
OSS: Using Online Scanning Services
for Censorship Circumvention

David Fifield1, Gabi Nakibly2, and Dan Boneh1

1 Computer Science Department, Stanford University
2 National EW Research & Simulation Center,

Rafael – Advanced Defense Systems Ltd.

Abstract. We introduce the concept of a web-based online scanning
service, or OSS for short, and show that these OSSes can be covertly used
as proxies in a censorship circumvention system. Such proxies are suitable
both for short one-time rendezvous messages and bulk bidirectional data
transport. We show that OSSes are widely available on the Internet and
blocking all of them can be difficult and harmful. We measure the number
of round trips and the amount of data that can be pushed through various
OSSes and show that we can achieve throughputs of about 100 KB/sec.
To demonstrate the effectiveness of our approach we built a system for
censored users to communicate with blocked Tor relays using available
OSS providers. We report on its design and performance.

1 Introduction

Nowadays many nations regularly filter Internet traffic by blocking news sites,
social networking sites, search sites, and even public mail sites like Gmail. The
OpenNet Initiative, which tracks public reports of Internet filtering, lists a large
number of countries that filter Internet traffic. Over half of the 74 countries
tested in 2011 imposed some degree of filtering on the Internet [1].

In response, several proxy systems have emerged to help censored users freely
browse the Internet. Most notable among these is Tor [2], which, while originally
designed to provide anonymity, has also seen wide use in circumvention. Other
proposals include Telex [3], Infranet [4] and Ultrasurf [5] as well as several en-
hancements to Tor [6–8]. The existence of circumvention systems makes the
censor’s job harder: The censor must block all circumvention tools in order to
remain effective.

Network censorship techniques fall into two broad classes: blocking by address
and blocking by content. This work is mainly about the former: We seek to enable
a censored user to communicate with a network host even when a censor blocks
all traffic to and from that host’s IP address. Flash proxy [6] is an example
of a system resistant to address blocking; it creates a large number of short-
lived proxies. Blocking by content, that is, the inspection of packet contents
and other traffic characteristics such as timing, requires different circumvention
techniques, for example mimicking other common protocols, as StegoTorus [7]
does, or making the traffic look like no protocol in particular, as obfsproxy [8]



does. Combining resistance to both kinds of censorship is a subject of active
development. Even though we are primarily concerned with blocking by address,
Sect. 7 considers mitigations for content blocking in the system of this paper.

The system proposed in this paper is especially well suited to be used as
a rendezvous protocol. A rendezvous protocol is an important component of a
proxy-based circumvention system that allows a censored user to send a small
amount of information (a few bytes) outside the censored region for the purpose
of introducing the user to a proxy. Rendezvous protocols are low-bandwidth and
designed to be difficult to block.

A complete circumvention system must also address secure client software
distribution, an install system, and secure integration with a web browser. We
have implemented our system as a Tor pluggable transport [9] so that it can use
the Tor Project’s existing infrastructure that addresses these concerns.

Our contributions. In this paper we propose a new approach to building prox-
ies. In particular, we identify a large set of widely available web services that
can be covertly made into proxies.

Our starting point is the observation that many web services take a URL as
user input and then scan the web page behind that URL. We give many examples
in Sect. 3, but for concreteness consider PDFmyURL, a service that does exactly
what its name suggests: Given a URL it returns a PDF of the target page. With
a URL as input, software on the server uses WebKit to fetch the page, render
it, and convert it to PDF. The page is fetched immediately after the user clicks
the submit button. We emphasize that pdfmyurl.com is just an example – there
are many available services, including malware analysis sites and many others,
that take a URL as input and then retrieve the page that the URL points to.

Now, suppose that the URL provided as input to pdfmyurl.com points to a
site A.com that when accessed over HTTP returns a 302 redirect response to
another site B.com. The server at pdfmyurl.com will dutifully follow the redirect
and issue another HTTP request to the new target site B.com. Suppose now that
B.com also returns a 302 redirect response back to A.com, but with a slightly
modified path. pdfmyurl.com will follow the redirect back to A.com. Then A.com
issues another redirect back to B.com and so on. This redirect ping-pong can
go on for a while and the pdfmyurl.com server will obediently bounce back and
forth between the two sites A.com and B.com. By embedding data in the URLs
provided in each redirect, the two sites A.com and B.com can communicate using
pdfmyurl.com as a proxy. Figure 1 illustrates this.

We refer to a service like PDFmyURL as an Online Scanning Service or OSS
for short. For our purposes, an OSS must satisfy the following requirements:

1. It is not blocked by the censor.

2. It makes the initial HTTP scanning request in real time (within a few seconds
of being asked).

3. It follows at least one redirect, where a “redirect” is any of a number of meth-
ods described in Sect. 4 (for example, we can use frames, refresh headers, or
JavaScript to cause the redirects).



A.com

pdfmyurl.com

B.com

HTTP GETHTTP G
ET

Redirect to B.comRedire
ct t

o A
.com

Fig. 1. Illustration of the redirection process.

Requirement 3 means that there is a way to respond to an OSS’s HTTP request
that causes the OSS to make another request to a URL of our choice. We use the
OSS as a proxy by embedding data in these requests and redirecting it between
two hosts. When used for rendezvous rather than bidirectional data transfer,
Requirement 2 is relaxed (in some cases it is acceptable if rendezvous takes a
few minutes) and Requirement 3 is unnecessary (rendezvous messages fit in a
single request and do not require a reply).

