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Abstract. Location privacy has been extensively studied over the last
few years, especially in the context of location-based services where users
purposely disclose their location to benefit from convenient context-
aware services. To date, however, little attention has been devoted to
the case of users’ location being unintentionally compromised by others.
In this paper, we study a concrete and widespread example of such sit-
uations, specifically the location-privacy threat created by access points
(e.g., public hotspots) using network address translation (NAT). Indeed,
because users connected to the same hotspot share a unique public IP, a
single user making a location-based request is enough to enable a service
provider to map the IP of the hotspot to its geographic coordinates, thus
compromising the location privacy of all the other connected users. When
successful, the service provider can locate users within a few hundreds of
meters, thus improving over existing IP-location databases. Even in the
case where IPs change periodically (e.g., by using DHCP), the service
provider is still able to update a previous (IP, Location) mapping by
inferring IP changes from authenticated communications (e.g., cookies).
The contribution of this paper is three-fold: (i) We identify a novel threat
to users’ location privacy caused by the use of shared public IPs. (ii) We
formalize and analyze theoretically the threat. The resulting framework
can be applied to any access-point to quantify the privacy threat. (iii)
We experimentally assess the state in practice by using real traces of
users accessing Google services, collected from deployed hotspots. Also,
we discuss how existing countermeasures can thwart the threat.

1 Introduction

With the ubiquity of mobile devices with advanced capabilities, it is becoming
the norm for users to be constantly connected to the Internet; users can benefit
from many online services while on-the-go. Among others, location-based ser-
vices (LBSs) are increasingly gaining popularity. With an LBS, users share their
location information with a service provider in return for context-aware services,
such as finding nearby restaurants. Users also enjoy sharing location information
with their friends on social networks (e.g., Facebook and Twitter) [26].

� Parts of this work were carried out while Vincent Bindschaedler was with EPFL.



Although very convenient, the usage of LBSs raises serious privacy issues.
Location privacy is a particularly acute problem as location information is valu-
able to many parties, because much of information can be inferred from users’
locations (e.g., users’ interests and activities). Location information is essential
for many online service providers [13], especially for those whose business models
revolve around personalized services. A prominent example is online advertising,
an ever-increasing business with large revenues (e.g., $22.4 billion in the US in
2011 [28]), as so-called location-specific ads based on the location information
are significantly more appealing to users [20].

Typically, users willingly disclose their location only to LBS providers. Yet,
non-LBS providers can obtain users’ locations through IP-location: determining
the location of a device from its IP. Existing IP-location services rely either on (i)
active techniques, typically based on network measurements [21], or (ii) passive
techniques, consisting of databases with records of IP-location mappings [19,
24]. Active techniques provide more accurate results, however they incur high
measurement overhead and a high response time (in the range of several seconds
to several minutes) to localize a single IP. A passive approach is usually much
faster and thus preferred by service operators. A number of IP-location databases
are available, either free (e.g., HostIP [19]) or commercial (e.g., MaxMind [24]).
Some databases contain records of landmark IPs for which the location can be
inferred (e.g., institutions [37] or websites that post their location [17]) and other
IPs are geolocated relatively to these landmarks. However, they provide at most
a city-level accuracy and most of the entries refer only to a few countries [27].
For instance, MaxMind reports to correctly geo-locate, within a radius of 40 km,
81% of IP addresses in the US and 60%-80% in Europe. This level of accuracy
is effective for regional advertising but is not sufficient for local businesses (e.g.,
bars) which require neighborhood or street-level accuracy [20]. Thus, major Web
companies, including Google, are actively working on improving IP-location3.

Service providers can also obtain a user’s location via transitivity, relying on
users to disclose their location and that of others in their vicinity: if a provider
knows the location of user B and that user A is close to B, the provider knows
roughly the location of A. Such situations arise when users report neighboring
users (e.g., Bluetooth), or check-in on online social networks (OSNs) and tag
friends they are with. In some cases, even if the proximity information is not
directly revealed by users, a provider can still infer it, as we will show.

In this paper, we study a location-privacy threat users are exposed to on a
daily basis. When a user connects to the Internet through the same access point
(AP) as other users (e.g., a public hotspot, home router) who make LBS queries,
the service provider learns the user’s location. Indeed, because all of the devices
connected to a public hotspot, implementing network address translation, share
the AP’s public IP, when users generate LBS queries, the service provider learns
the location of the AP and maps it to the AP’s public IP. IPs remain the same
for a certain amount of time, thus for any connection for which the source IP

3 Google reports an accuracy of 95% at the region-level and 75% at the city-level, with
high variance across countries, and seeks to improve it to the street-level [14].



is the same as the AP’s IP, the service provider can conclude that the device is
located nearby the location of the AP. The accuracy of the estimated location
depends on the range of the AP (typically under one hundred meters) and on the
accuracy of the locations reported by users in LBS queries (typically under ten
meters with GPS-geolocation). Thus, it is significantly more accurate than the
existing IP-location databases. The fact that the threat is based on observing
the user’s IP, which might be inferred, e.g., by using a Java applet [25], even
when the client tries to hide it, makes the threat even more difficult to evade.

