
Efficient Privacy-Preserving Stream Aggregation in
Mobile Sensing with Low Aggregation Error

Qinghua Li and Guohong Cao

Department of Computer Science and Engineering
The Pennsylvania State University
{qxl118, gcao}@cse.psu.edu

Abstract. Aggregate statistics computed from time-series data contributed by
individual mobile nodes can be very useful for many mobile sensing application-
s. Since the data from individual node may be privacy-sensitive, the aggregator
should only learn the desired statistics without compromising the privacy of each
node. To provide strong privacy guarantee, existing approaches add noise to each
node’s data and allow the aggregator to get a noisy sum aggregate. However,
these approaches either have high computation cost, high communication over-
head when nodes join and leave, or accumulate a large noise in the sum aggre-
gate which means high aggregation error. In this paper, we propose a scheme for
privacy-preserving aggregation of time-series data in presence of untrusted ag-
gregator, which provides differential privacy for the sum aggregate. It leverages a
novel ring-based interleaved grouping technique to efficiently deal with dynam-
ic joins and leaves and achieve low aggregation error. Specifically, when a node
joins or leaves, only a small number of nodes need to update their cryptographic
keys. Also, the nodes only collectively add a small noise to the sum to ensure
differential privacy, which is O(1) with respect to the number of nodes. Based on
symmetric-key cryptography, our scheme is very efficient in computation.

1 Introduction

Mobile devices such as smart phones are ubiquitous today with an ever-increasing pop-
ularity. These devices are equipped with various sensors such as camera, accelerometer,
GPS, etc. Mobile sensing exploits the data contributed by mobile users (via the mobile
devices they carry) to infer rich information about people (e.g., health, activity, and so-
cial event) and their surrounding (e.g., pollution and weather). Applications of mobile
sensing include traffic monitoring [1], environmental monitoring [2], healthcare [3], etc.

In many scenarios, stream data from the mobile users over time can be collected,
aggregated, and mined for obtaining or identifying useful patterns or statistics over a
population [4]. In applications such as CarTel [5] and N-SMARTS [6], participants
generate time-series data such as their location, speed, the pollution density and noise
level in their surroundings, etc. These data can be aggregated to obtain the traffic pattern
and pollution map. For another example, the average amount of exercise (which can be
measured by motion sensors on smartphones [3]) that people do in every day can be
used to infer public health conditions.

The above examples suggest that aggregate statistics computed from time-series
data contributed by individual users can be very useful in mobile sensing. However, in

many cases, the data from individual users may be privacy-sensitive, and the users do
not trust any single third party to see their data in cleartext. A user’s data, if directly
collected, can be used to infer the user’s daily activities and health conditions. For
instance, to monitor the propagation of a new flu, the aggregator will collect information
on the number of patients infected by this flu. However, a patient may not want to
directly tell the aggregator that she is infected. Thus, a challenge is to allow an untrusted
aggregator to obtain the useful aggregate while preserving individual users’ privacy.

Table 1. Comparison between existing schemes and our scheme.

Scheme Total comm. Comm. Aggregation Dynamic Comm. per Cryptography
per interval model error join & leave join & leave

[7] O(n) N↔ A O(1) No - Public-key
Basic [8] O(n) N→ A O(1) No O(n) Public-key

Binary [9] O(n logn) N→ A Õ((log n)
3
2) Yes O(1) Public-key

[10] O(n) N→ A O(1) Yes O(1) Public-key
Our scheme O(n) N→ A O(1) Yes O(d) Symmetric-key
N → A: node-to-aggregator uni-directional. N ↔ A: interactive between node and aggregator.
n: number of nodes. d: a parameter of our scheme (smaller than 100 in most practical settings).

The problem of privacy-preserving aggregation of time-series data in presence of
untrusted aggregator has been studied in [7] and [8]. They combine differential priva-
cy [11,12] and cryptography techniques to provide distributed differential privacy, such
that only negligible information about the node can be leaked even if the aggregator has
arbitrary auxiliary information. In these schemes, each node independently adds appro-
priate noise to her data before aggregation, and the aggregator gets a noisy sum instead
of the accurate sum. A large enough noise is accumulated in the aggregate to achieve
differential privacy. These schemes also rely on a special encryption technique where
each node encrypts its noisy data with a key, sends the encrypted data to the aggregator
which can decrypt the sum of the nodes’ noisy data without learning anything else.

In these schemes, all nodes collectively add a sufficient amount of noise (required
for differential privacy) to the sum aggregate, and there is only O(1) aggregation er-
ror (i.e., the difference between the noisy sum and the accurate sum). However, these
schemes cannot efficiently support dynamic joins and leaves. For example, in [8], when
a node joins or leaves, the encryption keys of all nodes are updated, which means high
communication overhead in a large system. Thus, these schemes are not suitable for
applications with many nodes and high churn rate. Chan et al. [9] propose a binary
interval tree technique which can reduce the communication cost for joins and leaves,
but their scheme has high aggregation error which means poor utility of the aggregate.
A recent scheme [10] can efficiently support dynamic joins and leaves, but it has high
computation overhead due to the use of public-key cryptography, and thus may not be
appropriate for mobile sensing scenarios with resource-constrained devices, short ag-
gregation periods, and many aggregate statistics collected simultaneously.

In this paper, we propose a new scheme which can efficiently deal with dynamic
joins and leaves and achieve low aggregation error (see Table 1). Specifically, when a
node joins or leaves, only a small number of nodes need to update their encryption keys,
which is in the order of tens in most practical settings irrespective of the total number
of nodes. Also, the nodes collectively add O(1) noise to the aggregate for differential

privacy. Our main contribution is a new technique – interleaved grouping. We propose
a novel ring-based interleaved grouping construction, which divides nodes into groups
of smaller size such that (1) at most three (four) groups of nodes need to be updated for
each join (leave) and (2) the aggregator can only learn the sum of all nodes’ data but
nothing else. The scheme is very efficient in computation since it is based on HMAC.
Implementation-based measurements show that our scheme is two orders of magnitude
faster than existing schemes in encryption and/or decryption.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents the system overview and models. Section 4 and 5 describe
the basic idea of interleaved grouping and a ring-based construction. Section 6 presents
an aggregation protocol based on ring-based interleaved grouping. Section 7 presents
evaluation results. Section 8 discusses extensions. The last section concludes this paper.

2 Related Work

Security and privacy in mobile sensing systems have been addressed by many works
(e.g., [13–16]), but they do not consider aggregation of data. There are many existing
works (e.g., [17]) on privacy-preserving data aggregation, but most of them assume a
trusted aggregator. Shi et al. [18] proposed an aggregation scheme for mobile sensing,
but the scheme does not consider time-series data. The two constructions [19,20] based
on additive homomorphic encryption [17] do not guarantee differential privacy.