There are many OSS-like services on the web. It is an advantage of this
circumvention technique that there is no canonical list of “supported OSSes”
that must be known in advance. One host may use any convenient OSS to
communicate with the other, as long as it satisfies the three requirements above,
without prior arrangement with the other host. What the OSS may do behind
the scenes is not important for the purpose of data transfer; we use only its
ability to make requests and follow redirects.

A comparison with the flash proxy system [6] is instructive. Where the flash
proxy system uses the abundant resource of web browser IP addresses, our system
uses online scanning services, which are less numerous but potentially more costly
to block as they may host important services.

In principle, censors can counter this circumvention system by blocking all
OSS providers. However, as we show in Sect. 3, OSSes are so prevalent that it
would be difficult to discover all of them. Furthermore, blocking all OSSes on the
Internet would cause economic hardship and block legitimate popular services
that have nothing to do with censorship circumvention.

In Sect. 2 we detail the threat model we address in this paper. In Sect. 3
we survey many existing OSS services and survey which are suitable for circum-
vention and which have undesirable side effects. Section 4 describes a number
of redirect methods and measure their performance with each OSS. Section 5
has measurements of the performance characteristics of several OSSes, with ex-
perimental results for overall throughput. In Sect. 6 we describe the system we
built that allows censored users to communicate with blocked sites through arbi-
trary OSS providers. A security analysis of the system follows in Sect. 7. Ethical
considerations of using OSSes in this way are the subject of Sect. 8. Section 9
concludes.



2 Threat Model

Our work deals with five entities, whose relationship is summarized in Fig. 2.

1. Censored user – a user within the filtered region who tries to access a target
web site outside the filtered region.

2. Censor – an authority that monitors and blocks traffic between the censored
user and the outside world. An example of a censor is a national government,
censoring at the borders of a country. The censor is the adversary we try to
circumvent.

3. OSS – an online web service used as an intermediary in communication.
It is located outside the filtered region. It is assumed that the censor does
not block traffic between the censored user and the OSS. The OSS may be
oblivious to the circumvention effort: It does not generally actively assist
circumvention, but neither does it work with the censor to frustrate circum-
vention.

4. Cooperating proxy – a server located outside the censored region that relays
traffic to and from the target web site. An example of such a proxy is a
Tor bridge. The censor blocks traffic between the censored user and the
cooperating proxy; otherwise, the user would contact it directly.

5. Target web site – a web site located outside the filtered region. The censor
blocks traffic between the censored user and the target web site.

Censored

User

Censor

OSS
Cooperating

Proxy

Target

Web Site

Fig. 2. Illustration of the relationship between the principal entities. Our system en-
ables indirect communication between the censored user and the cooperating proxy,
otherwise prohibited by the censor.

The censor may inspect all traffic passing through it and may block any
packet it wishes. However, it does not do stateful tracking, namely keeping state
on every monitored data session or IP endpoint. We assume the censor does
not control the user’s computer (through a backdoor or similar) and that the
user is able to get and install circumvention software. The censor is motivated
to minimize “collateral damage” caused by its blocking: Access to innocuous
or economically important targets is allowed while a relatively small subset of
traffic is blocked. In other words, the censor will not block web services that
can be used as OSSes unless they are associated with circumvention – and even
then, only if the cost of blocking them is not too high.



The OSS is independent of the censor and does not collude with the censor
to prevent circumvention. The OSS is untrusted and may read or modify traffic
passing through it.

Our security goals are to communicate with a blocked endpoint without
exchanging traffic directly with it; to be expensive for the censor to block (in
economic and social terms); and to be covert in the sense that it should not be
possible to pinpoint a user without specifically focusing on that user’s traffic.

3 Online Scanning Services

To demonstrate the feasibility of our circumvention method, we investigated a
number of existing OSS providers listed below. We divide them into the cat-
egories of security, advertising, web diagnostics, processed retrieval, and link
shorteners. In this section we list example OSSes in each category, and in the
next we analyze their characteristics as applied to circumvention.

3.1 Security Scanners

This category consists of services that scan a web page for malicious content.
The scans are initiated by submitting a URL in a web form.

Dr.Web http://vms.drweb.com/online/

An online scanner using the Dr.Web antivirus engine.

NoVirusThanks http://vscan.novirusthanks.org/

NoVirusThanks is a security company with a free multi-engine antivirus scan.

VirusTotal https://www.virustotal.com/#url

VirusTotal scans uploaded files and URLs with a variety of antivirus engines.

3.2 Contextual Advertising

Contextual advertising attempts to match advertisements to the web pages on
which they appear. The ad network scans web pages containing advertisements
to find keywords or other context.

Google AdSense https://www.google.com/adsense/

An AdSense advertisement is a piece of JavaScript code. It sends the URL of
the page it is on to the AdSense servers in order to find out what to display.
If the URL is not in the servers’ cache, the servers begin an immediate scan.
(The structure of our URLs ensures that they will not be found in cache.)
Our experiments show that the AdSense crawler will crawl arbitrary URLs,
not only those on a domain belonging to an AdSense customer.



3.3 Web Diagnostics

This category includes services that analyze the contents of a web page.

vURL Online http://vurldissect.co.uk/

Dissects web markup and extracts some information for analysis. The infor-
mation includes such things as image and link references.