The (IP, Location) mapping the adversary obtains for the AP stays valid
until the IP changes. Dynamic IP addresses (provided that IPs are allocated
to geo-diverse hosts), short DHCP leases, and systematic assignment of new
IPs upon DHCP lease expiration therefore have a positive effect on location
privacy. However, even when the IP is renewed and changes, service providers
have means to learn about the IP change, for example, due to the widespread
use of authenticated services (e.g., e-mails, OSNs). Consider a user connected
to the AP who checks her e-mail shortly before and after an IP change. As a
unique authentication cookie is appended to both requests, the service provider
can conclude that the same user has connected with a new IP and can therefore
update the (IP, Location) mapping with the new IP. In fact, it is sufficient that
the service provider is able to link the requests to the same user, based on cookies,
user agent strings, or any fingerprinting technique, e.g., [39].

The contribution of this paper is three-fold: (i) We identify the location-
privacy threat that arises from the use of shared public IPs. Because the problem
is inherent in the way networks (i.e., NAT) operate and its wide deployment,
the potential impact of the threat is significant. The expected accuracy of lo-
cating affected users is about few hundreds of meters. (ii) We formalize and
analyze the problem theoretically and we provide a framework to estimate the
location-privacy threat, namely the probability of a user being localized by a
service provider. The framework is easily applicable to any access point setting:
it employs our closed-form solution and takes as input an AP’s parameters (i.e.,
a few aggregated parameters, such as user connection and traffic rates, that
can be extracted from logs) and it quantifies the potential threat. It is a light-
weight alternative to extensive traffic analysis. The framework thus constitutes
a valuable input to model sporadic location exposure. (iii) We evaluate experi-
mentally the scale of the threat based on real traces of users accessing Google
services, collected for a period of one month from deployed hotspots. Even at a
moderately visited hotspot, we observe the large scale of the threat: the service
provider, namely Google, learns the location of the AP only about an hour after
users start connecting and within 24 hours he can locate up to 73% of the users.
Finally, we discuss how existing countermeasures could thwart the threat. To
the best of our knowledge, this is the first paper that addresses the problem of
users’ locations being exposed by others at NAT access points.



2 Background

In this section, we provide relevant background on the technical aspects under-
lying the considered problem.

IPv4 (public) Address Allocation. To communicate on the Internet, hosts
need public IP addresses. An IP can be either static, i.e., permanently fixed, or
dynamic, i.e., periodically obtained from a pool of available addresses, typically
through the Dynamic Host Configuration Protocol (DHCP). Dynamic IP is used
for a limited amount of time specified by the DHCP lease. For convenience, upon
DHCP lease expiration, hosts are often re-assigned the same IP. A large-scale
study shows that over one month, less than 1% of the hosts used more than one
IP and less than 0.07% used more than three IPs [4]. More than 62% of dynamic
IPs on average remain the same over a period of at least 24 hours [38].

Network Address Translation (NAT). NAT hides an entire IP address
space, usually consisting of private IPs, behind one or several public IPs. It
is typically used in Local Area Networks (LANs), where each device has a pri-
vate IP, including the gateway router that runs NAT. The router is connected
to the Internet with a public IP assigned by an ISP. As traffic is routed from the
LAN to the Internet, the private source IP in each packet is translated on-the-fly
to the public IP of the router: traffic from all of the hosts in the LAN appears
with the same public IP–the public IP of the NAT router. A study shows that
about 60% of users are behind NATs [4].

Geolocation. Mobile devices determine their positions by using their embed-
ded GPS or an online geolocation service. With a GPS, the computation takes
place locally by using satellites’ positions and a time reference. Commercial GPS
provides highly accurate results (< 10 meters) [35], especially in “open sky” en-
vironments. With online geolocation services (e.g., Skyhook) a device typically
shares the list of nearby cell towers and Wi-Fi APs together with their signal
strengths, based on which the server estimates the device’s location by using a
reference database. Such databases are built mostly by GPS-equipped mobile
units that scan for cell towers and Wi-Fi APs and plot their precise geographic
locations. Inputs of users with GPS-equipped devices, who provide both their
positions and the surrounding stations, are also taken into account. Reported
accuracy of such systems is about 10 meters [32].

3 System Model

In this section, we elaborate on the considered setting, notably NAT access
points, the location-privacy threat, and the adversary.

3.1 Setting

We consider a NAT Access Point setting, a prevalent network configuration,
where users connect to the Internet through an access point (AP), such as a



public hotspot, a home (wireless) router or an open-community Wi-Fi AP (e.g.,
FON), as depicted in Fig. 1. An AP, located at (x1,y1), is connected to the
Internet by a given ISP and provides connectivity to the authorized users. The
AP has a single dynamic public IP that is allocated with DHCP by the ISP: The
AP’s public IP is selected from a DHCP pool of available IPs and is valid during
the DHCP lease. When connecting to the AP, each device is allocated a private
IP and the AP performs network address translation (NAT). Consequently, on
the Internet, all connections originating from the devices connecting through the
AP have the same source IP, which is the public IP of the AP.

