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Abstract. Near field communication (NFC) is a recent popular technology that
will facilitate many aspects of payments with mobile tokens. In the domain of
public transportation payment systems electronic payments have many benefits,
including improved throughput, new capabilities (congestion-based pricing etc.)
and user convenience. A common concern when using electronic payments is
that a user’s privacy is sacrificed. However, cryptographic e-cash schemes pro-
vide provable guarantees for both security and user privacy. Even though e-cash
protocols have been proposed three decades ago, there are relatively few ac-
tual implementations, since their computation complexity makes an execution on
lightweight devices rather difficult. This paper presents an efficient implemen-
tation of Brands [11] and ACL [4] e-cash schemes on an NFC smartphone: the
BlackBerry Bold 9900. Due to their efficiency during the spending phase, when
compared to other schemes, and the fact that payments can be verified offline,
these schemes are especially suited for, but not limited to, use in public trans-
port. Additionally, the encoding of validated attributes (e.g. a user’s age range,
zip code etc.) is possible in the coins being withdrawn, which allows for addi-
tional features such as variable pricing (e.g. reduced fare for senior customers)
and privacy-preserving data collection. We present a subtle technique to make
use of the ECDHKeyAgreement class that is available in the BlackBerry API
(and in the API of other systems) and show how the schemes can be implemented
efficiently to satisfy the tight timing imposed by the transportation setting.

1 Introduction

In the year 2011 about 52% of the world population lived in urban areas. It is antici-
pated that the urbanization trend is going to continue, leading to an expected 67% of
the population living in urban areas by the year 2050 [35]. This trend calls for well
functioning public transportation systems, to ensure the mobility of people and limit air
pollution in cities [32].
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thors and do not necessarily reflect the views of the NSF.



Use-based fees and payments allow the costs of transportation systems to be fairly
passed on to their users, facilitating revenue generation and user incentives. But, the
payment process for trips should not impact the smooth operation of a transportation
system. Hence, a payment needs to be executed quickly. This favors the use of electronic
payment systems, which can lead to a better throughput and greater user convenience
while at the same time allowing for congestion-based pricing. For the transportation
authority a further advantage of electronic payments is that they enable the collection
of meaningful data about customer behavior which helps to maintain and improve the
system. However, currently employed electronic public transportation payment systems
have suffered security attacks [20, 3], and they do not incorporate means to protect the
user’s (locational) privacy. For example it is reported that “in the period from August
2004 to March 2006 alone, the Oyster system was queried 409 times”[31], which shows
that location data about customers is collected and stored and later used by other agen-
cies. “Anonymous” cards are offered in some systems, but even with those cards user
privacy can be sacrificed. The reason is that there is a unique identifier assigned in each
card which makes payments made using the same card linkable. So a natural question
is how to get the best of both worlds: all the benefits of electronic payments in public
transportation systems but without sacrificing user privacy?

Cryptographic techniques make this possible. Electronic cash (e-cash) schemes al-
low secure and private electronic payments by providing similar security and anonymity
as physical cash. The general e-cash concept describes the interaction between three
types of entities: the bank, users, and shops. Monetary value is represented by elec-
tronic coins, which are pieces of data blindly signed by the bank. The bank is the only
entity able to generate coins. It issues coins to a user, who utilizes them to pay at a
shop. In an electronic coin its serial number as well as the identity of its possessing
user is encoded in a blinded fashion. During spending this serial number and the user’s
identity are not revealed. At a later point in time the shop deposits the coins that he
received from users to his bank account. During or after the deposit process the bank
checks, whether a deposited coin had been deposited before. If so the bank can also
check, whether a shop deposited the same coin twice, or whether a user double-spent
a coin, in which case his identity will be revealed. An important property of certain e-
cash schemes is that they support the encoding of users’ attributes into coins (i.e. user’s
age or zip code). This is very convenient for two reasons: (1) it allows the collection of
meaningful user data in order to analyze and improve the system in a privacy preserving
way (2) it allows to implement additional features in the system such as variable pricing
(e.g. reduced fares for senior customers).

This paper presents an implementation of several e-cash schemes that suit the trans-
portation setting on a smartphone which can be used as a potential payment device. To
satisfy the tight timing requirements imposed by the transportation setting, we choose
a payment device that can communicate with an access point in a contactless fash-
ion. A standard for contactless communication integrated in modern smartphones is
Near Field Communication (NFC) [1]. It allows a smartphone to communicate with
other NFC-enabled devices within a range of a few centimeters. While the through-
put is moderate, the benefit of this type of communication is its simple and hence fast
establishment, as electronic devices can be connected with a simple touch. There are



predictions that in the long run NFC devices will replace the multitude of smart cards
that many users carry around currently. For transportation authorities the advantage of
relying on users’ NFC-enabled smartphones, is that no additional (electronic) tokens
will have to be handed out. Instead only a software-app has to be provided that the user
can download to his phone. This contributes to decreasing the revenue collection cost,
and further allows the payment system to be updated easily. If a change to the system is
made, the transportation authority only needs to provide a software update, rather than
a hardware rollout.

Several attacks on NFC enabled mobile phones have been shown, yet most of them
target the use of passive tags [36, 28], while we make use of the card emulation mode
whose security greatly depends on its implementation (in our case the Blackberry Java
API). The main threats introduced by the NFC communication link include: eavesdrop-
ping, data corruption/modification or insertion, as well as denial-of-service attacks [22].
Eavesdropping is not so harmful for our system as intercepted data is of no use to an at-
tacker. This is because (1) no user information is sent, apart from user attributes, which
are assumed not to reveal private information and (2) if an attacker knew the represen-
tation of a user’s coin, he could not use it to pay for a trip, as knowing the user’s secret
key is required during the spending phase. An attacker could harm a user, by corrupting
or modifying sent data, and hence not letting him execute the payment. Preventing these
denial-of-service attacks is very hard as known from other contactless communication
links. Relay attacks are also considered a threat for NFC [36]. However, in the trans-
portation domain it is hard to realize them in practice since it would require an attacker
to bring one device in close proximity to the payment machine and another one in close
proximity to the user device, while additionally having access to the e-cash application
on the user device. The user interface and the NFC properties can prevent this attack
easily by deactivating the NFC functionality, which is a further benefit of relying on an
NFC smartphone rather than on contactless smart cards.