W3C Markup Validation http://validator.w3.org/

Checks the markup of web documents in formats like HTML and XHTML.

3.4 Processed Retrieval Services

Services that return a web document after filtering it in some way.

GoMo http://www.howtogomo.com/

Renders a web site as it appears on a smartphone.

IE NetRenderer http://netrenderer.com/

Renders a web site as it appears in various versions of Internet Explorer.

PDFmyURL http://pdfmyurl.com/

Converts a web page into PDF.

3.5 Link Shorteners

Link shorteners turn a URL and into another, usually shorter, URL that redirects
to the original.

Google URL Shortener https://goo.gl/

The goo.gl shortener makes an HTTP request to the target page in order to
show a thumbnail preview. We were not able to drive this OSS programmati-
cally, as shortening a link and retrieving the preview is a complicated process
involving a Google Account and JavaScript code. For this reason, and be-
cause initiating a scan has the side effect of creating a permanent short link,
goo.gl is not a high-quality OSS for our purposes.

Twitter Link Shortener https://t.co/

Links posted on Twitter are shortened by the mandatory URL shortening
service t.co [10]. As a side effect of creating a short link, a number of scan-
ners retrieve the URL. To initiate a scan, we programmatically post a tweet
containing the URL to be scanned. Like goo.gl, Twitter leaves a record of
each scan request in the form of a short link and a tweet.

3.6 Discussion

The throughput of an OSS depends on the specific redirect method used, but
overall some are faster than others. In addition, some OSSes are not suitable
for circumvention: Twitter and goo.gl create a record of each communication in



the form of a short URL, and require using an account that ties circumvention
to a long-term (potentially pseudonymous) identity. We make this division of
tested OSSes into those that are fast, those that are slow, and those that have
deficiencies that make them unsuitable for circumvention:

High-rate: Dr.Web, GoMo, NoVirusThanks, PDFmyURL.
Low-rate: AdSense, NetRenderer, VirusTotal, vURL, W3C.
Unsuitable: goo.gl, Twitter.

The fast OSSes can be used for bulk data transfer while slow ones are best
suited for rendezvous. Section 5 tests a selection of the best OSSes and redirect
methods.

The number of OSSes we study in this paper was limited only by our re-
sources. Other potential OSSes are translation services, photo printing services,
file hosts, RSS aggregators, and image sharing sites. We tested common web
browsers as if they were OSSes, and found that browsers are capable of acting
as circumvention proxies. However, proxying over redirects in browsers offers no
real advantages over using custom code as in the flash proxy system [6], so we
omit the results of browser testing.

4 Using an OSS for Communication

In this section we show how to use an OSS as a traffic relays. We then measure
the performance characteristics of each of the OSSes from Sect. 3. In what follows
we refer to the censored user as the client, and the remote cooperating proxy as
the server.

Initiating communication. Each OSS is started differently. To name two ex-
amples, the W3C markup validator requires only a single GET request containing
the URL to be scanned as a query parameter; VirusTotal requires first retrieving
the home page to get a cross-site request forgery (CSRF) token, then including
the token in a POST request along with the URL to be scanned. Once initiated,
however, the client and server may communicate without knowing the details of
the underlying OSS.

We describe a variety of techniques for causing an OSS to request a URL:
HTTP redirects, refresh, frames, and JavaScript. We group all of these techniques
under the general term “redirect methods.” What they have in common is that
they allow an HTTP response to control some aspect of a subsequent request.
The easiest part of a request to control is the URL. Some redirect methods, such
as the JavaScript-based ones, also allow control over the request body, which we
take advantage of in order to send more data per round trip.

Relaying traffic. The URL is our primary vehicle for communication. Our
URLs follow this format:

http://host:port/random/id/seq/ack?query



random is a random string, changing with every request, whose purpose is to
inhibit caching by the OSS. id identifies the URL as being part of a particular
data stream or session; it allows a server to handle multiple simultaneous clients.
seq and ack carry information about what what bytes each endpoint has received.
(OSSes do not in general follow an unlimited number of redirects; they effectively
drop the last communication in a redirect chain. The client and server retransmit
unacknowledged bytes until they are received.) query contains a data parameter
encoding the payload (except for the redirect methods that carry data in the
request body instead). data is base64-encoded using the URL-safe alphabet [11].
query additionally contains metadata like the client’s “return address” (the URL
to which the server’s redirects will be directed), the name of the redirect method
to use, and a fin marker for end-of-stream. A typical URL is

http://host:port/4a931e1d/e16813d8/0/0?data=SGVsbG8g...

Measurements. What follows in the rest of this section are descriptions of
each redirect method, and the results of testing each redirect method against
each OSS. In the performance tables, a redirect method/OSS combination is
summarized by a triple of numbers. An example summary is

redirects capacity delay

10 2047 0.5

The three numbers in order are

– Maximum number of redirects followed. We cut off testing above 250 re-
quests; services that did not stop before this limit are reported as ∞. The
number of redirects matters because the client must kick off a new redirect
chain once a previous chain is exhausted.

– Maximum data capacity per redirect, in bytes. For redirect methods that
embed data in URLs, this is the maximum URL length allowed. The amount
of useful payload data can be derived from the URL length by subtracting
a constant to account for non-data parts of the URL, then multiplying by
3/4 to account for base64 encoding. For redirect methods that send data
in request bodies, the number is the maximum body size allowed. We cut
off testing above 512 KB; services that did not stop before this limit are
reported as ∞.