While connected to the Internet through an AP, users make use of various
online services including search engines, e-mail, social networks, location-based
and online geolocation services. Services can be used either in an authenticated
(e.g., e-mail) or unauthenticated way (e.g., search). We consider that the requests
a server receives from the devices connected to the AP are of the following types:

1. Geolocation requests: Geo-Req(MACs), where MACs refer to the MAC ad-
dresses of the APs and cell towers in the range of the device;

2. LBS requests: LBS-Req((x0, y0)), where (x0, y0) denotes the coordinates of
the device4 (assumed close to the AP’s location (x1, y1)) shared by the user;

3. Authenticated standard (i.e., that are neither LBS nor Geolocation) requests:
Auth-Req(tok), where tok represents any information that allows for user
authentication or linkability of user requests (e.g., a cookie or a username);

4. Unauthenticated standard requests: Req().

With LBS requests, the service provider obtains the user’s location under several
forms and by different means. The user can specify her location in free-text
(e.g., “bars close to Park and 57th, NYC”) or by pin-pointing her location on a
map. The location can also be determined by the user’s device using one of the
techniques described in Section 2 and communicated to the service provider by a
mobile application or by her browser through the HTML 5 getCurrentPosition
JavaScript function. Note that non-LBS applications and websites might access
the user’s location as well.

Both Geo-Req and LBS-Req contain an estimate of the AP’s coordinates, thus
they both enable the server to build the (IP, (x1, y1)) mapping. Consequently,
there is no need to distinguish between these two types of requests, and we
simply refer to both as LBS requests. For all types of request, the server knows
the source IP, specifically the AP’s public IP.

3.2 Adversary and Threat Models

We consider an adversary whose goal is to learn users’ current locations, for in-
stance, to make a profit by providing geo-targeted (mobile) ads and recommen-
dations (e.g., a private company). The adversary has access to the information

4 We assume that all LBS requests concern users’ actual locations, or that the server
has means to distinguish between such requests and other LBS requests. It is the
case when the location is obtained directly (see Section 2), and sent to the server.
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Fig. 1. System and threat model. Devices connect through a NAT access point and
share a public IP. A user making an LBS request reveals her location (close to the AP)
to the adversary (1) who then builds the (IP,Location) mapping (2). When another
user connects to a different server controlled by the adversary (3), the adversary uses
the (IP,Location) mapping to locate her as she connects with the same IP (4).

collected by a number of servers that provide online services described above.
Companies, such as Google for instance, provide Web search (Google), e-mail
(GMail), social networking (Google+), and geolocation and location-based ser-
vices (Maps). As such, it receives requests of the four types and consolidates the
information obtained [15]. The extent to which these services are used is exac-
erbated by their deep integration in the Android operating system. In addition,
Google has an advertising network and thus has a strong incentive to obtain and
monetize information about users’ locations. As a matter of fact, Google is ac-
tively working on improving its IP-location based on users’ traffic, in particular
by mining queries associated with location (e.g., “best burgers NYC”) [14].

Microsoft (with Bing, Hotmail, Bing Maps, and Windows Phones) and Apple
(with iCloud and iPhone) are other relevant potential candidates for the consid-
ered adversary. Besides these major companies, an alliance of service providers
can be envisioned to jointly build an IP-location database: each provider con-
tributes IP-location records of its visitors with known locations and benefits
from the database for the IPs of users connecting from unknown locations. This
joint effort can be coordinated by an ad network that is common to the partici-
pating service providers. This approach extends the potential of the threat as it
increases the set of potential adversaries: it alleviates the need for each service
to receive all three types of requests and a significant fraction of user traffic.

In this paper, we focus on the case where the adversary has access to all four
types of requests. The adversary is assumed to be honest-but-curious, meaning
that he passively collects information but does not deviate from the specified
protocol (e.g., implementing active techniques to retrieve users’ locations).
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Fig. 2. AP’s IP address renewal and updating of the (IP, Location) mapping. A user
generates an authenticated request (with a unique cookie) during a DHCP lease interval
in which the adversary has obtained the (IP, Location) mapping, shortly before the
DHCP lease expires and the AP is assigned a new IP. Shortly after the IP change, the
same user generates another authenticated request (with the same cookie) from the new
IP. As both requests occurred in a short time interval, the adversary can infer that the
AP’s IP changed from 82.63.142.34 to 82.63.140.25 and update the mapping.

Given such an adversarial model, we consider the threat of the adversary who
learns the location of a user without it being explicitly disclosed: The threat
comes from the fact that the adversary can build mappings between an AP’s
IP and its geographic coordinates based on LBS requests he receives from other
users connected to the AP. Because all requests (from devices connected through
the AP) share the same public IP, the adversary can subsequently infer the
location of the other users. More specifically, considering the example depicted in
Fig. 1, when the LBS provider’s server (controlled by the adversary) receives an
LBS request for position (x0, y0), which is the actual position of the user (located
close to the AP) determined by her GPS-equipped mobile phone, the server
can map the AP’s public IP (i.e., 82.63.142.34) to the approximated AP’s
location (i.e., (x1, y1)≈ (x0, y0)). Note that the accuracy of the AP’s estimated
location depends on the GPS accuracy of the user-reported location and the
range of the AP. Later, when another user, connected through the AP, makes a
request to a server (also controlled by the adversary), then the adversary exploits
the obtained mapping and infers from the source IP that the second user is at
the same location (i.e., (x1, y1)). The adversary can subsequently provide geo-
targeted ads. If the adversary is interested in tracking users, he can locate any
user who makes an authenticated request before the IP changes.