1.1 Related Work

E-cash In 1982, Chaum [15] was the first to propose the idea of an e-cash system that
allows anonymous, unlikable payments, which are secure against double spending in
the offline setting. Following Chaum’s paradigm many schemes were proposed [11, 16,
7, 12, 14]. The one due to Brands [11] is known for its efficiency during spending, how-
ever, a formal proof of security has never been given for it and it has been recently
shown that it cannot be proven secure in the Random Oracle model using currently
known techniques [5]. In 2001 Masayuki Abe proposed a three-move blind signature
scheme [2] that can be extended to e-cash, is only slightly less efficient compared to
Brands’ and has a proof of security in the RO model for concurrent composition. How-
ever, he later found together with Ohkubo that his proof suffered some restrictions, since
it was only valid for an adversary with overwhelming success probability, and they gave
a new proof in the generic model [29]. Very recently, Baldimtsi and Lysyanskaya pro-
posed Anonymous Credentials Light (ACL) [4], which extends Abe’s scheme to allow
the encoding of attributes into coins while preserving its efficiency. In contrast to Abe’s
proof, their proof of security goes through since they limit their attention to sequential
composition only.



Privacy-preserving Payment Schemes Sadeghi et al. [33] and Blass et al. [9] proposed
RFID-based, privacy-preserving e-ticket schemes for transit applications which are lim-
ited to only protect the users’ privacy against outsiders and not against the transporta-
tion authority. Pirker et al. described how to make use of certain hardware capabilities
of some mobile phones to build a secure, NFC-based, privacy-preserving, prepaid pay-
ment system [30], but the system requires the devices accepting a payment to be online
at all times. Heydt-Benjamin et al. [23] proposed the use of recent advances in anony-
mous credentials and e-cash to design offline privacy-preserving public transportation
payment systems. They consider a hybrid system with two kinds of tickets: passive
RFID transponders and embedded systems such as cell phones.
E-cash Implementations Implementations of anonymous credentials on Java cards
have been presented in [8] and [6]. Hinterwälder et al. presented an implementation
of Brands’ e-cash scheme for a computational RFID tag [24]. It is shown that it is
feasible to execute the spending part efficiently on the tag, while the execution of the
withdrawal part is still problematic. Derler et al. [19] implemented an NFC-based mo-
bile ticketing system, which is based on Brands’ private credential scheme. Execution
times of several seconds are achieved, which can be a limiting factor in some appli-
cation settings. Similarly, [18] presented a PDA implementation of an offline e-cash
scheme that is based on Brands’, which achieves an execution time of several seconds
for the withdrawal phase.

1.2 Contributions

The work at hand presents a detailed description of how to encode attributes in Brands’
e-cash scheme [11] and how to use ACL [4] for e-cash. Although the construction of
Brands’ e-cash was given in detail, it was never explicitly described how to use it com-
bined with attributes. We also explain how ACL [4] can be used as an e-cash scheme,
although it is pretty straightforward. The main contribution of this paper is that we
present NFC-smartphone implementations of: Brands’ scheme (with and without at-
tributes), Abe’s e-cash scheme (which does not support the encoding of attributes) and
ACL and we compare and evaluate the performance of those four different schemes
(Section 5). Our results are very promising: first of all we have fully realized the first ef-
ficient and practical implementation of e-cash in smartphones, and moreover, we show
that a provable secure e-cash scheme like ACL is actually practical and has running
time comparable to those of schemes without rigorous security proofs.

Our implementation is based on Elliptic Curve Cryptography (ECC), which is the
most efficient established public-key primitive. The device used is the BlackBerry Bold
9900, featuring a Qualcomm Snapdragon MSM8655 processor running at 1.2 GHz. It
is equipped with the operating system BlackBerry OS 7 and is programmed using Java
SDK API 7.1.0 provided by Research in Motion (RIM). We have developed a sub-
tle technique that enables us to use the ECDHKeyAgreement class for calculating the
scalar multiplication on an elliptic curve, which is present in this and other Java APIs.
While developed and shown for this device, the use of this technique is not limited to
the BlackBerry Bold 9900. It can be applied to devices that support efficient implemen-
tations of ECC, but only allow access to most commonly used results, as ECDH key
agreement or ECDSA (as for example some Java smart cards). While the ECDH key



agreement essentially executes a scalar multiplication, the APIs often only give access
to the x-coordinate of the resulting point, since only the x-coordinate is needed for the
ECDH key agreement. Our technique shows, how to efficiently recover the y-coordinate
for those cases. Using these techniques, we achieve execution times that meet real-world
requirements. Interestingly, our results show, that the computation necessary to execute
the different schemes can easily be handled by a device as the BlackBerry Bold, whereas
the component limiting the execution time is the NFC communication link.

Yet, this work is not limited to demonstrating and evaluating implementation results
of a theoretical concept. We also present several ideas of why e-cash fulfills the unique
requirements of transportation payment systems, and hence show how to make use of
efficient e-cash in practice.