– Delay, in seconds, between initiating a scan and when the OSS’s first request
is received. For some services the delay is variable, so we report an approxi-
mate average. For goo.gl, which was tested by manually copying URLs, the
delay column is empty.

We tested the limits on number of redirects using a program that redirected
to itself and kept a count of requests until a timeout. To measure payload limits,
we did a binary search over URL and request body lengths.

Unusual results in the tables are called out with footnotes. We speculate that
some services have limits in place other than those we measured, for example
a limit on clock time. An unanticipated finding was that some services have



multiple backend scanners with different characteristics. For this reason, some
table entries contain more than one number, separated by slashes. In the code
samples that follow, http://example.com/ takes the place of a data-carrying
transport URL.

4.1 HTTP Redirects

The specification of HTTP 1.1 [12, Sect. 10] defines a number of status codes
that effect redirects: 300 Multiple Choices, 301 Moved Permanently, 302 Found,
303 See Other, and 307 Temporary Redirect.

All these status codes have in common the Location header, whose value is
the URL to redirect to. They have some differences, both in specification and in
implementation. For example, 303 requires that the redirect be followed using
the GET method, while 307 repeats the method used in the original request.

Table 1. Performance characteristics of HTTP redirects.

300 301/302/303/307
OSS redirects capacity delay redirects capacity delay

AdSense 0 0 0.3 5 2047 1.1
Dr.Web ∞ 8181 0.5 ∞ 8181 0.5
GoMo 15 ∞ 3.5 15 ∞ 3.9
goo.gl 15 2047 – 15 2047 –
NetRenderer 10 2083 1.2 10 2083 1.2
NoVirusThanks1 10 ≈128000 1.3 10 ≈128000 1.4
PDFmyURL 0 0 0.9 ∞ ∞ 1.1
Twitter2 0 0 2.5 4/25 >2047 2.3
VirusTotal3 5/20 2047 5.9 5/20 2047 4.2
vURL4 20 ≈128000 22.6 20 ≈128000 22.5
W3C 0 0 0.8 7 8181 0.7
1 NoVirusThanks appears to be time-limited. We were able to send about 128000

bytes per redirect but the exact number fluctuated around this value.
2 Posting on Twitter was observed to cause up to three requests from different /24

IP address ranges, each with its own characteristics. At least one of the scanners
supports payloads of at least 2048 bytes.

3 The behavior of VirusTotal was variable, probably because of different backend
scanners. Sometimes 5 and sometimes 20 redirects were allowed. Sometimes the
payload was limited to 2047 and sometimes apparently unlimited.

4 vURL, like NoVirusThanks, appears to be time-limited.

Table 1 shows the performance of each OSS using 300-series redirects. We
tested each of the five redirect codes separately. 301, 302, 303, and 307 had
the same performance and level of support in our tests, so they are shown in
a single table column. 300 was somewhat less widely supported. Support for
HTTP redirects other than 300 is universal. HTTP redirects are the only working
method for NoVirusThanks, Twitter, vURL, and W3C.

We generally embed data in URL parameters over GET requests. It is tempt-
ing to try to use 307 with a POST request in order to carry data in request



bodies, but unfortunately this does not work. After receiving a 307 redirect, the
OSS makes a request to the new location using its original request body, not the
body returned along with the 307. Changes to request bodies do not survive the
“ping-pong” the way that changes to URLs do. In order to make use of POST
and request bodies we turned to JavaScript-based redirects, described later.

4.2 Refresh

Another method of redirecting an HTTP request is the “meta-refresh” technique
and the related Refresh header, which are widely supported despite being depre-
cated and non-standard [13]. A meta-refresh is a piece of HTML that instructs
the user agent to go to another URL after a delay of 0 seconds:

<meta http-equiv="refresh" content="0; url='http://example.com/'">

The same effect can be accomplished with a Refresh HTTP header.

Refresh: 0; url='http://example.com/'

Table 2. Performance characteristics of HTTP refresh.

meta-refresh Refresh header
OSS redirects capacity delay redirects capacity delay

AdSense 5 2047 1.3 5 2047 1.2
Dr.Web 0 0 0.6 0 0 0.4
GoMo ∞ ∞ 5.0 ∞ ∞ 4.0
goo.gl 30 2047 – 30 2047 –
NetRenderer 1 2083 1.0 1 2083 1.0
NoVirusThanks 0 0 0.5 0 0 0.5
PDFmyURL ∞ ∞ 1.8 ∞ ∞ 2.9
Twitter 0 0 1.0 0 0 2.6
VirusTotal1 0/≈150 0/∞ 6.0 0/≈150 0/∞ 4.5
vURL 0 0 22.3 0 0 22.9
W3C 0 0 0.8 0 0 0.8
1 One of VirusTotal’s scanners is apparently time-based; we were able to make

about 150 refreshes in 60 seconds. Another scanner allowed no refreshes.

Meta-refresh and the Refresh header have identical performance characteris-
tics within every OSS. Table 2 shows the performance of refresh-based redirects.