We assume that the IP addresses in the DHCP pool can be assigned to clients
at very distant locations [10]. For instance, some nation-wide ISPs (e.g., SFR
in France) assign IPs among the whole set of their clients scattered all over the
country. Consequently, the fact that the AP’s public IP is dynamic limits in



time the extent of the threat: If the AP is assigned a new IP by the ISP, the
mapping built by the adversary becomes invalid, unless he is able to infer the
IP change. The inference can be based on authenticated requests as depicted in
Fig. 2: A request, authenticated by cookie john@dom.com and originating from
IP 82.63.142.34, is shortly followed by a request authenticated by the same
cookie but originating from a different source IP (i.e., 82.63.140.25). There
are two options: either the AP’s IP has changed or the user has moved and is
now connected from a different AP. If the inference time interval (delimited with
diamonds in Fig. 2) around the IP renewal is short enough, then the adversary
can infer, with high confidence, that the IP has changed and its new value.

In summary, the problem we study is as follows. Considering a single AP, time
is divided into intervals corresponding to DHCP leases, during which the AP’s
public IP address remains the same. At a certain point in time, the adversary
knows the location of the AP associated to the IP because (i) a user made an
LBS request earlier in the time interval or (ii) the adversary knew the location
corresponding to the public IP address from the previous interval and a user
made an authenticated request shortly before and after the public IP address
was renewed. The location-privacy threat is to be evaluated with respect to
the number of users whose locations are known by the adversary. In the case
of geo-targeted mobile ads, the adversary needs to know the location of the
user when the user makes a requests: the victims are therefore the users who
make a standard request after the adversary learns the (IP, Location) mapping
(during the same DHCP lease). If the adversary is interested in tracking users,
he can maintain a log of the users who connected during a DHCP lease and sent
requests, and locate them a posteriori if he learns the (IP, Location) mapping
at some point during the same DHCP lease: the victims are the users who make
an authenticated request during a DHCP lease in which the adversary learns
the (IP, Location) mapping. In this paper, we evaluate the threat with respect
to an adversary who aims to exploit current location information through geo-
targeted ads. However, it is possible to mount more powerful attacks on users’
privacy (e.g., track users over time) based on the identified threat.

4 Formalization and Analysis

In this section, we model the aforementioned setting and we build a framework
to quantify theoretically the location-privacy threat.

4.1 Model

We consider an access point AP, an honest-but-curious adversary A, and a set
of users who connect to AP and make requests to servers controlled by A. We
study the system over the continuous time interval [0,+∞). At each time instant
t, AP has a single public IP. Every T time units, starting at time 0, the DHCP
lease expires and AP is either re-assigned the same IP or allocated a new one. We
model this by independent random variables drawn from a Bernoulli distribution:



with probability pNew AP is assigned a new IP, and with probability 1− pNew it
is re-assigned the same IP. We divide time into successive sub-intervals Ik, k ≥ 0,
of duration T , corresponding to the DHCP leases: Ik = [kT, (k + 1)T ]. Without
loss of generality, we assume the duration of IP leases to be constant. Each sub-
interval is aligned with a DHCP lease. Therefore, within each sub-interval AP ’s
public IP remains unchanged. For any time instant t, we denote by t̄, the relative
time within the corresponding sub-interval, that is t̄ = t mod T .

Users connect to AP, remain connected for a certain time and then dis-
connect. While connected, users make requests, each of which is of one of the
following types: LBS, authenticated, or standard. All modeling choices in this
section follow well-established conventions [30]–e.g., Poisson processes are known
to fit well users arrival and access to services–and are backed up by several public
Wi-Fi hotspot workload analysis (e.g., [11]). In addition, we assess the validity
of these assumptions by using traffic traces, collected from a deployed network
of access points, in [36]. We model users who arrive and connect to AP by a
homogeneous Poisson process with intensity λArr. We denote the time users stay
connected to AP by TDur, which follows an exponential distribution with average

1
λDur

. We assume the system to be stationary with respect to user connections
and disconnections. Based on Little’s law [30], the average number of connected
users at any time instant t is constant and given by: NCon = λArr/λDur.

Users generate requests independently of each other. For each user, the three
types of requests she makes are also independent: Standard and authenticated
requests are modeled by independent homogeneous5 Poisson processes with in-
tensity λStd and λAuth, respectively. We assume that each user makes a request
when she connects to AP. For instance, e-mail or RSS clients automatically con-
nect to a server when an Internet connection is available. We assume that only a
proportion αLBS of the users make LBS requests, and we model such requests by
independent homogeneous Poisson processes with intensity λLBS for each user.

Fig. 3 depicts the user arrivals, departures, standard and LBS request pro-
cesses and illustrates the key notations and concepts introduced in this section.