2 Payment System Requirements of the Transportation Setting

Several features of the considered e-cash schemes are especially useful for the design
of a payment system that fulfills the requirements of transportation payments.
Verifying a Payment Offline We envision a scenario that is based on currently em-
ployed transportation payment systems, where a user buys fares at a vending machine
and pays at an entrance point of the transportation system. For example in the case
of buses it cannot be assumed that the device granting access to users is permanently
connected to the back-end system of the transportation authority. Yet, we assume tem-
porary connection to transfer the data of collected payments. Consequently, verifying a
payment needs to be possible in an offline fashion. This holds for the chosen schemes,
where a verification of the payment does not require access to the database. However, in
this case fraud cannot be detected at the time of the payment, as it requires comparing
the received data with the database. Alternatively the chosen e-cash schemes reveal a
crime after the fact, and allow a user to be penalized, when misusing the system.
Modular Payment System In case of multiple transportation authorities the e-cash
concept offers great convenience advantages for users, as it allows for multiple banks
and shops. A user does not need multiple payment devices to use different transportation
systems. Rather he can withdraw coins at one transportation authority TA1 and use them
to pay for a trip in the transportation system of TA2. Thus, TA1 would act as the bank
and TA2 as a shop. TA2 can later deposit the received coins to its account at TA1. This
is achieved, as no trust between shops and banks is assumed in the e-cash concept.
Different Denominations A transportation authority needs to offer different fare prices.
This can be accomplished by assigning a low monetary value to coins and letting the
user spend many coins to pay for a fare. Yet, spending many coins increases the ex-
ecution time of a payment which should remain low. In the e-cash sending we can
conveniently allow for different denominations of coins and thus reduce the number of
coins that need to be spent. One way to accomplish this is to have the bank possess
multiple public keys, one key for each possible denomination of coins.
Encoding Attributes The collection of user data is important to analyze and improve
the system in order to adapt it to customer needs1. However, the collection of data

1 For example the number of elevators that should be provided at a station could be planned
better, when knowing, how many people require wheelchair accessibility.



should be done in a way that wouldn’t sacrifice a user’s privacy. With the use of e-
cash this can be achieved by encoding attributes into coins. Those attributes allow the
user to reveal some information, as for example his zip code, while keeping further
information hidden, and hence hiding his identity. Apart from private data collection,
encoding attributes into coins allows for private variable pricing. The system could
require the users to encode specific information like their age and then, when the coin
is spent, compute the right fare according to the presented attributes.

3 E-cash with Attributes

In this section we describe how e-cash with attributes works and we provide instantia-
tions based on Brands’ e-cash scheme [11] and ACL [4]. The descriptions are tailored to
match the transportation setting but can be easily adopted for other settings as well. To
our knowledge this is the first time that an explicit description of how Brands and ACL
schemes can be used as e-cash schemes with attributes is given. Although at the end
we will compare the implementation results of Brands with attributes, Brands without
attributes, ACL and Abe’s e-cash (which is essentially ACL without attributes), here we
will only provide the detailed construction of the attribute supporting schemes. In our
descriptions we will point out the differences between the attribute and the correspond-
ing non-attribute version.

A transportation payment system based on e-cash is described as an interaction
between three kinds of players: the transportation authority TA (with vending machines
that are connected to its database), the users of the system U and the payment machines
M that are placed at the entrance points and, after receiving a valid payment, grant a
user access to the transportation system.
Setup. During the setup phase the transportation authority (or another trusted authority)
generates the public parameters for the system together with the TA’s secret key.
Account opening. Initially, users need to register with the TA and open an account. To
do so, a user U, would have to present some form of identification (e.g. a passport) to
the TA and provide a cryptographic commitment C for a set of attributes (L1, . . . , Ln)
that are required for the system and for his public key pkU = gskU . The attribute types
and their order are determined by the TA during the setup of the system. A possible
setting is to use attribute L1 for the user’s secret key (skU = L1), L2 for his age, L3

for his zip code etc. For the transportation setting we assume that revealing attributes in
clear is good enough and does not violate user’s privacy 2.
Withdrawal. Whenever U wants to withdraw coins from a vending machine, he first
needs to prove ownership of his account and then he runs the withdrawal protocol. In
order to prove ownership of his account, we require U to form a digital signature (i.e. a
Schnorr signature [34]) on a message that describes the number of coins he wishes to
withdraw and include some kind of timestamp. This is useful for two reasons: (1) the TA

2 If there is need for extra privacy we could require for all attributes that are revealed during the
spending phase to be binary attributes i.e. L2 equals 0 if the user is more than 18 and less than
65 years old and 1 otherwise (used for age discounts). This way we avoid range proofs which
are rather costly. Besides, for the transportation setting binary attributes would work rather
well, given that we need the attributes mainly for variable pricing or private data collection.



can easily identify the user by checking whether the signature is valid under the user’s
public key and (2) it provides an extra level of security against a man-in-the-middle who
may intercept the communication and try to withdraw more coins. Note that depending
on the protocol the adversary may not be able to actually spend these coins (since he
needs the user’s secret key to execute the payment protocol). However, he can still hurt
U by reducing his account balance. Alternatively, we could require the execution of the
identification phase for every single coin withdrawn but this is obviously less efficient
than identifying U once for all the coins he wishes to withdraw.
Spending. In order for a user U to spend a coin at a payment machine, U runs the spend-
ing protocol as described in the corresponding e-cash system. Moreover, he might be
asked (by the system) to reveal some of his attributes. When a User reveals an attribute
Lj he can either send the attribute value in clear or provide a proof of knowledge of
that attribute. Note that in both cases he needs to prove that the attribute he reveals is
the same one he committed to during the account opening phase.
Deposit. The payment machines present the spending transcript to the TA. Here, an
extra mechanism, called double spending detection, is required to protect the TA against
cheating users. The double spending detection is executed off-line in order to detect and
penalize users, who spent the same coin more than once. In order for double spending
detection to be possible, the TA needs to preserve a special database where all the
deposited coins are stored. Obviously we cannot assume that all the coins are stored
there forever, thus, we need to introduce some kind of coin expiration date after which
the coin will be deleted from the database. This could be done either by having the
expiration date encoded as an attribute in the coins (so the user would have to prove
that the coin is still valid during spending) or by changing the TA’s public key (i.e. once
a year) and setting older coins invalid.