Recent works [7–9] address differentially private aggregation of time-series data.
Rastogi and Nath [7] designed an encryption scheme based on threshold Paillier cryp-
tosystem, but their construction requires an extra round of interaction between the ag-
gregator and the nodes in every aggregation period. Shi et al. [8] proposed a Diffie-
Hellman-based encryption scheme, where no communication is required from the ag-
gregator to the nodes. However, their scheme redistributes encryption keys to all nodes
when a node joins or leaves, inducing high communication cost. To deal with dynam-
ic joins and leaves and provide fault tolerance, Chan et al. [9] extend the construction
in [8] with a binary interval tree technique which reduces expensive rekeying oper-
ations. However, in their scheme, since each node’s data is aggregated into multiple
sums, a large noise is added to each node’s data to provide differential privacy, which
leads to high aggregation error. Recent designs [21] employ an honest-but-curious prox-
y server to tolerate the churn of a small fraction of nodes, but it is unknown how they
work when many nodes leave. Jawurek et al. [10] proposed a fault-tolerant aggregation
scheme, but it employs Paillier cryptosystem which is expensive in computation.

Grouping has been recently used for differentially-private publication of graph topolo-
gies [22, 23]. These solutions divide a dataset into disjoint groups, which is different
from our interleaved grouping technique.

3 Overview

3.1 Problem Definition

Our system model is shown in Figure 1. An aggregator wants to get the sum aggregate
of n mobile nodes periodically. Let x(t)

i (x(t)
i ∈ {0, 1, ..., Δ}) denote the data of node

i in aggregation period t (t = 1, 2, 3, ...). Then the sum aggregate for time period t is

∑n
i=1 x

(t)
i . Since the accurate sum may leak node privacy in presence of side informa-

tion [11, 12], the aggregator is only allowed to obtain a noisy sum (i.e., the accurate
sum plus some noise). In each time period t, each node i adds noise r

(t)
i to her data

x
(t)
i , encrypts the noisy data x̂

(t)
i = x

(t)
i + r

(t)
i with her key k

(t)
i and sends the cipher-

text to the aggregator. The aggregator uses the capability k
(t)
0 to decrypt the noisy sum

∑n
i=1(x

(t)
i + r

(t)
i). Here, k(t)

i and k
(t)
0 change in every time period. In the following,

when we describe our solution, we usually focus on the aggregation scheme in one time
period. For simplicity, we omit the superscript t and write x i, ri, ki and k0 instead.

Each mobile node communicates with the aggregator via 3G, WiFi, or other avail-
able access networks. Source anonymity [24] is not necessary since data content is
protected. Peer-to-peer communication among the nodes is not required, because nodes
may not know each other for privacy reasons and such communication is nontrivial due
to the mobility of nodes in mobile sensing. We assume that time is synchronized among
nodes. In mobile sensing, mobile devices (e.g., smartphones) usually have embedded G-
PS receivers, which can easily synchronize time without communications among them.

There are three requirements regarding privacy. First, the aggregator only learns
the noisy sum but nothing else (e.g., intermediate results). Second, a party without the
aggregator capability learns nothing. This is aggregator obliviousness [8]. The third
requirement is differential privacy. Intuitively, the sum obtained by the aggregator is
roughly the same no matter if a specific node is in the system or not.

1 c1 = Enc(k1; x1 + r1)

2 c2 = Enc(k2; x2 + r2)

n cn = Enc(kn; xn + rn)

Dec(k0; c1; :::; cn) P
(xi + ri)

data noise

nodes aggregator

Fig. 1. An overview of our system.

3.2 Trust Model

The aggregator is untrusted. A number of nodes may collude with the aggregator and
reveal their data and noise values. We refer to these nodes as compromised nodes and
refer to others as good nodes. We assume that the fraction of compromised nodes that
collude is at most γ, and nodes are equally likely to collude. Similar to [8], we assume
that the system has an a priori estimate over the upper bound of γ, and uses it in our
protocol. The aggregator may eavesdrop all messages sent to/from every node. Also, all
entities are computationally bounded.

We also assume a key dealer which issues keys to the nodes and the aggregator via
a secure channel. For now, we assume that the key dealer is trusted, and we relax this
assumption in Section 8. Malicious nodes may perform data pollution attacks in which
they lie about their data values in order to change the aggregate. Data pollution attacks
are outside the scope of this paper, and their influence can be bounded if each node uses
a non-interactive zero-knowledge proof to prove that its data is in a valid range.

3.3 Basic Scheme
Let us first look at a simple basic scheme, which is a variant of the scheme proposed in
[8]. Basically, it uses the same data perturbation algorithm as in [8]. However, since the
encryption method of [8] is not efficient in computation (especially for the aggregator
to get the sum), it replaces the encryption method with the construction in [20] which
also achieves aggregator obliviousness but has much less computation overhead.

Encryption method Setup: The key dealer generates a set S of nc random secrets s 1,
..., snc. It divides them into n random disjoint subsets S1, ..., Sn, with c secrets in each
subset. Clearly, S =

⋃n
i=1 Si. The key dealer randomly selects a subset Ŝ of q secrets

and assigns them to the aggregator. It then evenly divides S − Ŝ into n random disjoint
subsets S̄1, ..., S̄n. Clearly, S = (

⋃n
i=1 S̄i)

⋃ Ŝ . It assigns Si and S̄i to node i.
Encryption: In time period t ∈ N, node i generates key k i = (

∑
s′∈Si

h(fs′(t)) −∑
s′∈S̄i

h(fs′(t))) mod M , where M = 2�log2 (nΔ)�. Here, fs′ is a member of the
pseudorandom function (PRF) family Fλ = {fs′ : {0, 1}λ → {0, 1}λ}s′∈{0,1}λ in-
dexed by s′. As suggested in [17,20], it can be implemented with HMAC, where f s′(t)
is the HMAC of t with s′ as the key. Function h maps the output of fs′ to a uniform
random value in [0,M − 1]. A simple construction for h is to truncate the output of f s′

into shorter bit strings of length log2 M and use the exclusive-OR of all these strings as
the output. Node i encrypts its noisy data x̂i by computing ci = (ki + x̂i) mod M .
Decryption: In time period t ∈ N, the aggregator generates key k 0 = (

∑
s′∈Ŝ h(fs′(t)))

mod M and decrypts the noisy sum Ŝ =
∑n

i=1 x̂i by computing Ŝ = (
∑n

i=1 ci − k0)
mod M . It is easy to verify that k0 = (

∑n
i=1 ki) mod M . Hence, the aggregator can

get the correct noisy sum. Also, since only the trusted key dealer and the aggregator
know the secrets used by the aggregator, no other party can learn the sum.

By assigning a large-enough number of secrets to each node and the aggregator (i.e.,
c and q are large enough), this method ensures that it is computationally infeasible for
the adversary to guess the secrets assigned to a particular node or the aggregator. More
formally, for l-bit security, the probability of a successful guess is smaller than 2−l.
Table 2 shows the values of c and q for 80-bit security when γ = 0.2.