4.3 Frames

Recursively loaded resources can serve the same purpose as redirects. An HTML
document may contain a frameset or iframe; those may in turn contain frames,
and so on, up to an implementation-defined limit on nesting. Using the frameset
method, each response contains HTML like this example:



<frameset><frame src="http://example.com/"></frame></frameset>

Using iframe, responses look like this:

<iframe src="http://example.com/"></iframe>

Table 3 shows how frames are treated by each OSS. Limits on frame nesting
vary. PDFmyURL, which does not limit other redirect methods, limits frame
nesting to 201 levels.

Table 3. Performance characteristics of HTML frames.

frameset iframe
OSS redirects capacity delay redirects capacity delay

AdSense 0 0 0.6 0 0 0.7
Dr.Web 1 ≈450000 0.6 1 ≈450000 0.5
GoMo 201 ∞ 3.8 201 ∞ 4.3
goo.gl 9 2047 – 9 2047 –
NetRenderer1 ≈80 2083 1.6 ≈80 2083 1.2
NoVirusThanks 0 0 0.6 0 0 0.5
PDFmyURL 201 ∞ 1.8 201 ∞ 1.7
Twitter 0 0 2.0 0 0 2.2
VirusTotal2 0/9 0/∞ 5.0 0/9 0/∞ 9.3
vURL 0 0 22.4 0 0 22.3
W3C 0 0 0.6 0 0 0.7
1 NetRenderer’s limit appears to be time-based. We were able to make about 80

redirects in 30 seconds.

4.4 JavaScript

JavaScript provides another way for one web resource to load another. JavaScript
has the ability to control request bodies via the POST method – an advantage
because services typically allow more data in request bodies than in URLs.

JavaScript-based redirects’ higher bandwidth is offset by less widespread
support. Only goo.gl, GoMo, NetRenderer, and PDFmyURL usefully followed
JavaScript-based redirects.

We tried two different ways of loading a URL in JavaScript. The first builds
an HTML form containing the payload and submits it in the document’s onload
handler:

<body onload="document.f.submit();">

<form name="f" method="post" action="http://example.com/">

<input name="data" value="SGVsbG8g..."/>

</form>

</body>



The second uses XMLHttpRequest to load a new HTML page (which contains
its own XMLHttpRequest), and replaces the current page with the loaded page.

<script type="text/javascript">

xhr = new XMLHttpRequest();

xhr.open("POST", "http://example.com/");

xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

xhr.onreadystatechange = function() {

if (xhr.readyState == xhr.DONE && xhr.status == 200) {

document.open();

document.write(xhr.responseText);

document.close();

}

};

xhr.send("data=SGVsbG8g...");

</script>

Table 4 is a summary of JavaScript-based redirects. goo.gl, which tightly
limits the lengths of URLs to 2047 bytes, has no equivalent restriction on the
length of request bodies.

Table 4. Performance characteristics of JavaScript redirects.

onload XMLHttpRequest
OSS redirects capacity delay redirects capacity delay

AdSense 0 0 0.5 0 0 0.7
Dr.Web 0 0 0.6 0 0 0.5
GoMo ∞ ∞ 7.1 ∞ ∞ 3.2
goo.gl 30 ∞ – 15 ∞ –
NetRenderer 0 0 1.0 0 0 1.0
NoVirusThanks 0 0 0.5 0 0 0.7
PDFmyURL ∞ ∞ 2.5 ∞ ∞ 1.4
Twitter 0 0 2.6 0 0 2.9
VirusTotal 0 0 4.4 0 0 4.0
vURL 0 0 22.3 0 0 22.5
W3C 0 0 0.7 0 0 0.7

5 Experiments

5.1 Implementation

To evaluate the performance of the circumvention scheme we implemented client
and server programs. Both programs have similar capabilities: Each listens for
HTTP requests, identifies the stream to which an incoming request belongs,
extracts the payload, and redirects the request back to the peer with a portion



of buffered payload data. The client program presents a SOCKS [14] interface
to the local host. The programs can be used with or without Tor, and we tested
both configurations.

The main difference between the programs is that only the client initiates
scan requests to OSSes, while the server remains passive and must wait for an
HTTP requests from an OSS before sending data back to the client. This design
choice requires the client to refresh redirect chains when they reach their limits,
and to poll the server for data periodically, even if the client has nothing to send.
This model has advantages but is not the only possibility; see Sect. 6 for further
discussion.

Censored

User

Censor

Client
SOCKS HTTP

Redirect

HTTP

Redirect
OSS Server Web

Server

HTTP HTTP

Proxy

HTTP

Fig. 3. End-to-end data flow between a censored user and an HTTP proxy.

Figure 3 shows an end-to-end flow for communicating with an HTTP proxy.
The censored user connects to the client with SOCKS and requests a connection
to the server. The client program chooses an OSS and initiates a request for
it to scan the server. The scan request contains a random stream ID, a return
address on which the client is listening, and a redirect method. The redirect
method is needed because the server may not know what redirect methods the
OSS supports. The server receives the scan request, extracting the stream ID
and data payload. The server immediately redirects the OSS back to the client’s
return address. The server is configured to feed its concatenated payloads to
the HTTP proxy. When the HTTP proxy returns data to the server, the server
buffers it until it receives another request from the client with the same stream
ID to which it can respond with a payload.

Tor

Client

Censor

Client
SOCKS HTTP

Redirect

HTTP

Redirect
OSS Server

Tor Data Tor

Relay

Fig. 4. End-to-end data flow between a censored user and a Tor relay.