3.1 Brands’ E-cash with Attributes

We describe how Brands’ e-cash scheme [11] can be modified to support the encoding
of users’ attributes. The main differences between the attribute and the non-attribute
version can be found in the account opening and the spending phases (when attributes
are revealed). The actual withdrawal protocol is essentially the same.
Setup. The TA (or another trusted authority) picks a group G of prime order q, gen-
erators h, g, g1, . . . , gn, where n is the maximum number of attributes needed for the
system, and a hash function H : {0, 1}∗ → Z∗q . The public key of the TA is y = gx,
where x ∈ Zq is its secret key.
Account Opening. The account opening procedure of Brands with attributes is pre-
sented in Table 1. When a user U wants to open an account with the TA, he first presents
an identification document to the TA and then encodes his attributes (L1, L2, . . . , Ln
∈ Zq) into a commitment I3. The value L1 (which is not revealed to the TA) serves
as the user’s secret key. His public key is pkU = gL1

1 . Then, U provides a proof of
knowledge π that he knows the opening of the commitment I and that the same value

3 Obtaining these attributes can be done similar to a credential system. A user would either have
to reveal his attributes to the TA when committing to them or obtain them from some other
trusted authority and then prove knowledge of them to the TA.



L1 has been used to generate I and pkU . The proof π can be computed as a standard
Schnorr AND proof of knowledge of several discrete logarithms [34, 25]. Upon receiv-
ing π, I, pkU , the TA checks the validity of the proof, stores the user’s information
and computes z = (Ih)x which is send to U. The corresponding protocol for Brands
without attributes only requires the user to prove knowledge of his secret key.

Table 1: Brands’ with Attributes Account Opening Protocol
TA(y = gx) U(pkU = gL1

1 )

I = gL1
1 . . . gLn

n

π = PK{(Λ1, . . . , Λn) :

I/pkU = gΛ2
2 . . . gΛn

n ∧ pkU = gΛ1
1 }

Verify π
I,pkU ,π←−−−−−−−− If Ih 6= 1

Store identifying information
of U together with I
z = (Ih)x

z−−−−−−−−→ Store z

Withdrawal. To withdraw k coins, U first has to identify himself to the TA by proving
knowledge of his secret key and then claiming how many coins he wants to withdraw.
These two actions can be achieved simultaneously by computing a Schnorr signature
[34] σ(m) on a message m of the form: m =“# of coins + time/date”. The TA will
authorize the user to perform the withdrawal, if the signature validates under the user’s
public key and there are sufficient funds in his account. Then the user runs the with-
drawal protocol k times, once for each coin he withdraws (Table 2).

Table 2: Brands’ with Attributes Withdrawal Protocol
TA(y = gx) U(pkU = gL1

1 )

w ∈R Zq , a = gw, b = (Ih)w
a,b−−−−−−−−−−→ s ∈R Z∗q , A = (Ih)s, z′ = zs

x0, x1, . . . , xn, u, v ∈R Zq
B = Ax0gx11 . . . gxnn
a′ = augv , b′ = bsuAv

c′ = H(A,B, z′, a′, b′)
c←−−−−−−−−− c = c′/u mod q

r = cx+ w mod q
r−−−−−−−−−−→ gr

?
= yca, (Ih)r ?

= zcb
r′ = ru+ v mod q

For each coin, U needs to store the values:A,B, sign(A,B)=̂A,B, z′, a′, b′, r′ together
with s and the values x0, x1, . . . , xn, where sign(A, b) is essentially a blind Chaum-
Pedersen signature [17]. In order to verify the signature one needs to check whether:
gr
′
= yc

′
a′ andAr

′
= z′c

′
b′. Note that the basic difference of Brands withdrawal when

using attributes is found in the computation ofB since you need to pick as many random
values xi as the number of attributes in the scheme and compute B = Ax0gx1

1 . . . gxn
n .

Those random values xi will be used later, during the spending phase in order for the



user to prove knowledge of his attributes. For Brands withdrawal without attributes the
value B is computed as B = gx1

1 gx2
2 : only two random values x1 and x2 are required

and it will be used for proving knowledge of user’s secret key in the spending phase.
Spending. When U spends a coin to M (with identifying information IM) the spending
protocol is executed. In Table 3 we present Brands spending protocol when supporting
the encoding of but not revealing any attributes. During this phase the user presents the
coin: A,B, sign(A,B) to M and also proves knowledge of the representation of A (i.e.
U proves knowledge of his attributes). After the transaction and if the signature verifies
(i.e. the coin is valid), M saves the payment transcript consisting of A,B, sign(A,B),
(R, r1, . . . , rn) and the time stamp date/time.

This protocol is significantly less efficient compared to Brands e-cash without at-
tributes, since the user needs to prove knowledge of the representation of A, which now
includes n+1 exponents. For Brands without attributes the user only needs to compute
r1 and r2 to prove knowledge of his secret key.

Table 3: Brands’ with Attributes Spending Protocol when not Revealing Attributes
U(pkU = gL1

1 ) M

A,B,sign(A,B)
−−−−−−−−−−−−→ A

?

6= 1

r1 = −dL1 + x1 mod q
d←−−−−−−−−−−−− d = H0(A,B, IM, date/time)

. . .
rn = −dLn + xn mod q

R = d/s+ x0 mod q
(R,r1,...,rn)−−−−−−−−−−−−−→ gr11 . . . grnn h−d

?
= A−RB

Verify sign(A,B)

What if U additionally wants to reveal an attribute, say Lj , during the spending
protocol (remember that we assume that attributes are revealed in clear)? In order to
reveal Lj , U does not need to compute rj , when receiving the value d from M. Instead,
he sends the attribute value Lj together with its blinding value xj in his response to
M, which is shown in Table 4. Thus, revealing a larger number of attributes reduces the
user-side’s computation, but increases the amount of data that U sends to the payment
machine M.
Deposit. In order to deposit a coin, M submits the payment transcript to the TA. The
TA first checks the validity of the coin (i.e. it verifies sign(A,B) and checks whether
gr11 . . . grnn h−d

?
= A−RB) and then queries the database, where all deposited coins are

recorded, to check whether this coin had been deposited before. This double spend-
ing check does not need to happen during the deposit phase. The TA could run it at
specific time intervals for all the coins in the database. If the deposited coin had not
been recorded in the database before, the TA will store (A, d,R, r1, . . . , rn) in her
database. However, if the coin had been recorded, it means that it was spent twice
by U (we assume that the payment machines in our system are trusted and will not
try to submit the same coin twice: yet, this could easily be checked by storing the
payment machine’s identification IM together with each coin that is stored). If a coin
had been double spent the identity of the cheating user can be revealed by computing:



Table 4: Brands’ with Attributes Spending Protocol when Revealing the Attribute Lj
U(pkU = gL1

1 ) M

A,B,sign(A,B)
−−−−−−−−−−−−→ A

?