Table 2. The values of c and q for 80-bit security [20]

n 103 104 105 106

c 5 4 3 3
q 8 6 5 4

As a common practice of security, the secret used to calculate HMAC cannot be
repeatedly used forever and should be updated after being used for a certain length
of time (e.g., one year). The proper length of time can be determined following the
guidelines discussed in [25]. After this period of time (which is usually long), the key
dealer needs to rerun the setup phase and update the secrets.

The basic scheme is very efficient in computation due to the use of HMAC. We
note that our interleaved grouping technique (see later) can also be applied upon other
aggregator oblivious encryption schemes (e.g., [8, 19]) with different tradeoffs.

Data Perturbation Shi et al [8] show that differential privacy can be achieved by
adding a noise that follows diluted geometric distribution to each node’s data.

Definition 1. Geometric Distribution. Let α > 1. Geom(α) denotes the symmet-
ric geometric distribution with parameter α. Its probability mass function at k (k =
0,±1,±2, ...) is α−1

α+1 · α−|k|.
Definition 2. Diluted Geometric Distribution. Let α > 1 and 0 < β ≤ 1. A ran-

dom variable follows β-diluted Geometric distribution Geomβ(α) if it is sampled from
Geom(α) with probability β, and is set to 0 with probability 1− β.

In time period t, node i generates a noise ri from Geomβ(α) and computes x̂i =
xi + ri. Parameters α and β are set as α = e

ε
Δ and β = min(1

(1−γ)n ln 1
δ , 1), where ε

and δ are privacy parameters. Given that the encryption method is aggregator oblivious
(i.e., the aggregator only learns the noisy sum but nothing else), the data perturbation
procedure achieves (ε,δ)-differential privacy [8]:

Theorem 1. Let 0 < δ < 1, ε > 0, α = e
ε
Δ and β = min(1

(1−γ)n ln 1
δ , 1), where γ is

the maximum fraction of nodes compromised. If each node adds noise Geom β(α), the
above perturbation procedure achieves (ε,δ)-distributed differential privacy 1.

With this data perturbation method, roughly one copy of geometric noise Geom(α)
is added to the sum, which is required to ensure ε-differential privacy [26]. Strictly
speaking, the basic scheme achieves differential privacy against polynomial-time ad-
versaries, since the encryption method is secure against polynomial-time adversaries.

Problem with the basic scheme. In the basic encryption method [20], when a node
joins or leaves, the key dealer must issue a new set of secrets to every node and the
aggregator to ensure security. This induces high communication overhead and makes
it impractical for large-scale mobile sensing applications with high churn rate. Thus,
efficient techniques should be proposed to deal with dynamic joins and leaves.

3.4 Naive Grouping

Intuitively, we can apply grouping on top of the basic scheme to reduce the communi-
cation cost of dynamic joins and leaves.
Naive Grouping. The n nodes are divided into g disjoint groups of equal size, and the
basic scheme is applied to each group independently. The aggregator has the capability
to decrypt the sum of each group. To provide differential privacy, one copy of geometric
noise is added to the sum of each group. As some positive and negative noises cancel
out, the accumulated noise in the final aggregate is O(

√
g) with high probability. When

a node joins or leaves a group, only the n
g nodes in this group are redistributed secrets.

The problem with Naive Grouping is that it cannot achieve both low communication
cost for dynamic joins and leaves and low aggregation error, since these two goals
require the parameter g to be tuned in reverse directions. Thus, it is nontrivial to use
grouping to achieve both churn resilience and low aggregation error.

Table 3 summarizes the notations used in this paper.

4 Interleaved Grouping
Although grouping can be used to reduce the communication overhead of dynamic
joins and leaves, the naive grouping scheme has high aggregation error since it adds

1 If each node is compromised independently with probability γ, the data perturbation procedure
is proved to achieve (ε,δ)-computational differential privacy [9].

Table 3. Notations
n Num. of nodes g Num. of groups in Naive Grouping/our scheme
γ Max. fraction of compromised nodes α, β Paras. used to generate noise
xi Data of node i d, x Parameters of our proposed scheme
ri The noise that node i adds to her data k0 The capability used by the aggregator to decrypt
x̂i Noisy data of node i, x̂i = xi + ri noisy sum
Δ Each node’s data is from {0, 1, ..., Δ} ki The encryption key used by node i
ε, δ Parameters of differential privacy l The required security level is l-bit, e.g., l = 80

one independent copy of geometric noise to each group. To address this problem, we
propose to use a new technique called interleaved grouping.

4.1 Basic Idea
The basic idea is to divide the nodes into interleaved groups, where each group shares
some nodes with other groups. In the setup phase, an independent set of secrets are
assigned to each group of nodes and the aggregator similarly as that in the basic scheme.
For each group, the aggregator does not know the secrets assigned to each member of
the group. A node that belongs to multiple groups will receive secrets from each group
it belongs to. Each node (the aggregator) uses the union of the secrets that it receives to
derive its encryption key (decryption capability). The encryption (decryption) process
is the same as the basic scheme. Clearly the aggregator can decrypt the sum.

Interleaved grouping guarantees that the aggregator cannot learn the sum of any
individual group or the sum of any subset of (not all) nodes (see the example below), and
thus the nodes can collectively add just one copy of geometric noise to the aggregate,
minimizing the aggregation error. When a node joins or leaves a group, the key dealer
runs the setup phase again for this group only. Thus the communication cost is low.

We use the example in Figure 2 to show how interleaved grouping provides that
guarantee. Seven nodes are divided into three interleaved groups, where groupG 1 shares
node A with G2 and shares C with G3. The secrets assigned to each node and the aggre-
gator are shown in the figure. Suppose the aggregator tries to get the sum of group G 2,
i.e., x̂A + x̂D + x̂E . From A’s, D’s and E’s ciphertexts x̂A + h(fs1(t)) + h(fs4(t)),
x̂D + h(fs5(t)) − h(fs4(t)) and x̂E + h(fs6(t)), it sums them and gets (x̂A + x̂D +
x̂E) + h(fs1(t)) + h(fs5(t)) + h(fs6(t)). Although it knows ŜAgg = {s5, s6} and can
get h(fs5(t)) + h(fs6(t)), it does not know s1 (i.e., the secrets assigned to A in group
G1) and hence cannot get the sum of G2. Similarly, it cannot get the sum of G1, G3 or
any other strict and non-empty subset of nodes.

G1

A

D
E

B
C

F
GG2 G3

G1 : SAfs1g; ¹SAfg;SBfs2g; ¹SBfs1g;SCfs3g; ¹SCfg ŜAgg = fs2; s3g
G2 : SAfs4g; ¹SAfg;SDfs5g; ¹SDfs4g;SEfs6g; ¹SEfg ŜAgg = fs5; s6g
G3 : SCfs7g; ¹SCfg;SFfs8g; ¹SFfs7g;SGfs9g; ¹SGfg ŜAgg = fs8; s9g

Fig. 2. The basic idea of interleaved grouping. In this example, A is assigned secrets from both
G1 and G2. A sets kA = h(fs1 (t)) + h(fs4(t)). B only receives secrets from group G1, and
it sets kB = h(fs2(t)) − h(fs1(t)). Other nodes set their keys similarly. The aggregator sets
k0 =

∑
i={2,3,5,6,8,9} h(fsi(t)). The aggregator can only get the sum of all nodes.