4.2 Threat

We first focus on a single sub-interval and quantify the location-privacy threat,
with respect to the number of users whose locations are disclosed to the adversary
because of others. Specifically, we call a victim a user who makes a standard
request at a time at which the adversary knows the (IP, Location) mapping.

Quantifying the threat in a sub-interval. If at least one user connected to
AP uses an LBS at some time instant (thus revealing her current location), A
obtains the (IP, Location) mapping based on which it can locate other users.

We define the compromise time TComp as the first time within the sub-
interval, when a user connected to AP uses an LBS. If such an event does

5 We use homogeneous Poisson processes for simplicity. A model using inhomogeneous
processes with piece-wise constant intensity is available as a technical report [36].
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Fig. 3. Threat caused by a user making an LBS request. Ai and Di represent User
i’s arrival and departure, respectively. Users 1 and 4 are already present at time kT .
The time at which the first LBS request is made (LBS5) is called the compromise time
(TComp). From time TComp on, any user who makes a standard request is a victim.
Users already connected at TComp are victims if they make a standard request after
TComp, e.g., User 4. Users who connect after TComp are, de facto, victims as users make
a standard request when they connect, e.g., User 7.

not occur, the compromise time is equal to T . At any time, there are on av-
erage NCon users connected to AP, out of which αLBSNCon potentially make
LBS queries. The aggregated process of LBS requests is a Poisson process with
intensity ΛLBS = αLBSNConλLBS. Therefore, the expected compromise time is

1
ΛLBS

(1 − e−ΛLBST ). We call FComp(t̄) the probability that at least one LBS
query (from the aggregated process) is made before time t̄ in the sub-interval
and fComp the corresponding probability density function. The time interval
that spans from the compromise time to the end of the sub-interval is called the
vulnerability window (see Fig. 3) and the expected value of its duration W is

E [W ] = T − 1− e−ΛLBST

ΛLBS
. (1)

Fig. 4 depicts the cumulative distribution function of the compromise time and
its average value in an example setting. We observe that even with moderate AP
popularity and LBS usage, the adversary obtains the mapping before the DHCP
lease expires in 83% of the cases and he does so after 11 hours on average.
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Fig. 4. Cumulative distribution function of the compromise time TComp (expressed in
hours). The parameters were set to T = 24 h, λArr = 5 users/h, λDur = 1/1.5 (i.e.,
average connection time of one hour and a half), λLBS=0.05 req./h, and αLBS=0.2.



To compute the number of victims, we distinguish between two groups of users:
those who were already connected when the first LBS request was made, e.g.,
User 6 in Fig. 3, and those who connected during the vulnerability window (and
are, de facto, victims as they make a standard request when they connect), e.g.,
User 7. We call V the number of victims. It can be shown that (see [36]):

E [V ] =
NConΛLBSλStd

(λStd + λDur)− ΛLBS
·
[
1− e−ΛLBST

ΛLBS
− 1− e−(λStd+λDur)T

(λStd + λDur)

]
+

λArr

(
T − 1− e−ΛLBST

ΛLBS

)
. (2)

This number has to be compared to the average number of users who have been
connected at some point within the sub-interval: Vtot = NCon+λArrT . It can be
seen in Fig. 5 that the proportion of victims E [V ] /Vtot increases with T . This is
because all users who connect after the compromise time are victims. When the
DHCP lease expires, the location of more than half of the users is compromised.
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Fig. 5. Proportion of victims within a sub-interval of length T , corresponding to a
DHCP lease. The parameters were set to: λArr = 5 users/h, λDur = 1 (i.e., average
connection time of one hour), λStd=10 req./h, λLBS=0.05 req./h, and αLBS=0.2.

Inferring IP change. We consider two successive sub-intervals, without loss
of generality I0 and I1, and we look at the linking probability FLink that the
adversary infers the IP change from authenticated requests. This occurs if at
least one user makes both an authenticated request at most ΔT time units
(ΔT < T/2) before, and another authenticated request at most ΔT time units
after, the IP change. An expression of the probability FLink of inferring the IP
change can be derived by distinguishing between the users who were connected
at time T −ΔT and those who connected within [T −ΔT, T ] (see [36]).

The linking probability can be thought of as depending both on t and ΔT .
Fig. 6a depicts the linking probability as a function of t. It remains constant
for t ≥ T +ΔT because only authenticated requests made in the time interval
[T −ΔT, T +ΔT ] are taken into account to infer the IP change. Note that with a
value of ΔT as small as 5 minutes, which provides high confidence, the adversary
can still infer the IP change with a probability of 43%.



Fig. 6b depicts the linking probability at time T +ΔT as a function of ΔT .
It can be observed that this probability rapidly converges to 1. Note that the
fact that linking probability increases with ΔT is balanced by the decreased
confidence of the adversary. This is because the probability that a user makes
two authenticated requests from two distinct access points in the time interval
[T −ΔT, T +ΔT ] (moving from one to the other) increases with ΔT .
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Fig. 6. Linking probability. The parameters were set to λArr=5 users/h, λDur=1/1.5,
λStd=10 req./h, λLBS=0.05 req./h, λAuth=2 req./h, and αLBS=0.2.