6= 1

r1 = −dL1 + x1 mod q
d←−−−−−−−−−−−− d = H0(A,B, IM, date/time)

. . .
rj−1 = −dLj−1 + xj−1 mod q
rj+1 = −dLj+1 + xj+1 mod q
. . .
rn = −dLn + xn mod q

R = d/s+ x0 mod q
(R,r1,...rj−1,rj+1,...,rn)(Lj ,xj)−−−−−−−−−−−−−−−−−−−−−→ gr11 . . . g

−dLj+xj
j . . . grnn h−d

?
= A−RB
Verify sign(A,B)

I = g
(r1−r′1)/(R−R

′)
1 . . . g

(rn−r′n)/(R−R
′)

n which was stored together with some identi-
fying information of U during the account registration phase.

3.2 ACL E-cash with Attributes

The ACL scheme [4] is a recent, very efficient “linkable” 4 anonymous credential sys-
tem, which was constructed on top of Abe’s blind signature scheme [2]. It is straight-
forward to use a “linkable” anonymous credential scheme in order to describe e-cash
with attributes since coins are essentially “single-use” credentials. In this section we
explicitly describe how the ACL scheme can be used as e-cash with attributes. Note
that Abe’s blind signature scheme itself is immediately an e-cash scheme (without at-
tributes though) and has been described in the past [2]. Thus, as mentioned above, we
will not provide a detailed description of Abe’s scheme; instead we will just point out
the differences while describing ACL.
Setup. The setup phase of ACL e-cash is similar to the original ACL scheme. The TA
chooses a group G of order q, a generator g and a hash function H : {0, 1}∗ → Zq . It
also picks z, h, h0, h1, h2, . . . hn ∈R G, where n is the maximum number of attributes.
The secret key of the transportation authority is x ∈R Zq , the public key is: y = gx and
z is the “tag public key”.
Account opening. When a user U with attributes (L2, . . . , Ln), secret key L1 ∈R Zq
and public key pkU = hL1

1 wants to open an account at the TA he presents a valid
identification document and commits to his attributes and public key, as shown in Table
5. For each User the TA stores: pkU , C/pkU and a copy of his identification document.
U also needs to store the randomness R that corresponds to his commitment C.
Withdrawal. To withdraw k coins from his account U first identifies himself to the
transportation authority (similar to Section 3.1). Then U runs the ACL blind signature
protocol k times (Table 6) once for every coin.

After each execution of the withdrawal protocol, U obtains a coin= (ζ, ζ1, ρ, ω, ρ
′
1,

ρ′2, ω
′), which he stores together with rnd, τ and γ. Note that he omits to compute and

4 In a “linkable” anonymous credential system a user can only use a credential once if he does
not want his transactions to be linkable.



Table 5: ACL with Attributes Account Opening Protocol
TA(y = gx, z) U(pkU = hL1

1 )

R ∈R Zq , C = hR0 h
L1
1

∏n
i=2 h

Li
i

π = PK{(P,Λ1, . . . , Λn) :

Check π
C/pkU ,pkU ,π←−−−−−−−−−−− C/pkU = hP0 h

Λ2
2 . . . hΛn

n ∧ pkU = hΛ1
1 }

Store identifying information
of U together with C

Table 6: ACL with Attributes Withdrawal Protocol
TA(y = gx, z) U(pkU = hL1

1 )

rnd ∈R Zq, z1 = Cgrnd, z2 = z/z1
u, c′, r′1, r

′
2 ∈R Zq

a = gu, a′1 = gr
′
1zc
′

1 , a′2 = hr
′
2zc
′

2

rnd,a,a′1,a
′
2−−−−−−−−−−−−→ z1 = Cgrnd, γ ∈R Z∗q

ζ = zγ , ζ1 = zγ1 , ζ2 = ζ/ζ1
τ ∈R Zq , η = zτ

Check whether a, a′1, a′2 ∈ G
t1, t2, t3, t4, t5 ∈R Zq
α = agt1yt2 , α′1 = a′γ1 g

t3ζt41
α′2 = a′γ2 h

t5ζt42
ε = H(ζ, ζ1, α, α′1, α′2, η)

c = e− c′ mod q
e←−−−−−−−−−−−− e = (ε− t2 − t4) mod q

r = u− cx mod q
c,r,c′,r′1,r

′
2−−−−−−−−−−−−−→ ρ = r + t1 mod q

ω = c+ t2 mod q
ρ′1 = γr′1 + t3 mod q
ρ′2 = γr′2 + t5 mod q
ω′ = c′ + t4 mod q

store the value µ of the original ACL scheme. Instead, during the spending phase (Table
7), he computes µp to “bind” the coin to a specific transaction. For each withdrawn coin,
the TA stores z1 together with the public key of U that this coin corresponds to (z1 is
going to be used to reveal the identity of the user in case of double-spending). The
withdrawal of Abe’s e-cash is essentially the same.
Spending. U releases the coin to the merchant together with εp and µp. The spending
protocol for ACL e-cash and Abe’s e-cash is identical and presented in Table 7.

In order for a user U to also reveal an attribute Lj during spending, he will have
to execute the Revealing Attribute Lj protocol (Table 8) additionally to the Spending
protocol. In this protocol he needs to prove that the attributes on his initial commitment
correspond to the attributes encoded in the withdrawn coin (i.e. in value ζ1). In other
words, the user needs to provide a proof of equality of committed values under different
commitment keys and bases [25], for a new commitment C’ that the user computes for
the attribute Lj and ζ1 in which the attributes are encoded.