4.2 Security Condition
When nodes may be compromised, the following security condition should be satisfied.

Condition 1: Let S denote an arbitrary strict and non-empty subset of groups. There
exists a good node N , group G ∈ S and group G ′ �∈ S, such that N ∈ G and N ∈ G ′.

The following theorem (see proof in the technical report [27]) explains why Condi-
tion 1 is needed.

Theorem 2. In interleaved grouping, the aggregator cannot obtain the sum of any strict
and nonempty subset of good nodes if and only if Condition 1 is satisfied.

According to Theorem 2, any specific interleaved grouping scheme needs to and on-
ly needs to satisfy Condition 1. Thus, Condition 1 can be used to guide the construction
of interleaved grouping schemes. In the next section, we present such a scheme based
on a ring structure.

1
2

3

4

G1

G2G3

G4

G0
1

G0
2

G0
3

G0
4

5

Fig. 3. Ring-based interleaved grouping. In this example, the nodes form eight groups, four dis-
joint groups in the outer ring (G1–G4) and four disjoint groups in the inner ring (G′1–G′4). Groups
on different rings may overlap. Group G1 and G′1 overlap, and they share node 1 and 2.

5 Ring-based Interleaved Grouping

For interleaved grouping, it is nontrivial to satisfy Condition 1. With a total of g groups,
there are about 2g possible subsets of groups. Unless g is very small, it is infeasible to
adjust each possible subset to satisfy the condition. In this section, we present a novel
interleaved grouping construction which addresses this challenge with a ring structure.

5.1 Ring-based Group Structure

As shown in Figure 3, the nodes are arranged into a node ring, which is mirrored to
two virtual rings, the outer ring and inner ring. Each virtual ring is partitioned into
segments, and the nodes in a segment form a group. Each node belongs to two groups,
one in each virtual ring. Groups in the same virtual ring are disjoint, but groups in
different virtual rings may overlap (i.e., they share at least one node). A group in the
inner (outer) ring will overlap with one or more groups in the outer (inner) ring.

G

l’ l’+1 r-1 r

G:left G:right

(a) Group with nodes l′, ..., r

L R

L:right R:left

(b) Two neighbor groups

Fig. 4. Segment representation of groups.

The Basic Structure Since the node ring and the two virtual rings are identical, we
use “the ring” to refer to the structure when the context is clear. Suppose there are
n (n ≥ 2d) nodes in the ring indexed from 0 to n − 1 in the clockwise order. For
convenience, we use a directed segment to represent a group, say G (see Fig. 4(a)). The
direction from left to right corresponds to the clockwise order in the ring. Let l ′ and
r denote the indexes of the leftmost and rightmost node in G. Then the left and right
boundary of G are defined as G.left = l ′ − 0.5 and G.right = r + 0.5, respectively. Let
|G| denote the number of nodes in G. We have |G| = (G.right − G.left) mod n.

Suppose L and R are two neighbor groups in the same virtual ring, and L.right =
R.left (see Fig. 4(b)). L.right (or R.left) is the border between L and R. Term “move
L.right to the right by y” means that L.right and R.left are increased by y mod n,
i.e., the leftmost y nodes of R are moved to L. Term “move R.left to the left by y” is
interpreted similarly.

Overlap patterns Two groups in different virtual rings can overlap in two patterns (see
Figure 5). In Pattern I, one group is a strict subset of the other group. In Pattern II, the
two groups have nodes in common, but each group also has some nodes that the other
group does not have.

5.2 Properties
To satisfy Condition 1 and reduce the communication cost of dealing with dynamic
joins and leaves, the ring-based group structure has the following properties:
Overlap Property: Any two groups that overlap share at least x nodes. x is large enough
to make it infeasible (i.e., with probability smaller than 2−l) that none of the shared
nodes is good (see later).
Interleave Property: If two neighboring nodes in the ring belong to two neighboring
groups in one virtual ring, they belong to the same group in the other virtual ring.
Group Size Property: Each group has d (d > 2x) to 2d− 1 nodes.

An example of the interleave property is shown in Figure 3. Two neighboring nodes
4 and 5 belong to neighboring groups G 1 and G2 in the outer ring, and they are in
the same group G ′

2 in the inner ring. The group size property is required by our group
adjustment algorithms.

G
A

(a) Pattern I

G
A

(b) Pattern II

G
A

(c) Pattern II

Fig. 5. The two patterns that two groups G and A may overlap where |G| ≥ |A|. G and A are in
different virtual rings. In (b) and (c), G overlaps with the left and right part of A, respectively.

Theorem 3. In ring-based interleaved grouping, the overlap and interleave property
ensure that Condition 1 is satisfied.

Proof. See the technical report [27].
Comments: Due to Theorem 2 and 3, the ring-based construction guarantees that

the aggregator cannot obtain the sum of any strict and nonempty subset of good nodes.
For convenience, we say the ring-based grouping is secure if the overlap, interleave and
group size property hold.

Practical Considerations In practice, the value of x should be sufficiently large
such that for any two groups that overlap, with a high probability (denoted by p s) at
least one of their shared nodes is good. Since each node can be compromised with
the same probability, with standard combinatorial techniques, we can derive that p s =
1 − (

γn
x

)
/
(
n
x

)
. When n is large, ps � 1 − γx. Parameter x can be set as the minimum

value that satisfies ps > 1− 2−l:
x = �−l logγ 2	. (1)

To minimize the communication cost of dynamic joins and leaves (see later), parameter
d can be set as the minimum value that satisfies d > 2x, i.e., d = 2x+1. Table 4 shows
the values of x and d for 80-bit security.

Table 4. The values of x and d for 80-bit security.

γ 0 0.01 0.05 0.1 0.15 0.2
x 1 13 19 25 30 35
d 3 27 39 51 61 71

G
A

u zv w

B C

G1 G2
split

(a) Regrouping in Alg. 2

G
A

C
E

u

(b) Regrouping in Alg. 4

G
A B

ED
F

u wv

(c) Regrouping in Alg. 5

Fig. 6. The regrouping in Alg. 2, 4 and 5.

A B
G

.

possible B:right

(a) Groups before join

A B

v zw y

G1 G2

u

D
P

(b) Before join, B.right <
G.right.

A B

v w

G1 G2

u

P

(c) Before join, B.right >
G.right. After splitting G and
moving A.right, |B| < 2d.

A B

v zw y

G1 G2

u

C
P P+d

(d) Before join, B.right >
G.right. After splitting G and
moving A.right, |B| = 2d.