Quantifying the threat over multiple sub-intervals. We now look at the
probability (FMap) of the adversary having the mapping, which is a combination
of the probabilities that the compromise happens due to LBS usage (FComp)
and the probability of having the mapping and inferring the IP change upon the

lease expiration (FLink), over successive sub-intervals. The probability F
(k)
Map(t)

that the adversary knows the mapping at time t ∈ Ik, k ≥ 1 is

F
(k)
Map(t̄) = FComp(t̄)+(1−FComp(t̄))·F (k−1)

Map (T )·((1− pNew) + pNewFLink(t̄)) (3)

with initial condition F
(0)
Map(t̄) = FComp(t̄). From Equation (3), it can be seen

that F
(k)
Map(T ) obeys the following recursive equation:

F
(k)
Map(T ) = a+ bF

(k−1)
Map (T )

where a = FComp(T ) and b = (1 − FComp(T )) · ((1− pNew) + pNewFLink(T )).

This recursive equation has a(1− bk+1)/(1− b) as a solution. As b < 1, F
(k)
Map(T )

converges to a finite value, i.e., a/(1− b).
The number of victims in the sub-interval Ik can be computed by replacing

the density fComp with the density of F
(k)
Map in the derivation of Equation (2)

(see [36]). The probability that the adversary has the mapping (IP, Location)

at time t in sub-interval Ik, i.e., F
(k)
Map is illustrated in Fig. 7. It can be observed



that the mapping probability increases over time and, after the convergence, the
adversary successfully obtains the mapping before the DHCP lease expires in
79% of the cases and before the half-lease in 60% of the cases.
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Fig. 7. Probability of knowing the (IP, Location) mapping at time t over several sub-
intervals. The solid curve represents the probability of knowing the mapping at time
t. The dashed curve represents the probability of obtaining the mapping from an LBS
request. The dotted curve represents the probability of inferring the IP change. The
parameters were set to λArr = 5 users/h, λDur = 1/1.5, λStd = 10 req./h, λLBS =
0.035 req./h, λAuth = 0.2 req./h, T = 24 h, ΔT = 2 h, αLBS = 0.1, and pNew = 1.
To highlight the respective contributions of the linking and compromise probabilities,
some values differ from our previous setting (e.g., ΔT ). In the first sub-interval, the
linking probability is zero and the probability of having the mapping is the compromise
probability. In subsequent sub-intervals, the probability F

(k)
Map(t) increases due to the

potential inference of IP changes: it becomes a combination of FLink(t̄) and FComp(t̄)
(and the probability of having the mapping by the end of the preceding sub-interval).

5 Experimental Results

In this section, we complement our theoretical analysis with experimental results
based on traces from a network of Wi-Fi access points deployed at EPFL.

Dataset. Our dataset consists of daily user Wi-Fi session traces, traffic traces
and DNS traces for a period of 23 days in June 2012. We aggregate the data of
two APs (in a cafeteria and a library) located very close to each other (∼15 me-
ters), to emulate a single popular hotspot and to avoid side effects of micro-
mobility, i.e., devices frequently changing the AP they are connected to.

Session traces contain information related to users connecting and discon-
necting from the APs, obtained from the RADIUS logs. There are three types
of RADIUS events: (i) start – upon successful authentication the device is as-
signed an IP denoting the beginning of a session; (ii) update – a periodic status
message; and (iii) stop – a user disconnects denoting the end of the session.
Each log entry contains a timestamp, the device’s anonymized MAC address
(i.e., encrypted with a key that is changed daily), the assigned IP, the ID of the
AP the device is connected to, and an event type.



Traffic traces are obtained from the logs at a border router connecting the
network to the Internet. Each log entry contains a timestamp, the source IP,
and the destination (including the IP and port). The mapping between a user’s
assigned IP and her MAC address allows to correlate traffic with session traces.

DNS traces are obtained from the local DNS servers. Each log entry contains
a timestamp, the source IP and the requested host name. Based on the source
IPs, timestamps and requested resources, we correlate DNS with traffic traces.

In total, 4,302 users connected to the AP during 23 days. Users typically
begin arriving around 7:AM. The average number of users connected to the AP
over a day (averaged over 23 days) increases during the day and peaks around
6:PM (136 users on average). Very few users are connected after midnight.
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Fig. 8. Average number of std., auth. and LBS requests to the monitored services over
a day (averaged over 23 days). For readability reasons, LBS traffic is multiplied by 10.

We filtered traffic to a number of Google services (including e-mail, search,
LBS, analytics, advertising) and classified each request (i.e., standard, LBS, or
authenticated) based on the destination IP, port and DNS requests. Details
about the monitored services and the classification methodology can be found
in citeRR. We sanitized the traffic data beforehand by appropriately grouping
traffic traces into user-service sessions. To do so, we correlated traffic and DNS
requests. This was possible because DNS replies for Google services are cached for
a relatively short time (i.e., TTL of 300 seconds), and therefore a traffic request
is very often preceded by a DNS request. Consequently, a request accounts for a
user-service interaction, regardless of how much traffic the interaction generates.