Table 7: ACL with Attributes Spending Protocol
U(pkU = hL1

1 ) M

εp = H(zτ , coin, desc) desc←−−−−−−−−−−− desc = H(IM, date/time)

µp = τ − εpγ mod q
εp,µp,coin

−−−−−−−−−−−→ ζ
?

6= 1

εp
?
= H4(z

µpζεp ,coin,desc) mod q
ω + ω′

?
= H(ζ, ζ1, gρyω, gρ

′
1ζω

′
1 , hρ

′
2ζω

′
2 , zµpζεp) mod q

Table 8: ACL with Attributes Revealing the Attribute Lj Protocol
U(pkU = hL1

1 ) M

recall ζ1 = hRγ0 hL1γ
1 . . . hLnγ

n grndγ

rnd′ ∈R Zq
C′ = h

Ljγ

j grnd
′γ

= h
Ljγ

j 1Rγ1L1γ . . . 1Lj−1γ1Lj+1γ . . . 1Lnγgrnd
′γ

r, r′, r0, . . . , rn ∈R Zq
ζ̃1 = hr00 . . . hrnn gr

C̃′ = 1r01r1 . . . h
rj
j . . . 1rngr

′

c = H(ζ1, ζ̃1, C′, C̃′, date/time)
s0 = r0 + cRγ
s1 = r1 + cL1γ
. . .
sn = rn + cLnγ
s = r + c rnd γ

s′ = r′ + c rnd′ γ
Lj ,ζ1,ζ̃1,C

′,C̃′,s0,...,sn,s,s
′

−−−−−−−−−−−−−−−−−−→ c = H(ζ1, ζ̃1, C′, C̃′, date/time)

ζ̃1ζ
c
1

?
= hs00 . . . hsnn gs

C̃′C′c
?
= 1s01s1 . . . h

sj
j . . . 1sngs

′

From a theoretical point of view the user side of the spending protocol of ACL (Ta-
ble 7), when supporting the encoding but not revealing attributes, is more efficient than
the one of Brands’ scheme (Table 3), since, following the trick that was first suggested
by Abe [2], the user only needs to compute the updated µp value for the coin verifica-
tion instead of proving knowledge of all his attributes. In practice this depends on the
relative cost for executing modular arithmetic in Zq compared to the hash function and
the communication cost.
Deposit. During deposit, the payment machine M sends the coin as well as εp, µp, desc
and the date and time of the transaction to the TA which verifies that both the coin is
valid and desc correctly encodes date/time and IM . Double spending can be checked
later in an off-line fashion. In order to do that the TA needs to check whether a coin
has been deposited with two different desc and desc′. In this case we will have (εp, µp)
and (ε′p, µ

′
p) and the TA can calculate: γ = (µ′p−µp)/(εp− ε′p) and z1 = ζ

1/γ
1 , the TA



can find the user to whom z1 was given and “punish” him. A useful observation is that
in the ACL scheme, when a user is found cheating, his identity can be revealed without
the TA learning his secret key and attribute values. From a privacy point of view this is
much better, since the user does not need to form a new secret key and commit to his
attributes all over again, after getting “punished” by the TA .

4 Framework Implementation

We will now describe important aspects of our implementation. In our measurement
setup the terminal, which represents the vending as well as the payment machines,
is composed of a personal computer and an OMNIKEY smart card reader from HID
Global that is connected to the computer via USB. The user’s payment device is repre-
sented by a BlackBerry Bold 9900, featuring NFC-capabilities. The BlackBerry Bold
9900 is programmed using the BlackBerry Java SDK API 7.1.05 provided by RIM.

4.1 Near Field Communication (NFC) Framework

All aspects of NFC are specified in ISO/IEC standards. We use the card-emulation mode
provided by the BlackBerry API, in which the NFC-smartphone emulates a standard-
conform smart card. Building the payment system on standard appliances, makes it
conform to already installed payment infrastructure and hence facilitates deployment.
The underlying standard of the card emulation mode is ISO/IEC 14443-A. This stan-
dard describes the communication signal interface of contactless smart cards, operating
at 13.56 MHz with a bandwidth of 106 kbit/s. Both the Java SDK API 7.1.0 of the
BlackBerry device, and the JRE 6 System Library of the terminal support this standard.

Data is exchanged between the terminal and the smart card using so called Ap-
plication Protocol Data Units (APDUs). The reader initializes the communication by
sending a command APDU to the smart card. The smart card executes this command
and replies with a response APDU. This communication procedure is specified in stan-
dard ISO/IEC 7816-4. Note that the size of an APDU is limited to 256 bytes, which
impacts the execution time of the protocols, as will be discussed further in Section 5.

4.2 Cryptographic Framework

We base the schemes on Elliptic Curve Cryptography, and deduce from [10] that a 160-
bit elliptic curve presents sufficient security for a micro-payment system. We chose the
standardized curve secp160r1 from [13]. The underlying prime field of this curve Zp is
based on a generalized Mersenne prime p = 2160−231−1, which allows for an efficient
implementation of the curve arithmetic. On the terminal side we use the Bouncy Castle
Crypto Library version 1.56. This library provides a general elliptic curve framework
supporting the use of many different curves. A dedicated implementation of the elliptic
curve functionality for the terminal’s hardware could lead to a better performance of the

5 http://www.blackberry.com/developers/docs/7.1.0api/
6 http://www.bouncycastle.org/



execution of the payment schemes and is realistic in the transportation setting. However,
our investigations focus on the execution of the protocols on the user device and the
communication of the protocols, which is why we chose to use a standard library for
the terminal side’s implementation.

The representation of finite field elements differs in the CryptoInteger class on the
BlackBerry and the BigInteger class that the Bouncy Castle library on the terminal is
based on. While BigInteger is a signed variable CryptoInteger is unsigned, which has
to be regarded during the conversion between those two types. The data is sent as byte
arrays over the NFC communication link, where an element in Zp is represented as an
array of 20 bytes. Since the size of the byte-array representation of the integer values
can be shorter than the designated 20 bytes, we pad with leading 0x00, when receiving
an element.