Fig. 7. The regrouping (in Alg. 3) when a node joins G and A which overlap in Pattern II.

5.3 Group Management
Suppose initially there are n nodes. Algorithm 1 initializes them into 2n

d groups. Figure
3 shows an instance of initialized groups for n = 16 and d = 4. Clearly, each group
overlaps with two other groups and shares d

2 nodes with each overlapping group. It is
easy to verify that the grouping is secure.

Algorithm 1 initGroup(): Group initialization.
Require: Nodes 0,...,n− 1. Without loss of generality, n is divisible by d.
Ensure: 2n

d
groups G1, ..., G n

d
, G′

1, ..., G ′
n
d

, each of size d.
1: for i from 1 to n

d
do

2: Add nodes (i− 1)n
d

, (i− 1)n
d
+ 1, ..., (i− 1) n

d
+ d− 1 to group Gi

3: Add nodes (i− 1)n
d
+ d

2
mod n, (i− 1)n

d
+ d

2
+ 1 mod n, ..., (i− 1) n

d
+ d

2
+ d− 1

mod n to group G′i

When a new node joins, it is inserted to a random location in the ring, and added to
the two groups that cover the location of insertion. The two changed groups may violate
the group size property (i.e., having more than 2d − 1 nodes). Similarly, when a node
leaves, it is removed from the ring and from the two groups it belonged to, which may
violate the group size property and overlap property. In these cases, the nodes should
be regrouped so that the three properties still hold.

Algorithm 2-5 show the group adjustment algorithms. Suppose the grouping is se-
cure before the node joins or leaves. Lemma 1-4 show that these algorithms make the
grouping secure. Their proofs can be found in the technical report [27].

Lemma 1(2): Suppose a node joins two groups which overlap in Pattern I (II). After
Algorithm 2 (3) is run, the grouping is secure.

Lemma 3(4): Suppose a node leaves two groups which overlap in Pattern I (II).
After Algorithm 4 (5) is run, the grouping is secure.

Algorithm 2 adjust(JOIN, I): Re-grouping after a node joins two groups which over-
lap in pattern I (see Fig. 6(a)).
Require: G, A: The two groups that the node joins, |G| > |A|.
1: if |G| < 2d then return;
2: else Split G in the middle into two groups, each of size d;

Algorithm 3 adjust(JOIN, II): Re-grouping after a node joins two groups which over-
lap in pattern II (see Fig. 7(a)).
Require: G, A: the two groups that the node joins, |G| ≥ |A|.
Require: B: A’s neighbor group which also overlaps with G.
Require: Without loss of generality, G overlaps with the right part ofA, i.e., G.left > A.left and
G.right > A.right. In this case, B is the right neighbor of A. See Figure 7(a).

1: if |G| < 2d then
2: return;
3: else
4: Split G in the middle into two groups, each of size d;
5: Move A.right to the position P = max{G.left + x,A.left + d};
6: if |B| < 2d then
7: return;
8: else
9: Create a group C, with C.left = A.right and C.right = C.left + d;

10: B.left← C.right;

Algorithm 4 adjust(LEAVE, I): Re-grouping after a node leaves two groups which
overlap in pattern I (see Fig. 6(b)).
Require: G, A: the two groups that the node leaves, with |G| < |A|.
Require: C, E : the right neighbor of G and A, respectively. See Figure 6(b).
1: if |G| ≥ d then
2: return;
3: else if |C| = d then
4: Merge G and C;
5: else
6: u← |C⋂A|;
7: if u ≥ x+ 1 then Move G.right to the right by 1;
8: else if u = x and |C| ≥ d+ 2x then Move G.right to the right by 2x;
9: else if u = x and |C| < d+ 2x then Move both G.right and A.right to the right by 1;

Algorithm 5 adjust(LEAVE, II): Re-grouping after a node leaves two groups which
overlap in pattern II (see Fig. 6(c)).
Require: G, A: the two groups that the node leaves.
Require: D, E : G’s neighbors. D overlaps withA; E does not.
Require: B, F : A’s neighbors. B overlaps with G; F does not.
Require: Without loss of generality, suppose G.left > A.left and G.right > A.right.
1: if |G⋂A| ≥ x then
2: if |G| ≥ d and |A| ≥ d then
3: return;
4: if |G| = d− 1 then
5: if |E| = d then Merge G and E ;
6: else Move G.right to the right by 1;
7: if |A| = d− 1 then
8: if |F| = d then Merge A and F ;
9: else Move A.left to the left by 1;

10: else
11: if |G| ≥ d and |A| ≥ d then
12: if |B| ≥ d+ 1 then Move A.right to the right by 1;
13: else if |D| ≥ d+ 1 then Move G.left to the left by 1;
14: else Move D.right to the right by 2x− 1;
15: if |G| = d− 1 then
16: if |D| = d then Merge G and D;
17: else Move G.left to the left by 1;
18: if |A| = d− 1 then
19: if |B| = d then Merge A and B;
20: else Move A.right to the right by 1;

5.4 Communication Cost Analysis
We measure the communication cost of dynamic joins and leaves by the number of
nodes that the key dealer should reissue secrets to (number of updated nodes for short).
The communication cost of ring-based interleaved grouping is given in the following
theorem (see proof in the technical report [27]).

Theorem 4. In ring-based interleaved grouping, when a node joins (leaves), at most
three (four) existing groups are updated and the number of updated nodes has an upper
bound 4d (6d).

This theorem indicates that the communication cost of ring-based interleaved group-
ing depends on parameter d, which in turn depends on parameter γ (see Table 4), the
maximum fraction of compromised nodes. According to Table 4, the value of d is not
large when γ is not too high. Thus, the communication cost is low. Note that the cost
does not change with the number of nodes in the system.

6 Applying Ring-based Interleaved Grouping to Data Aggregation

In this section, we propose a scheme to demonstrate how to apply the ring-based inter-
leaved grouping technique to privacy-preserving data aggregation to achieve both churn
resilience and low aggregation error.

6.1 Encryption Scheme
Setup: The key dealer divides the nodes into groups using Alg. 1, and independently
assigns secrets for each group as done in the basic scheme. Each node i gets secrets
from the two groups that it is in. Let Si1 and S̄i1 denote the sets of secrets received
from one group, and Si2 and S̄i2 denote the sets of secrets received from the other
group. The node merges the secrets as follows: S i = Si1

⋃Si2 and S̄i = S̄i1

⋃ S̄i2. Let
g denote the number of groups generated by Alg. 1. The aggregator obtains Ŝ1, ..., Ŝg ,
where each Ŝj is the decryption capability of one group. It sets the overall decryption
capability as Ŝ =

⋃g
i=j Ŝj .

Encryption: The same as in the basic scheme.
Decryption: The same as in the basic scheme.

Due to the guarantee provided by ring-based interleaved grouping, the aggregator
can only decrypt the noisy sum but nothing else.

6.2 Data Perturbation
The perturbation algorithm is the same as that in the basic scheme, except that parameter
β is set differently (see below).