Figure 4 shows the end-to-end flow when configured to use Tor. The use of
a SOCKS interface means that both client and server work as Tor pluggable
transports [9]. In this configuration, the Tor relay serves as a general-purpose
proxy. Not shown are the additional hops that packets would take through the
Tor network before reaching the target web server.

5.2 Throughput Measurements

We now present the results for the throughput measurements for different OSS
and redirection method combinations. For these measurements we used only a
single redirect chain at a time. After a chain is exhausted as a result of reaching
the redirection limit, a new scan request is initiated. In these tests, both client
and server programs were on the same host, that is, traffic went out over the
Internet and then returned to the same place. We timed the download of a
1 MB file. The available bandwidth between our test machine and the location
of the remote file is high enough that the time taken to download mostly reflects
OSS overhead. Table 5 lists the measured throughput for each OSS and redirect
combination. In general, two different redirection methods in the same category
yield roughly similar results given the same OSS. If there is a difference we show
the higher throughput.

Table 5. Throughput measurement results (bytes per second).

XXXXXXXXXOSS
method

HTTP redirects refresh frames JavaScript

AdSense 500 500 – –
Dr.Web 20K – – –
GoMo 22K 28.2K 28.2K 175K
goo.gl 350 400 410 110K
NetRenderer 850 – 1.3K –
NoVirusThanks 21K – – –
PDFmyURL 220K 160K 180K 265K
Twitter 2.4K – – –
VirusTotal 1K – – –
vURL 250 – – –
W3C 4.6K – – –

Though Sect. 3 has examples of OSSes allowing half a megabyte or more
of payload, larger payload sizes bring diminishing improvements in asymptotic
bandwidth, while increasing latency. In our transport programs, we limited pay-
loads to 32 KB.

It is evident from Table 5 that the throughputs of different OSS/redirect
combinations vary widely. The lowest throughput we measured, 250 B/s, was
with vURL/302 and the highest, 265 KB/s, came from PDFmyURL/onload.



The user may increase available throughput by simultaneously initiating mul-
tiple scan requests, to the same OSS or to different OSSes. We tested this tech-
nique for every OSS and redirection method by creating two concurrent streams,
and observed their aggregate throughput to be twice that of a single stream, with
the exception of AdSense. AdSense seems to impose a limit on the resources al-
located at any given time to handle scan requests received from the same IP
address. Two simultaneous scan requests caused the time for the OSS to act
upon a received redirect to double. The other OSS that is operated by Google,
goo.gl, does not impose such limits.

We repeated the tests using with the programs configured to use Tor. We
tested several OSS and redirection method combinations and found that they
generally produce about the same throughput as with a bare HTTP proxy.

6 The Overall System

Redirect techniques in OSSes can be used to carry data – in some configurations
with high enough bandwidth and low enough latency to support comfortable
web browsing. In this section we describe how to use this facility as part of a
larger circumvention system in two scenarios: as a rendezvous method and as a
bulk bidirectional data transport.

Anonymity is important for circumvention. For this reason, we use Tor as
the target of OSS proxies, even though the idea of using HTTP requests for
communication is not tied to Tor. Traffic passed over Tor is encrypted, so it is
unreadable by the censor and, importantly, by the OSS. Tor traffic is addition-
ally authenticated, so that a malicious OSS cannot cause communication to be
redirected to something other than a Tor relay without the client noticing. Tor
by itself is widely used for circumvention, but in places where Tor is blocked, it
should not be necessary to give up on Tor’s protections while using an OSS.

In the discussion so far, redirects have been used as a means of decreasing
delay, with only the client making HTTP requests and initiating new redirect
chains. Before continuing, we note an alternative design that has both client
and server mutually initiating single scans of each other. This alternative has
the advantage of not requiring the OSS to support redirects, relying only on its
ability to make single requests. Disadvantages are higher overhead and delay –
both client and server now receive the HTTP response to their every scan request,
in addition to the HTTP requests made by the OSS – as well as increased server-
side complexity. Another disadvantage is that the circumvention server has to
support all of the potential OSSes, and know how to initiate a request with each
of them. This eliminates the client’s ability to choose its own unblocked OSS
independently of the circumvention server.

An important property of the system is that every user has the freedom
to choose which OSSes will be used without coordination with the cooperating
proxy, the OSS, or other users. Even without such coordination, finding OSSes
in the first place requires some expertise of the user. We leave unspecified how
a user might find OSSes on an ongoing basis.



Both censored client and cooperating proxy act as HTTP servers that must
be able to receive requests from the OSS, which acts as an HTTP client. This
unfortunately requires that both client and server be able to receive TCP con-
nections, which in particular means that neither may be behind network address
translation (NAT). The cooperating proxy is a server on the Internet that can
be assumed to be able to receive connections, but many censored users in the
real world are behind NAT. For those users, using an OSS for communication
will require the technical ability to do port forwarding, when port forwarding is
even possible. NAT does not pose a problem for rendezvous, which only requires
sending in one direction.

6.1 OSS as Rendezvous

Recall that a rendezvous protocol allows a censored client to send a small amount
of information out through the censor in a way that is very hard to block. The
usual goal is to bootstrap a higher-bandwidth transfer mechanism. Rendezvous
over OSS is simple and doesn’t even involve redirects. The client just encodes
the data it wants to send in a URL pointing to the server it wants to send the
data to. Rendezvous messages are short, so one request is enough, and the client
doesn’t have to receive a reply. If the OSS uses encryption, it is not possible
for the censor to selectively block rendezvous messages by looking for distinctive
URLs. It may be expensive to block all traffic to an OSS, if the OSS is commonly
used for purposes other than circumvention.