The BlackBerry API 7.1.0. supports the curve secp160r1. As such, an implemen-
tation of the ECDH key agreement based on this curve is provided by the API. Yet,
the BlackBerry API does not implement all functionality necessary for the implementa-
tion of the proposed e-cash schemes, and hence had to be extended. Point addition and
doubling were implemented in Java making use of the modular arithmetic functionality
provided in the BlackBerry API. The implementation method to execute the scalar mul-
tiplication efficiently is described in detail in the following. Note, the implementation
is customized for the curve secp160r1, but could easily be adapted to all other curves
supported by BlackBerry API since version 3.6.0, which range from 160- to 571-bit
curves5.

Efficient Execution of EC Scalar Multiplication Using the ECDH Key Agreement
An implementation of the scalar multiplication Qk = k·P in Java, making use of the
modular arithmetic functionality provided in the BlackBerry API, leads to an execution
time for the scalar multiplication of about 141 ms. Fortunately, the API contains the
ECDHKeyAgreement class. This class offers the method generateSharedSecret, which
executes a scalar multiplication of the input point P = (xP , yP ) with the input scalar
k. This method executes in 1 ms, but only returns the x-coordinate xQk

of the resulting
point Qk. In the protocols of the considered payment schemes multiple point multi-
plications have to be executed. Hence, knowledge of the y-coordinate yQk

of Qk is
essential for further computations.

This drawback can be overcome. Going from the short Weierstrass equation (y2 =
x3 + ax+ b), on which the chosen elliptic curve is based, the magnitude of yQk

can be

calculated as yQk
=
√
x3Qk

+ axQk
+ b mod p.7 This results in two options for the

resulting point Qk:

Qk = (xQk
,±yQk

)

{
Q

(+)
k = (xQk

,+yQk
)

Q
(−)
k = (xQk

,−yQk
)

(1)

To choose the correct option (Q(+)
k or Q(−)

k ) for Qk we verify yQk
over the coherence

Qk+1 = Qk+P = (k + 1)·P . We pick the positive result +yQk
and calculate the

7 Algorithm 3.36 in [27] describes how to calculate the square root in Zp, if p ≡ 3 mod 4,
which holds for the chosen curve.



x-coordinate of Q(+)
k+1 by adding Q

(+)
k and P , using the group law for point addition

on an elliptic curve [21]

x
(+)
Qk+1

=

(
+yQk

− yP
xQk
− xP

)2

− xP − xQk
mod p. (2)

Then we check whether the result is equal to the x-coordinate of Qk+1 returned when
executing the generateSharedSecret function on (k + 1) and P . While this algorithm,
which is summarized as Algorithm 4.1, executes the generateSharedSecret method
twice and calculates a square root in the prime field Zp, it still achieves a major speed-up
in execution time, when compared to the Java implementation based on the arithmetic
functionality that is provided in the BlackBerry API, i.e. yields an execution time of
around 4 ms.

Algorithm 4.1: Recovering the y-coordinate, when using the ECDH key agree-
ment class for point multiplication

Data: input point P , input scalar k
Result: x- coordinate and y-coordinate of resulting point Q = (xQ, yQ)

1 begin
2 xQk ← generateSharedSecret(k, P )
3 xQk+1 ← generateSharedSecret((k + 1), P )

4 ±yQk =
√
x3Qk

+ a · xQk + b mod p

5 x
(+)
Qk+1

=
(

+yQk
−yP

xQk
−xP

)2
− xP − xQk mod p

6 if xQk+1 == x
(+)
Qk+1

then
7 return (xQk ,+yQk );
8 else
9 return (xQk ,−yQk );

5 Implementation Results and Evaluation

The time critical phases of the e-cash schemes are the withdrawal and especially the
spending phase, as those have to be executed frequently, whereas the account opening
only happens once for each user (or once per year, when creating new public keys of
the system each year). We limit the discussion of our results to those time critical parts.

The results for the execution of the withdrawal and the spending phase for all
schemes are presented in the Tables 9 and 10 respectively. We present two cases: I)
Brands’ e-cash scheme, when not allowing, and Abe’s scheme, which does not allow,
the encoding of attributes, and II) Brands’ scheme and ACL when allowing the encod-
ing of two attributes and revealing both of them. Note that the private key of the user
is not counted as an attribute, i.e. he encodes two attributes L2 and L3 additionally to



his private key L1. Of course, our implementation could support a bigger number of at-
tributes if the transportation system requires so, but keep in mind that there is a trade-off
between the number of attributes and the spending time.

Table 9: Execution time of withdrawal per coin for I) Brands and Abe not supporting
attributes and II) Brands and ACL supporting the encoding of and revealing 2 attributes.

Scheme
Execution time in milliseconds

Terminal Communication Smartphone Total

I) Without attributes
Brands 66.1 45.1 123.8 235

Abe 93.6 69.6 137.5 301

II) With attributes
Brands 73.2 44.1 128.7 246

ACL 93.6 69.9 137.5 301

Table 10: Execution time of spending per coin for I) Brands and Abe not supporting
attributes and II) Brands and ACL supporting the encoding of and revealing 2 attributes.

Scheme
Execution time in milliseconds

Terminal Communication Smartphone Total

I) Without attributes
Brands 58.8 96.8 1.4 157

Abe 79.3 81.0 10.7 171

II) With attributes
Brands 87.3 114.8 2.0 204

ACL 151.2 221.4 11.4 384

Figure 1 illustrates those results, where the execution times of the different proto-
cols have been summarized to: Terminal all computation executed on the terminal side,
Communication execution time of the entire communication, and Smartphone all com-
putation executed on the BlackBerry smartphone. In our implementation all steps are
executed serially, i.e. while waiting for the terminal the execution on the smartphone is
suspended. This resembles the execution on a standard smart card. Due to the extended
capabilities of the smartphone, computations on the smartphone and the terminal could
be parallelized, which would lower the total execution time. For example could the TA
in the withdrawal protocol of ACL send the number rnd to the user right after gen-
erating it. Then while the TA calculates a, a′1 and a′2 the user could at the same time
calculate z1, ζ, ζ1 and ζ2.