6.3 Dealing with Dynamic Joins and Leaves
When a node joins or leaves, the key dealer runs Algorithm 2-5 to adjust grouping. For
each adjusted group, it reruns the setup phase to distribute a new set of secrets to the
nodes of the group and to the aggregator. In this process, it only communicates with the
nodes in the adjusted groups, which constitute only a small portion of all nodes.

Algorithm 6 Procedures run by the key dealer to manage the values of u for nodes.
Require: n: the real number of nodes
Require: ui: the number of nodes that node i uses to set parameter β
1: Initialization:
2: if n is even then u1, u2, ..., un ← �n2 �+ 1, �n

2
�+ 1, �n

2
�+ 2, �n

2
�+ 2, ..., n, n;

3: else u1, u2, ..., un← �n2 �+ 1, �n
2
�+ 2, �n

2
� + 2, ..., n, n;

4:
5: Join:
6: if Node i joins then
7: n← n+ 1;
8: ui ← n;
9: Find a node j with uj = min{u1, u2, ..., un};

10: uj ← n;
11:
12: Leave:
13: if Node i leaves then
14: n← n− 1;
15: Find a node j with uj = max{u1, u2, ..., un};
16: if There exists another node m with um = uj then um ← ui;
17: uj ← �n2 � + 1;

In the data perturbation part of the basic scheme, each node uses the number of
nodes n to set parameter β (i.e., β = min(1

(1−γ)n ln 1
δ , 1)), such that all nodes col-

lectively add just one copy of geometric noise to the aggregate. However, it requires
communications with all nodes upon every join and leave to send the exact value of n
to them. Obviously, it nullifies the benefits of grouping in reducing the communication
cost. To address this issue, we relax the accuracy requirement on the value of n such that
n does not have to be updated to every node upon every join and leave. As a tradeoff, a
little more noise is added compared to the basic scheme.

Specifically, each node records the value of n according to its knowledge. Let u
denote the value recorded by the node. u may not always reflect n, which is the real
number of nodes. Each node uses u to set parameter β for data perturbation, i.e., β =
min(1

(1−γ)u ln 1
δ , 1). The smaller u is, the more noise is added. u should not be larger

than n to ensure that at least one copy of geometric noise is added to provide differential
privacy, but u cannot be too small to avoid too much aggregation error. Thus, the values
of u at the nodes should be updated appropriately upon dynamic joins or leaves. The
challenge is how to update u without incurring too much communication cost.

We propose Alg. 6 to address this challenge. Table 5 shows a running example of it.

Table 5. An example of Algorithm 6

step operation u1 u2 u3 u4 u5 u6 n

0 initialize 3 3 4 4 - - 4
1 Node 5 joins 3 5 4 4 5 - 5
2 Node 6 joins 6 5 4 4 5 6 6
3 Node 2 leaves 5 - 4 4 5 3 5
4 Node 1 leaves - - 4 4 3 3 4

Aggregation Error We have a theorem (see proof in the technical report [27]).

Theorem 5. Algorithm 6 guarantees that ∀i, ui ∈ (n2 , n].

Comments: Since u ≤ n, at least one copy of geometric noise is added to the sum
aggregate to provide differential privacy; since u > n

2 , at most one more copy of ge-
ometric noise is added. Thus, the average aggregation error is roughly within twice of
the geometric noise required for differential privacy.

Communication Cost Alg. 6 only incurs very small communication cost. When a node
joins, the joining node and another node with the minimum u are updated; when a node
leaves, (at most) two remaining nodes with the maximum u are updated. Thus, the u
of at most two nodes are updated for each join or leave. Considering this property and
Theorem 4, the overall communication cost is as follows.
Corollary 1. When a node joins (leaves), our scheme communicates with at most 4d+2
(6d+ 2) nodes to update their secret keys and their values of u.

0.01 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

Fraction of compromised nodes

N
um

be
r

of
 u

pd
at

ed
 n

od
es

Upper Bound
Simulation

(a) Join

0.01 0.05 0.1 0.15 0.2
0

100

200

300

400

Fraction of compromised nodes

N
um

be
r

of
 u

pd
at

ed
 n

od
es

Upper Bound
Simulation

(b) Leave
Fig. 8. The communication cost of ring-based interleaved grouping.

7 Evaluations
This section evaluates the communication cost (measured by the number of updated
nodes per join or leave) and the aggregation error of our solution through simulations,
and evaluates the computation cost via implementation-based measurements. We com-
pare our solution against four other schemes: the scheme proposed in [8] (denoted by
SCRCS), the Binary scheme [9], the scheme proposed in [10] (denoted by JK), and the
Naive Grouping scheme presented in Section 3.4.

7.1 Communication Cost of Ring-based Interleaved Grouping
The communication cost of ring-based interleaved grouping is affected by parameter γ
(i.e., the maximum fraction of nodes compromised). We first evaluate the effect of γ. We
set x and d according to Table 4. To measure the communication cost of join (leave), we
first generate a random initial grouping structure that includes 2000 (102,000) nodes,
and then simulate 105 joins (leaves) over it, resulting in 102,000 (2000) nodes in the
end. We compute the mean and standard deviation over the 10 5 measurements.

Figure 8 shows the simulation results as well as the analytical upper bound (see
Theorem 4). As γ increases, the communication cost increases. This is because x is
larger (see Eq. 1) and the group size is larger. However, only 170 nodes are updated
even when 20% of nodes are compromised. Also, we found that the communication
cost of our scheme is roughly half of the analytical upper bound.

7.2 Comparisons of Communication Cost
We compare our solution against the other four schemes in communication cost. In
Naive Grouping, parameter g is set such that our scheme and Naive Grouping have the
same average aggregation error. In our scheme, γ = 0.05. We vary the number of nodes
n. For each value of n, we compute the mean and standard deviation over 10000 runs.

Figure 9 shows the results. Clearly, the communication cost of our scheme is much
smaller than SCRCS and Naive Grouping, and is close to Binary and JK. This is because
the ring-based interleaved grouping can effectively reduce the number of nodes that
should be updated for dynamic joins and leaves. Also, the communication cost of our
scheme does not change with parameter n, and hence it can scale to large systems.
Interestingly, our scheme has much smaller communication cost than Naive Grouping
with the same aggregation error, which demonstrates that interleaved grouping achieves
a better balance between communication cost and aggregation error.

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of nodes

N
um

be
r

of
 u

pd
at

ed
 n

od
es

SCRCS
Naive Grouping
Our Scheme
Binary
JK

(a) Join

10
3

10
4

10
510

1

10
2

10
3

10
4

10
5

10
6

Number of nodes

N
um

be
r

of
 u

pd
at

ed
 n

od
es

SCRCS
Naive Grouping
Our Scheme

(b) Leave
Fig. 9. Comparisons between our scheme and other schemes in the communication cost of dy-
namic joins and leaves (log-log scale). For dynamic leaves, the communication cost of Binary
and JK is zero and thus not shown in the log-log plot.