Traffic to the monitored services (in terms of the number of user-service ses-
sions) constitutes about 17% of the total traffic generated at the AP and 81.3%
of users who connected have accessed at least one of the services. The average
numbers of standard, authenticated and LBS requests (i.e., user-service interac-
tions) during a day to the monitored services are depicted in Fig. 8. Standard
requests are prevalent, followed by authenticated requests. The moderate usage
of LBS can be explained with the location of the APs: most of the users visit this



area almost on a daily-basis, therefore the need for location-based information
is expected to be low. In our dataset, 9.5% of users generate LBS requests.

Results. First, we measure the compromise time and the proportion of victims
based on the traces from our dataset. We compare the averaged experimental
results with those from our theoretical analysis (Fig. 9). For the theoretical
analysis, we use our framework with the parameters extracted from the real
traces: λArr=14.54 users/h and an average connection time of 2.17 hours (λDur=
1/2.17), obtained from the session traces; and traffic rates of λStd=28.3 req./h,
λAuth =14.6 req./h and λLBS =0.16 req./h (with αLBS =0.095), obtained from
the traffic traces. Because the theoretical model assumes a homogeneous user
arrival rate, we compute the expected proportion of victims and compromise time
as if the arrival process spanned from 7:30:AM–the time at which a significant
number of users start connecting to the AP in our traces–to 7:PM. It can be
observed that although the model does not capture the time-of-the-day effects of
the user arrival and traffic processes, the theoretical and experimental expected
proportions of victims match when considering the entire period of a day.
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We observe that around 8:AM (7:42AM estimated with our theoretical anal-
ysis and 8:25AM with our experimental results), only 1 hour after users typically
start connecting to the AP, users’ location privacy is compromised. By the end
of the day, about 73% of the users who connected through the AP were com-
promised, out of which 90.5% did not make any LBS request (αLBS = 0.095).
With respect to the number of users who use Google services the proportion of
victims actually corresponds to 90%. Thus, the result shows that Google is able
to learn the location of 90% of its users who connect from the AP.

Once the adversary obtains the (IP, Location) mapping, it can maintain
it over time by relying on authenticated requests to infer the IP changes upon
DHCP lease expirations, as discussed in Section 4. Using traces from our dataset,
we compute the probability of the adversary inferring the IP change for different
renewal times during a day, considering the authenticated requests made at most
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Fig. 10. Linking probability (i.e., probability of inferring the IP change) as a function
of the renewal time, for different inference time window lengths (ΔT ).

ΔT minutes before and after the IP is changed. We consider three different
values, ΔT =1, ΔT =5 and ΔT =10 minutes, and show the results in Fig. 10.
Even with the smallest inference time window of 1 minute, the adversary can
infer the IP change with the probability 1 between 2:PM and 5:PM. With higher
values of ΔT the time during which the adversary can infer with probability 1 is
even longer, i.e., from 11:AM to 7:PM with ΔT =10. However, the adversary’s
confidence decreases with larger ΔT . During the periods with less traffic (e.g.,
from 11:PM to 6:AM), the probability of the adversary inferring the mapping is
smaller (less than 0.2) in all the cases. Between 5:AM and 6:AM, the adversary
cannot infer the IP change, as there is no traffic during this time.
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Fig. 11. Cumulative number of victims at AP during the whole experiment, for three
different IP renewal times (the IP is changed every time the lease expires, pNew=1).

To further confirm the importance of the IP renewal time and its effect on the
adversary’s success, we plot the cumulative number of victims compromised at
AP during three weeks, depending on the IP renewal time (Fig. 11). We setΔT =



5 minutes and we consider the renewal times at 5:AM, 4:PM and 8:PM, when
the adversary is expected to be least successful, most successful and moderately
successful, respectively. Indeed, from the results in Fig. 11, we confirm that the
highest number of users (3,545 out of 4,302 users) is compromised when the IP
renewal is at 4:PM, followed by 8:PM (3,149 victims). The adversary is least
successful when the IP renewal is at 5:AM (compromising 2,879 users).

6 Countermeasures

Cryptographic primitives are efficient at protecting users’ privacy, but because of
the way networking protocols operate, they might not be sufficient, in particular,
when the private information is the source IP address.

Hiding users’ actual source IPs from the destination (i.e., the adversary) is a
straightforward countermeasure against the considered threat and can be done
in several ways. In relay-based anonymous communications, a user’s traffic is
forwarded from the source to the destination by several relay nodes, in a way
that the destination cannot know the user’s source IP. Examples of such net-
works include Tor [8], mix networks [5,7], or simple HTTP proxies. With Virtual
Private Networks (VPNs), the user is assigned an IP that belongs to a remote
network (e.g., a corporate network or commercial/public VPN). To the adver-
sary, the user’s requests appear to originate from within the remote network,
whose location is different from that of the user. Unfortunately, such techniques
are not widely adopted, especially in the case of mobile communications [34].
In addition, several techniques exist to identify the source IP of a client, even
behind a NAT or a proxy, e.g., by using a Java applet [25].

