comparison purposes, we empirically choose the best parameters to the advan-
tage of the compared algorithms, although such parameters could be dependent
on the dataset.
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(b) Zoom in view of Fig. 6(b).

Fig. 7. A more detailed view of the density functions.

6.2 Range Query

We consider the scenario where a dataset is to be published, and subsequently
used to answer a series of range queries, where each range query asks for the
total number of points within a query range. Publishing an equi-width histogram
would not attain high accuracy if the size of the query ranges varies drastically.
Intuitively, wavelet-based techniques [28] are natural solutions to address such
multi-scales queries. However, there are many parameters, including the bin-
widths at various scales and the amounts of privacy budget they consume, to be
determined prior to publishing.

To apply the proposed method in this scenario, given a query, we obtain
the number of points within the range from the estimated density function (as
described in Section 6.1) by accumulating the probability over the query region
and then multiplying by the total number of points.

We compare the range query results of the wavelet-based mechanism, the
equi-width histogram mechanism and our mechanism on the 1D Twitter data,
and on the 2D Twitter location dataset. To incorporate the knowledge of the
database’s size n, the total number of points is adjusted to n for the histogram
mechanism and the DC component of the wavelet transform is set to be exactly n
for the wavelet mechanism. For each range query, the absolute difference between
the the true answer and the answer derived from the mechanism’s output is taken
as the error. We compare the results over different query range sizes and for each
query range. For each range size s, 1,000 randomly chosen queries of size s are
asked, and the corresponding errors are recorded. More precisely, the center of a
1D query range of size s is chosen uniformly at random in the continuous interval
[ s2 , 1 −

s
2 ], whereas the center of a 2D query range of size s is chosen uniformly

at random in the region [ s2 , 1−
s
2 ]× [ s2 , 1−

s
2 ].

To determine the parameters for the two compared mechanisms, we conduct
experiments on a few selected values and choose the values to the advantage of
the compared mechanisms. For the equi-width histogram, the only parameter is
the number of bins (n1). For the wavelet-based mechanism, the parameter we
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equi-width proposed method

`1-norm 1.23 1.13
`2-norm 0.25 0.20

Table 2. The statistical differences of
the two methods.
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Fig. 9. Comparison of range query performance.

considered is the number of bins (n2) of the histogram whereby wavelet trans-
formation is performed on, that is, the number of bins in the “finest” histogram.
From our experiments, we choose n1 = 1000 and n2 = 1024 for the 1D data,
and n1 = 40× 40 and n2 = 512× 512 for the 2D data. The parameter k for our
mechanism is looked up from Table 1. The choice of group size k according to
Table 1 is 177 (n = 180, 000, ε = 1). The average errors of the range query is
shown in Fig. 9(a) and 9(b).

Observe that our proposed method is less sensitive to the query range in the
1D case as expected because the accuracy of our range query results depend only
on the boundary points, as opposed to the equi-width histogram method where
errors are induced by each bins within the range. The wavelet-based mechanism
outperforms the equi-width histogram mechanism in larger size range queries,
but performs badly for small range due to the accumulation of noise.
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6.3 Median

Finding the median accurately in a differentially private manner is challenging
due to the high “global sensitivity”: there are two datasets that differ by one ele-
ment but having a completely different median. Nevertheless, for many instances,
their “local sensitivity” are small. Nissim et al. [20] showed that in general, by
adding noise proportional to the “smooth sensitivity” of the database instance,
instead of the global sensitivity, can also ensure differential privacy. They also
gave an Θ(n2) algorithm that find the smooth sensitivity w.r.t. median.

Our mechanism outputs the sorted sequence differentially privately, and thus
naturally gives the median. Compare to the smooth sensitivity-based mechanism,
our mechanism provides more information in the sense that it outputs the whole
sorted sequence. Furthermore, our mechanism can be efficiently carried out in
O(n log n) time.

We conduct experiments on synthetic datasets of size 129 to compare the
accuracy of both mechanisms. The experiments are conducted for different local
sensitivity and different ε values. To construct a dataset with a particular local
sensitivity, 66 random numbers are generated with the exponential distribution
and then scaled to the unit interval. The dataset contains the 66 random numbers
and 63 ones. Fig. 10(a) and 10(b) shows the noise level with different ε on datasets
that has a local sensitivity of 0.1 and 0.3.