7.3 Comparisons of Aggregation Errors
We compare our scheme with the other four schemes on aggregation error. In Naive
Grouping, the parameter g is set such that Naive Grouping and our scheme have the
same average communication cost for leave. In the simulation, we assume each node’s
data is either 0 or 1 (i.e., Δ = 1). We vary parameters n, ε and δ. For each parameter,
we measure the mean and standard deviation of aggregation error over 10000 runs.

Table 6 shows the mean and standard deviation of aggregation error. As the number
of node increases, the aggregation error of Binary and Naive Grouping also increases
quickly. However, the aggregation error of Our scheme, SCRCS and JK does not change
too much, because on average they add a constant number of copies of geometric noise
to the aggregate. As privacy parameter ε (δ, resp.) decreases, which means a stricter
requirement for differential privacy, all schemes have a higher aggregation error, since
each node needs to add more noise to meet the stronger privacy requirement. In nearly
all cases, the aggregation error in our scheme is one order of magnitude smaller than
Binary and Naive Grouping, and it is within 1.5 (2.5) times of the aggregation error
SCRCS (JK). Thus, our scheme has low aggregation error.

7.4 Implementation and Comparisons in Running Time
We implemented a prototype system in Java. The prototype has two components which
are used as the mobile node and the aggregator respectively. The mobile node compo-

Table 6. The mean and standard deviation of aggregation error

n = 103 3162 104 31623 105

Binary 247/211 300/260 360/308 386/333 439/381
Naive Grp. 63/48 112/85 199/152 358/269 631/479
Our Sch. 26/23 27/22 26/23 26/22 26/22
SCRCS 18/17 18/17 18/17 18/17 18/17

JK 9.9/9.8 10.2/10.1 10/9.9 10.1/10 10/9.9

ε = 0.05 0.1 0.2 0.3 0.4
Binary 704/609 363/307 178/153 121/103 88/75

Naive Grp. 398/301 199/152 100/75 66/51 50/38
Our Sch. 52/44 26/22 13/11 9/7 6/5
SCRCS 36/34 18/17 8.7/8.5 5.8/5.6 4.6/4.3

JK 19.9/19.8 10/9.9 5.1/5 3.3/3.2 2.5/2.4

δ = 0.01 0.05 0.1 0.15
Binary 409/341 363/307 328/285 315/281

Naive Grp. 248/189 199/152 174/132 159/120
Our Sch. 33/27 26/22 23/20 20/19
SCRCS 23/20 18/17 16/15 15/13

JK 10.2/10.1 10/9.9 10/9.8 9.9/9.9
The number on the left (right) of “/” is mean (standard deviation).
By default, n = 10000, γ = 0.05, ε = 0.1 and δ = 0.05.

nent is implemented on a Android Nexus S Phone, which has 1GHz CPU and 512MB
RAM, and runs Android 4.0.4 OS. The aggregator component is implemented on a
Windows Laptop with 2.6GHz CPU, 4GB RAM and 64-bit Windows 7 OS. By running
experiments over the prototype, we measured the time needed for the phone to encrypt a
data value and the time needed for the laptop to decrypt the sum aggregate. For compar-
ison, we also implemented SCRCS, JK and Binary and measured their running time. As
to the JK scheme, the data consumer and the key manager (see [10]) are implemented
together as the aggregator.

Table 7. The analytical computation cost of different schemes

Mobile Node Aggregator
Our Scheme 4c PRFs 2nq

d
PRFs

2 Paillier encryptions & 2 Paillier decryptions &
JK 1 signature generation 2n mod. multiplications & n sig. verifications

SCRCS 2 mod. exp.
√
nΔ mod. exp.

Binary 2(�log2 n� + 1) mod. exp.
√
nΔ mod. exp.

Table 7 shows the computation overhead of these schemes (see [8–10, 20] for de-
tails). In the implementation, HMAC-SHA256 is used as the PRF of our scheme. For
JK, the Paillier cryptosystem uses a 1024-bit modulus, and RSA (1024-bit) is used as
the digital signature algorithm. For SCRCS and Binary, the high-speed elliptic curve
“curve25519” is used for modular exponentiation.

Table 8 shows the running time of these schemes. Compared with JK, our scheme is
two orders of magnitude faster in both encryption and decryption. This is because JK us-
es the Paillier cryptosystem which is very expensive in computation, but our scheme is
based on HMAC which is very efficient. Compared with SCRCS (Binary), our scheme
is one (two) order(s) of magnitude faster in encryption, and two or three orders of mag-
nitude faster in decryption when the plaintext space is 1000 or larger. SCRCS and Bi-

nary are very slow in decryption because they need to traverse the possible plaintext
space to decrypt sum, computing one modular exponentiation for each possible value.
Thus, our scheme is the most efficient in computation.

Comments. Our scheme’s high efficiency in computation makes it a better choice
for large-scale mobile sensing applications with large plaintext spaces, high aggrega-
tion loads (e.g., many parallel aggregation tasks per node or per aggregator, short ag-
gregation period), resource-constraint mobile devices (e.g., personal healthcare devices
besides smartphones) and rich statistics.

Table 8. The running time of different schemes

Enc. Decryption
- n = 103 104 105 106

Our Scheme 3.4ms 1.2ms 12ms 0.12s 1.2s
JK 236ms 175ms 1.5s 15s 150s

SCRCS (Δ = 103) 45ms 5.6s 18s 56s 177s
SCRCS (Δ = 104) 45ms 18s 56s 177s 560s
SCRCS (Δ = 105) 45ms 56s 177s 560s 1770s
Binary (Δ = 103) 0.5∼0.9s 5.6s 18s 56s 177s
Binary (Δ = 104) 0.5∼0.9s 18s 56s 177s 560s
Binary (Δ = 105) 0.5∼0.9s 56s 177s 560s 1770s
The encryption time of Binary depends on n, and range [0.5, 0.9] is
obtained for n ∈ [103, 106]. In our scheme, γ = 0.2.

8 Extensions and Discussions
Relaxing the trusted key dealer assumption The assumption of trusted key dealer
can be relaxed. Instead, we can assume an honest-but-curious key dealer that does not
collude with the aggregator. It follows our protocol as specified, but may attempt to
infer the data value of nodes from the the protocol transcript and from eavesdropping
all communications. Under this semi-honest model, the only adaptation that should be
made to our protocol is adding one more encryption/decryption to the data that each
node submits to the aggregator. Specifically, each node first encrypts its noisy data as
previously specified with the secrets received from the key dealer, deriving an interme-
diate result c, and then encrypts c using a pre-shared key shared with the aggregator. It
sends the final ciphertext to the aggregator. The aggregator first decrypts each node’s
intermediate result c using the pre-shared key, and then decrypts the noisy sum as previ-
ously specified. So long as the key dealer does not collude with the aggregator, it cannot
get any node’s intermediate result c, and thus cannot get the node’s data value. In future
work, we will explore how to completely remove the key dealer.