Alternatively, these countermeasures can be implemented by ISPs, for in-
stance, by deploying a country-wide NAT that aggregates traffic from all their
subscribers at several gateways (e.g., Telefonica [33], Swisscom Hotspots) or by
IP Mixing [29]. This also applies to operators of AP networks (e.g., Starbucks,
AT&T Wi-Fi). However, they might lack incentives to implement such solutions.

Another approach to thwart the threat consists in degrading the knowledge
of the adversary, by reducing the accuracy of the reported location and by in-
creasing the uncertainty about the AP’s location. Examples of location privacy
enhancing technologies (PETs) reducing adversary’s accuracy include spatial
cloaking [2, 16] and adding noise to reported locations [1]. To increase adver-
sary’s uncertainty, [22] proposes to inject “dummy” requests, i.e., not related
to users’ locations. It is not easy for users to deploy these PETs, because some
geolocation requests are implemented in operating systems, that can be con-
trolled by the adversary (e.g., Google Android). Moreover, when these PETs are
implemented in a non-coordinated fashion, the adversary might still be able to
infer the actual location by filtering out requests that stand out from the bulk
(increasing its certainty) and averaging the remaining requests (increasing its
accuracy). Better results might be achieved if the AP operators implement the
location-privacy preserving mechanisms, but they might lack incentives to do so.



Finally, as highlighted by our analysis, various other countermeasures can
be implemented by the ISP or the AP’s owner: reduce the DHCP lease, always
allocate a new IP, trigger the IP change when the traffic is low (e.g., at 5:AM
as suggested by our experimental results) or purposely impose silent periods
around the renewal time (reducing the probability that the adversary infers the
IP change from authenticated requests). Unfortunately, all these techniques have
a negative effect on the quality of service and impose a significant overhead in
network management. Thus, they are unlikely to be deployed in practice. Besides
technical countermeasures, we envision a “Do-not-geolocalize” initiative, similar
to “Do-not-track” [9], letting users to opt-out of being localized.

7 Discussion

Scale and implications of the threat. The threat enables an adversary to
build an IP-location system, to obtain (at least) sporadic user locations and
to profit from delivering location-targeted information when users access the
services. However, we can also envision a different type of adversary, whose goal
is to mount more powerful attacks on user privacy. In fact, once the adversary
has access to sporadic user location, he is able to reconstruct entire trajectories,
produce patterns of user-movement habits, or infer other information about the
user, e.g., users’ real identities, interests and activities. For example, in [31] it is
shown how an adversary that observes each user’s sporadic locations (that could
be noisy and anonymized) can de-anonymize the users, compute the probability
that a given user is at a given location at a given time, and construct users’ full
trajectories. By using various techniques, it has been shown that users can be
identified by inferring where they spend most of their time (notably their home
and workplace) [3,12,18,23]. In these cases, the identified location-privacy threat
can serve as a building block that enables other, more powerful attacks.

In this paper, we focus on how an adversary can obtain the sporadic user-
location information that is needed for commercial needs of service providers.
Other attacks that are enabled by this location-privacy threat are beyond the
scope of this paper and are largely addressed by the research community, as
previously discussed. However, our work provides a framework that can be used
to quantify sporadic location exposure upon which the community can build.

Business opportunities. The presented (IP, Location) mapping technique can
be used as a novel IP-location solution potentially improving on existing solu-
tions [27, 37]. Service providers, such as Google, can build and monetize this
service by simply utilizing user traffic they receive. Additional advantages of
this approach are that it does not require a dedicated infrastructure or network
measurements. Such a system can be used on its own, or as a complementary to
the existing ones. Because ISPs control the IP allocation and can prevent service
providers from building the mapping (using the aforementioned countermeasure)
they can make a profit by selling IP locations to service providers (e.g., Verizon
in the US [6]) – some ISPs sell geographic information on the topology of their
networks [25] – or by selling privacy-protection services to users.



8 Conclusion

In this paper we have presented a practical threat, demonstrating that the loca-
tion privacy of users connecting to access points can be compromised by others.
The scale of the threat is significant because it leverages on the way most net-
works are designed (i.e., NAT). When successful, the service provider can locate
users within a few hundreds of meters, i.e., more accurately than existing IP-
location databases. Our theoretical analysis provides a framework that enables
us to quantify the threat for any access-point setting and to identify the key pa-
rameters and their impact on the adversary’s success. The framework serves as
a light-weight alternative to an extensive traffic analysis to estimate the threat.
We experimentally investigate the state in practice, by analyzing real traces of
users accessing Google services, collected from deployed Wi-Fi access points. We
observe the large scale of the threat even with a modest use of LBS services. We
survey possible countermeasures and we find that adequate ones can be used to
protect individual users’ location privacy, but they need to be widely deployed.

We intend to further study this threat by focusing on the following aspects:
(i) the accuracy of a IP-location service, based on (IP, Location) mappings;
(ii) the refinement of the model by modeling users’ arrivals by an inhomogeneous
Poisson process to capture time-of-the-day effects; (iii) the adversary’s inference
of IP changes, studying the trade-off between the probability of inferring the IP
change and the adversary’s confidence; and (iv) the adversary’s ability to track
users as they move and connect to different APs over time.
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