When the local sensitivity of the median is high, our mechanism tends to
provide a better result. In addition, our mechanism performs well under higher
requirement of security: when the ε is smaller, the accuracy of our mechanism
decreases slower than the smooth sensitivity-based method.
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Fig. 10. The error of median versus different ε from two datasets.
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7 Discussion and Future Work

7.1 Hybrid Method

The proposed mechanism can be viewed as the publishing of a “equi-depth” his-
togram, where the “depth” is the group size. Potentially, our proposed method
and equi-width histogram could complement each other, by alternatively publish-
ing one after another. For example, we can first apply an equi-width histogram
to get a coarse distribution of the data, followed by our method for a “zoom-
in” view. Alternatively, we can apply equi-width histogram after our method to
“break” the stepping effect of isotonic regression.

7.2 Effect of Dimension

We rely on a locality-preserving mapping T to extend the mechanism to higher
dimension. Although it is shown that the distant between two d dimensional
points x, y is preserved and bounded by c(‖T (x) − T (y)‖)1/d (see Section 2.3),
the curse-of-dimensionality is still in play in higher dimension. Firstly, to our
best knowledge, there is no known efficient constructions for dimensions higher
than 3. Secondly, the exponential factor 1/d amplifies the error: for example, Fig.
5 shows that our scheme can reduce the error of ‖T (x)−T (y)‖ to 0.005, where y
is the reconstructed point for x. When d is 2, we can have ‖x− y‖2 bounded by
0.07c; when d is 3, the bound is increased to 0.17c. We are unable to verify the
performance in higher dimension due to the lack of efficient construction, and
leave the accurate extension to higher dimensional data as future work.

8 Related Work

There are extensive works on privacy-preserving data publishing. The recent
survey by Fung et al. [8] gives a comprehensive overview on various notions, for
example, k-anonymity [26], `-diversity [15], and the recently proposed concept
of differential privacy [5].

Xiao et al. [28] proposed a mechanism of adding Laplace noise to the coeffi-
cients of a wavelet transformation of an equi-width histogram. The noisy wavelet
coefficients are then published, from which range queries can be answered. Es-
sentially, what being published is a series of equi-width histograms for different
bin-widths where the noise added to the histograms of larger bin-width are small-
er. A range query can then be decomposed and answered from the histograms
series different scales.

Isotonic regression has been used to improve a differentially private query re-
sult. Hay et al. [11] proposed a method that employs isotonic regression to boost
accuracy, but in a way different from our mechanism. They consider publishing
unattributed histogram, which is the (unordered) multi-set of the frequencies of
a histogram. As the frequencies are unattributed (i.e. order of appearance is ir-
relevant), they proposed publishing the sorted frequencies and later employing
isotonic regression to improve accuracy.
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Machanavajjhala et al. [16] proposed a 2D dataset publishing method that
can handle the sparse data in 2D equi-width histogram. To mitigate the sparse
data, their method shrinks the sparse blocks by examining publicly available
data such as a previously release of similar data. They demonstrate this idea
on the commuting patterns of the population of the United States, which is a
real-life sparse 2D map in large domain. As their method partitions the space
based on a previously released data, we consider the partition as pre-determined
partition and is not adaptive to the publishing dataset.

The median is an important statistic, and a differentially private median
finding process can be useful in many constructions, such as in pointset spatial
decomposition [4, 23]. However, finding the median differentially privately is not
easy due to the large global sensitivity. Nissim et al. [20] introduced the notion
of smooth sensitivity and proposed an accurate mechanism with Θ(n2) running
time.

9 Conclusion

Our mechanism is very simple from the publisher’s point of view. The publish-
er just has to sort the points, group consecutive values, add Laplace noise and
publish the noisy data. There is also minimal tuning to be carried out by the
publisher. The main design decision is the choice of the group size k, which can
be determined using our proposed noise models, and the locality-preserving map-
ping for which the classic Hilbert curve suffices to attain high accuracy. Through
empirical studies, we have shown that the published raw data contain rich infor-
mation for the public to harvest, and provide high accuracy even for usages like
median-finding and range-searching that our mechanism is not initially designed
for.
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