An advantage of the ACL scheme is that for the revealing attributes phase (Table
8) the values C ′, ζ̃1, C̃ ′ can be precomputed, which has been realized for the imple-
mentation at hand. The computation time for those precomputed values is 39 ms and
is not included in the results. By doing so the total execution time for spending a coin
of all schemes does not exceed 400 ms, which is close to the acceptance threshold for
spendings in the transportation domain, which is 300 ms[31]. Hence, the implementa-
tion shows that it is feasible to spend a coin meeting the extreme time constraints of the
transportation setting. Spending several coins serially exceeds those time constraints.
Yet, the execution time could be further reduced by batching the executions that are
required for spending several coins.
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Fig. 1: Execution times of the (a) withdrawal and (b) spending protocols for the cases I)
not supporting attributes and II) supporting the encoding and revealing 2 attributes.

While the terminal side is represented by a powerful computer the execution of a
scalar multiplication on the terminal takes longer than on the BlackBerry device; on
the BlackBerry an execution of the point multiplication takes 4 ms, whereas on the
computer it takes 6 ms. As mentioned in Section 4 we focus on the execution time on
the payment device and of the communication. The implementation results could be
improved when not relying on a Java implementation for the terminal side, which is a
realistic scenario, since the TA has full control over those devices.

Surprisingly, a limiting factor for the execution of the different protocols is the card
emulation mode supported by the BlackBerry device. The communication bandwidth is
limited to 106 kbits/sec, while the maximum bandwidth supported by the NFC standard
is 424 kbits/sec. An additional deceleration limits the practical bandwidth on the appli-
cation layer to 62.5 kbit/s. Since the communication plays an integral part in the execu-
tion of the spending protocol, a faster communication could significantly improve the
execution timings (Figure 1). Moreover, the length of an APDU is limited to 256 bytes.
For some protocol steps data had to be sent using two APDUs. Hence, the overall exe-
cution time could be improved when allowing longer APDUs.

A further observation is that the computational complexity of Brands’ spending
protocol, when allowing attributes, decreases the more of them are revealed. Yet, at the
same time the data to be communicated increases. For our implementation the increase
in data that needs to be communicated, dominates the change in execution time. This
could be different for other platforms, where the communication plays a less important
role in the overall execution time of the protocol.

Table 11 shows the coin size for each of the schemes, i.e. the data that needs to
be stored on the user device for each coin. Since for the ACL scheme C ′, ζ̃1, C̃ ′ have
been precomputed, they need to be stored together with rnd′ on the device as part of
the coin. If storage space would be more critical in comparison to the execution time,
those values could be computed on-the-fly when spending a coin, which would lead to
the same storage amount for a coin as in Abe’s scheme, but longer execution times.

In the following we will estimate the database requirements for our e-cash based
transportation payment system. We base our estimations on the Massachusetts Bay
Transportation Authority (MBTA) system. The MBTA reports an average ridership of



Table 11: Coin size (per coin data stored on user device) for the cases I) Brands and
Abe not supporting attributes and II) Brands and ACL supporting 2 attributes.

Scheme Coin Elements Coin Size
in bytes

I) Without attributes
Brands A,B, z′, a′, b′, r′, s, x1, x2 289

Abe ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, τ, γ 229

II) With attributes
Brands A,B, z′, a′, b′, r′, s, x0, x1, x2, x3 331

ACL ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, τ, γ, rnd, rnd′, C′, ζ̃1, C̃′ 394

1.28 million trips per day for February 2013 [26]. In the case of Brands’ e-cash with
attributes scheme the TA needs to store the values A, d, (R, r1, . . . , rn) for each coin
in the database, in order to detect double-spending at a later point in time. Assuming
the encoding of two attributes, this results in 146 bytes per coin or average 178 MB
per day that need to be stored in the database. In the case of ACL the TA has to have
two databases. One stores the values z1 together with the public key pkU of a user for
each withdrawn coin and another one that stores ζ1, desc, εp and µp for each spent coin
(186 bytes per coin or 227 MB per day). Managing large databases does not primar-
ily depend on the number of data records and the size of the related storage. It greatly
depends on the complexity of the search-and-join algorithm. In our case the database
just has to operate with primary-key related search requests – in the case of Brands’
scheme it is the 21 byte value A. Executing the search-and-join algorithm to add a set
of 1.28 million data records to a database that has 1 billion entries should be executable
within a couple of minutes.

6 Conclusion

Brands’ [11], Abe’s [2] and ACL [4] e-cash are all suitable payment schemes for use
in public transport, due to their efficiency during the spending phase. While the ACL
scheme is a little less efficient than Brands’ with attributes, it is the only practical e-cash
with attributes that comes with a formal proof of security. This paper presented an ex-
plicit description of e-cash with attributes for both Brands’ [11] and ACL [4] schemes.
Further it presented a full implementation of Brands’ with and without attributes, Abe’s
and ACL on a BlackBerry Bold 9900. We proposed a method that allows the use of the
ECDHKeyAgreement class of the BlackBerry API to calculate the point multiplication,
by recovering the y-coordinate of the resulting point, which led to transaction times
that meet real-world requirements of transportation payment systems for all considered
schemes. Surprisingly, a limiting factor of the transaction is the NFC communication
bandwidth. Phones equipped with Android release, 4.0 (Ice Cream Sandwich, ICS) or
higher can easily be extended with Spongy Castle, the repackage of Bouncy Castle for
Android. It does support EC key generation, ECDH key exchange and ECDSA signa-
tures. Yet, when using this class the execution of the generateSharedSecret function on
the Samsung Galaxy S3 is much slower than the presented results on the BlackBerry
Bold 9900. As part of future work use of the Android NDK can be investigated to reach
the timing requirements of the transportation setting.
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