Dealing with node failures Fault tolerance is not the major focus of this paper, but
our solution can be adapted in the following way such that, when some nodes fail, the
aggregator can still obtain the aggregate over the remaining nodes.

Since the key dealer knows the secrets assigned to every node, if some nodes fail
to submit data, the aggregator asks the dealer to submit data on behalf of those failed
nodes. The dealer sets the data value as zero, adds a large-enough (see below) noise
r to it, encrypts the noisy data with the secrets of all those failed nodes, and submits
the obtained ciphertext to the aggregator. The aggregator can decrypt the sum over the
functioning nodes’ data. This method incurs a round trip communication between the
key dealer and the aggregator. The overall communication cost is still O(n).

Even if all nodes are functioning, the aggregator may dishonestly claim the failure
of a subset S̃ of nodes. (It can only claim one subset per aggregation period.) Then it
can obtain two independent noisy sums, S =

∑
i(xi+ri) and S ′ =

∑
i�∈S̃

(xi+ri)+r.
It is easy to see that each node is included in at most two sums. Roughly speaking,
to provide differential privacy, it suffices to add two copies of geometric noise to each
sum. Thus, all nodes collectively add two copies of geometric noise to S and the key
dealer itself adds two copies of geometric noise to S ′. Considering that Alg. 6 may at
most double the noise added to S, the final aggregation error is less than six copies
of geometric noise when there is node failure, and less than four copies without node
failure. Obviously, this method maintains O(1) aggregation error.

If a node has failed for a long time, it can be removed from the system as a “leave”.
The recovery of a failed node can be processed as a “join”.

In this method, the key dealer needs to be online, but it only makes online commu-
nications when there is node failure. In future work, we will study other solutions for
fault tolerance, e.g., by exploring the direction pointed out in [9].

9 Conclusions
This paper proposed a novel ring-based interleaved grouping technique and applied it
to privacy-preserving aggregation of time-series data in mobile sensing applications.
Our solution achieves O(1) aggregation error irrespective of the number of nodes in the
system. More importantly, it has very low communication overhead for dynamic joins
and leaves. Simulation results show that only less than 170 nodes need to be updated
for each join or leave when on average 20% of nodes are compromised, irrespective of
the system scale. Our solution is very efficient in computation.

Acknowledgment
We would like to thank Elaine Shi for her insightful comments and suggestions. We
would also like to thank the anonymous reviewers for their helpful suggestions.

References

1. A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, and
J. Eriksson, “Vtrack: accurate, energy-aware road traffic delay estimation using mobile
phones,” in Proc. SenSys, 2009, pp. 85–98.

2. M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard, R. West,
and P. Boda, “Peir, the personal environmental impact report, as a platform for participatory
sensing systems research,” in Proc. ACM MobiSys, 2009, pp. 55–68.

3. N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke, T. Choud-
hury, and A. Campbell, “Bewell: A smartphone application to monitor, model and promote
wellbeing,” in Intl. ICST Conf. on Pervasive Computing Technologies for Healthcare, 2011.

4. J. Hicks, N. Ramanathan, D. Kim, M. Monibi, J. Selsky, M. Hansen, and D. Estrin, “Andwell-
ness: an open mobile system for activity and experience sampling,” in Proc. Wireless Health,
2010, pp. 34–43.

5. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan,
and S. Madden, “Cartel: a distributed mobile sensor computing system,” in SenSys, 2006.

6. R. Honicky, E. A. Brewer, E. Paulos, and R. White, “N-smarts: networked suite of mobile
atmospheric real-time sensors,” in NSDR, 2008.

7. V. Rastogi and S. Nath, “Differentially private aggregation of distributed time-series with
transformation and encryption,” ACM SIGMOD, 2010.

8. E. Shi, T.-H. H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-preserving aggregation of
time-series data,” Network and Distributed System Security Symposium (NDSS), 2011.

9. T.-H. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream aggregation with fault toler-
ance,” Financial Cryptography and Data Security (FC), 2012.

10. M. Jawurek and F. Kerschbaum, “Fault-tolerant privacy-preserving statistics,” in The 12th
Privacy Enhancing Technologies Symposium (PETS), 2012.

11. C. Dwork, “Differential privacy,” Invited talk at ICALP, 2006.
12. C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private

data analysis,” TCC, 2006.
13. Q. Li and G. Cao, “Providing privacy-aware incentives for mobile sensing,” in Proc. IEEE

PerCom, 2013.
14. Z. Zhu and G. Cao, “Applaus: A privacy-preserving location proof updating system for

location-based services,” in Proc. IEEE INFOCOM, 2011.
15. E. D. Cristofaro and C. Soriente, “Short paper: Pepsi—privacy-enhanced participatory sens-

ing infrastructure,” in Proc. ACM WiSec, 2011, pp. 23–28.
16. Q. Li and G. Cao, “Mitigating routing misbehavior in disruption tolerant networks,” IEEE

Transactions on Information Forensics and Security, vol. 7, no. 2, pp. 664–675, April 2012.
17. C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik, “Efficient and provably secure

aggregation of encrypted data in wireless sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 5, no. 3, pp. 20:1–20:36, 2009.

18. J. Shi, R. Zhang, Y. Liu, and Y. Zhang, “Prisense: privacy-preserving data aggregation in
people-centric urban sensing systems,” in Proc. IEEE INFOCOM, 2010, pp. 758–766.

19. E. G. Rieffel, J. Biehl, W. van Melle, and A. J. Lee, “Secured histories: computing group
statistics on encrypted data while preserving individual privacy.” In submission, 2010.

20. Q. Li and G. Cao, “Efficient and privacy-preserving data aggregation in mobile sensing,” in
Proc. IEEE ICNP, 2012.

21. R. Chen, A. Reznichenko, P. Francis, and J. Gehrke, “Towards statistical queries over dis-
tributed private user data,” in Proc. of NSDI, 2012.

22. D. Proserpio, S. Goldberg, and F. McSherry, “A workflow for differentially-private graph
synthesis,” in Proc. ACM workshop on online social networks (WOSN), 2012, pp. 13–18.

23. A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing graphs using differentially
private graph models,” in Proc. ACM IMC, 2011, pp. 81–98.

24. M. Shao, Y. Yang, S. Zhu, and G. Cao, “Towards statistically strong source anonymity for
sensor networks,” in Proc. IEEE INFOCOM, 2008.

25. A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,” in Proc. PKC, 2000.
26. A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally utility-maximizing privacy

mechanisms,” in ACM symposium on Theory of computing (STOC), 2009, pp. 351–360.
27. Q. Li and G. Cao, “Efficient privacy-preserving stream aggregation in mobile sensing with

low aggregation error,” Technical Report, The Pennsylvania State University, April 2013,
http://www.cse.psu.edu/˜qxl118/papers/li2013tr.pdf.