Rendezvous is by nature low-bandwidth and infrequent. Ideally, just one
short message is sent at the beginning of a session lasting hours. There is a lower
risk of OSS administrator annoyance and blocking when the system is used in
this way, compared to high-bandwidth uses.

There exists the danger of an eavesdropping OSS; the OSS should be regarded
as an untrusted network router capable of seeing the traffic that passes through
it. Our implementation of OSS-based rendezvous for the flash proxy system
additionally encrypts messages before encoding them into URLs, as a measure
of protection against OSSes that log the requests they are asked to make.

6.2 OSS as Bidirectional Data Channel

It certainly works to use a public OSS connected to a Tor relay as a general-
purpose proxy. With heavy use, though, there is a chance of detection and block-
ing, not by the censor but by the OSS itself. (During our tests, we were blocked
by PDFmyURL and Twitter.) The operators of an OSS cannot be assumed to
care about the cause of circumvention, and a large number of unusual requests
and redirects are likely to be unwanted if noticed. As an example, PDFmyURL’s
page on overusage [15] explicitly lists the conditions that may result in blocking:

Your IP or domain can be excluded if you overuse the service. You’ll get
a blocked message if you make a combination of:
1. more than 100 PDFs in two hours with a single IP, and



2. all these 100+ PDFs take more than 1000 seconds to process on our
servers, and

3. use more than 10% of CPU resources.

We suspect that what led to our blocking was heavy bandwidth tests, which
transferred several megabytes using URLs as long as 32 kilobytes. Shorter and
less bandwidth-intensive applications are less likely to be problematic. While
using an OSS as a data channel may be useful in some special circumstances,
we think that use as a rendezvous is more universally applicable.

7 Security Analysis

In this section we evaluate the system for unique traffic characteristics. We an-
alyze each characteristic relative to the threat model outlined in Sect. 2 and
discuss whether it can be used by the censor to flag traffic produced by our
mechanism. In addition, we consider some possible extensions to the system
that increase its resistance to content blocking.

Cooperating proxy address. Both the initial scanning requests as well as
the redirection responses coming from the censored user contain a URL, the IP
address or domain name of which belongs to the cooperating proxy. The censor
can block flows that contain the address or domain name of a blocked host.

It may seem that HTTPS encryption is the easy solution to this problem, but
the censored client can’t be assumed to have a certificate that will be considered
valid by the OSS. Requests to the client, and the client’s redirection responses,
must be in plain HTTP. Using the alternative design mentioned in Sect. 6 that
does not use redirects, HTTPS works to hide the cooperating proxy’s address;
as there are no redirects, there is no need to send the location to redirect to.

A mitigation of the problem is to obfuscate the proxy’s name in the traffic
that goes between the censored user and the OSS. There are several ways to
do this obfuscation. With the JavaScript redirection methods, the censored user
can use code to generate the proxy address in URLs, rather than embedding the
address directly. Blocking becomes more costly as the censor must run JavaScript
code to find the other endpoint of a communication.

Domain names are a cheap and abundant resource. Multiple domain names
that resolve to the same IP address serve as aliases that increase the cost of
blocking. Using a rendezvous protocol, every censored user may learn a single
domain name alias for their chosen OSS.

Instead of using many domain names for the proxy one can use many short-
ened URLs that all point to the same proxy name. To do this one must use
a URL shortening service that allows to attach to the shortened URL custom
parameters. An example shortener that allows parameters is http://para.ms/.
It copies parameters attached to the shortened URL to the original long URL.
This way the censored user may request that the OSS scan the shortened URL
with custom parameters and the OSS will be redirected to the proxy using the
same parameters.



Incoming connections. A censored user receives incoming connections from
the OSS. By disallowing incoming connections to residential users a censor would
be able to block our mechanism. Although it is much more common for a resi-
dential user to initiate connections rather than receive them, it is our assumption
that incoming connections are common enough that the censor will be reluctant
to block them wholesale.

An alternative blocking strategy is be to block only incoming requests coming
from known OSSes. This strategy will have less collateral damage. However,
as we have shown potential OSSes are abundant and it is hard for the censor
to discover and block them. Furthermore, blocking incoming connections from
known OSSes may incur economic damage. For example, disallowing Google from
initiating connections to the filtered region would inhibit web sites inside the
filtered region from appearing on Google’s search results or from using AdSense.

URL pattern. The system uses distinctive URLs containing hexadecimal strings
and well-known query string parameters. An alternative URL design may encode
all the information in a single query string parameter with a predefined obfus-
cated structure. The parameter name may be arbitrary. It may be necessary
to avoid using very long URLs (the censor may filter on length), potentially
reducing bandwidth.

Number of redirects. A censored user responds to HTTP requests with some
form of redirection. It may be suspicious if a large fraction of HTTP responses
are redirects. However, only HTTP redirects and refresh redirects are straight-
forward to detect. In addition, a censor limited as described in our threat model
(Sect. 2) is not able to do stateful monitoring on the entire volume of monitored
traffic. Therefore, it is impossible for the censor to gather the number of redi-
rects for every endpoint in the filtered region. The censor might be able to do
stateful monitoring only of connections to known OSSes. However, as we have
stated above it is hard for the censor to discover all potential OSSes.

Number of outgoing connections. A censored user may initiate many out-
going connections to the same OSS. An large number of outgoing connections
may be suspicious. Again, due to the stateless monitoring constraint the censor
is not be able to measure the number of outgoing connections for every endpoint
in the filtered region. Statefully monitoring only those endpoints that commu-
nicate with known OSSes may be feasible, but it is hard for a censor to discover
all potential OSSes.

Eavesdropping by the OSS. Our threat model assumes that the OSS is not
colluding with the censor; however it is not necessarily a trusted entity. An OSS
can intercept all communications between the user and the cooperating proxy.
In this sense the OSS resembles an ISP, Tor entry relay, or other network router
that lies on the path between the user and the cooperating proxy. Traffic should
be encrypted and authenticated, as the Tor protocol is, to prevent eavesdropping
and tampering by the OSS.



8 Ethical Considerations

Our proposal uses web services for a purpose they were not designed for. Fortu-
nately, there are measures that will allow an OSS to curb or eliminate its use as
a circumvention relay.

One such measure is for the cooperating proxy (i.e. the Tor bridge) to send
with every redirect message a signal that will indicate that this redirect is part
of a censorship circumvention data flow. If an OSS does not wish to take part
in the data flow, it may refuse to follow that redirect. The signal between the
cooperating proxy and the OSS can take many forms as long as it is known to
all proxies and OSSes. An example of such a signal is a distinguished HTTP
header included in the HTTP response to the OSS. Note that this signal does
not compromise the security of the circumvention method because the traffic
between the proxy and the OSS is not monitored by the censor.

9 Conclusions

We have shown that general-purpose web services that scan a given URL can
be covertly used to relay information between a user in a censored region and a
blocked web site. Blocking all these general-purpose services is practically impos-
sible to do and would severely cripple the web in the censored region, disabling
security scanners, URL shortening services, advertisers, and many others.

After identifying a large class of online scanning services (OSSes), we ana-
lyzed their performance as proxies. We showed that many common services can
handle many round trips and provide decent throughput. Some OSSes can be
used to proxy live session data while others provide limited bandwidth and would
mostly be used only for rendezvous. We experimented with a system that can
relay information between a browser and server using these OSSes as a relay. The
system is available as an experimental rendezvous for the flash proxy system [6]
and is part of Tor’s pluggable-transports web browser bundles starting with the
2.4.11-alpha-1 release [16]. Source code and experimental results are available
from https://gitweb.torproject.org/user/dcf/oss.git.

Acknowledgments

The work is supported by DARPA and Space and Naval Warfare Systems Cen-
ter Pacific under Contract No. N66001-11-C-4022. Opinions, findings and con-
clusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the Defense Advanced Re-
search Project Agency and Space and Naval Warfare Systems Center Pacific.
Distrib. Statement “A:” Approved for Public Release, Distribution Unlimited.

References

1. The OpenNet Initiative: OpenNet Initiative Internet censorship data. http://

opennet.net/research/data (November 2011)



2. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium. (August 2004)

3. Wustrow, E., Wolchok, S., Goldberg, I., Halderman, J.A.: Telex: Anticensorship in
the network infrastructure. In: Proc. 20th USENIX Security Symposium. (2011)

4. Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H., Karger, D.: Infranet:
Circumventing web censorship and surveillance. In: Proceedings of the 11th
USENIX Security Symposium. (2002)

5. Ultrareach Internet Corp.: Ultrasurf proxy. http://www.ultrasurf.us/

6. Fifield, D., Hardison, N., Ellithorpe, J., Stark, E., Boneh, D., Dingledine, R., Por-
ras, P.: Evading censorship with browser-based proxies. In: Proceedings of PETS
2012. Number 7384 in LNCS (2012) 239–258

7. Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeister, L., Cheung, S., Wang,
F., Boneh, D.: StegoTorus: a camouflage proxy for the Tor anonymity system. In:
ACM Conference on Computer and Communications Security. (2012) 109–120

8. Kadianakis, G., Mathewson, N.: Obfsproxy architecture. https://www.

torproject.org/projects/obfsproxy (December 2011)
9. Appelbaum, J., Mathewson, N.: Pluggable transports for circumven-

tion. https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/

180-pluggable-transport.txt (October 2010)
10. Twitter: FAQs about Twitter’s link service. https://support.twitter.com/

entries/109623

11. Josefsson, S.: The base16, base32, and base64 data encodings. RFC 4648 (Proposed
Standard) (October 2006)

12. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol – HTTP/1.1 (1999)

13. Jacobs, I., Chisholm, W., Vanderheiden, G.: HTML techniques for web content
accessibility guidelines 1.0. Technical report, W3C (December 2000) http://www.
w3.org/TR/2000/NOTE-WCAG10-HTML-TECHS-20001106. Latest version available at
http://www.w3.org/TR/WCAG10-HTML-TECHS/.

14. Leech, M., et. al.: SOCKS protocol version 5 (1996)
15. PDFmyURL: Over usage (limited use). http://support.pdfmyurl.com/topic/

getting-help-overusage (October 2011)
16. Fifield, D., Allaire, A.: Ticket #7559: Registration via indirect URL request.

https://trac.torproject.org/projects/tor/ticket/7559 (March 2013)


